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Sheet 9: Hilbert spaces

Exercise 1
In this exercise we will take a first look at one-dimensional periodic problems. A periodic problem is
characterized by being invariant to some translations. For example the  function is periodic with
periodicity , i.e.

This is nothing else than saying that any translation by an integer multiple of  keeps the 
function invariant. More formally, one can use the translation operator  to write this as:

The main motivation for looking at periodic problems is that one can exploit periodicity to save
computational work. Consider a problem in which we want to find a function , but a
priori the solution is known to be periodic with periodicity . As a consequence of said periodicity it
is sufficient to determine the values of  for all  of the interval  to uniquely define 
on the full real axis.

In this exercise our concern will be to define appropriate spaces for periodic functions and their
approximations in 1D, revisiting some of the points we discussed in the lecture.

First we take a closer look at the sine, which one would consider a nice function. However, we
obtain the following result:

(a) Show that sine is square-integrable on bounded domains, i.e. that  for any
.

(b) Argue why sine is not square-integrable on unbounded domains, i.e. why .

The fact that  is notably related to the very fact that it is a periodic function. This is
one motivation for introducing the  spaces we discussed in the lecture, which are more
forgiving on the boundary of the domain.

(c) Keeping in mind that  is compact for , show that .

The goal is now, based on , to introduce a function space taking into account the periodicity of
problems. In 1D periodicity is equivalent to saying there exists a lattice  with lattice
constant , i.e.

        -3a/2      -a/2      +a/2     +3a/2
       ... |---------|---------|---------| ...
                a         a         a



where the function is identical in each of the lattice cells compared to any of its neighbours, that is
to say

One such cell, e.g. , we call the unit cell of the problem. Note that both lattice
and unit cell are not unique, e.g. a unit cell  would have worked just as well.

Based on lattice and cell, we define the function space

with inner product

Since  implies  all elements of  can be Fourier transformed. This
admits the series expansion

with the reciprocal lattice , the plane waves

and the Fourier coefficients

(d) Based on the basis expansion  argue why  is separable, by explicitly constructing a
countable dense subset. This requires a few steps of reasoning. Follow this path to convince
yourself of this result:

Consider the set  defined by

Show the set  to be countable using the standard theorems discussed in the wikipedia
article on countable sets.
Argue that the completion of  under the norm of  is indeed , i.e. that  is
a dense subset of . That is, for each  construct a Cauchy sequence

 in  with

https://en.wikipedia.org/wiki/Countable_set
https://en.wikipedia.org/wiki/Countable_set


Conclude regarding the separability of .

Solutions

Thm 1. Any continuous function on a compact set  is (Lebesgue-)integrable.

1a)

(The abstract way) The interval  is compact and function  is continuous on , thus
. Thus  for any .

(The concrete way:) 

1b)

One can verify that  diverges to  as .

1c)

As in 1a), continuity of  over all of  is enough to show using Theorem 1 above that
.

1d)

I.  is countable:  is countable.  is a finite product of countable sets, thus countable.  is a
countable union of countable sets, thus countable.

II.  is dense in . Let  and and . Since  is a basis expansion, there
exists an  such that

Furthermore, since  is dense in , there exists rational complex coefficients  such that

Finally, combining by the triangle inequality:



Thus  is dense in . With  being countable, this verifies that  is separable.


