
Error control in scientific modelling (MATH 500, Herbst)



Sheet 8: Matrix perturbation theory

Exercise 1
In this exercise we will compute some of the results of the lecture explicitly for the problem

 with

For notational simplicity let  denote the exact first eigenvalue of  and  denote the
exact second eigenvalue of , ordered by size.

Gap δ = 1.0

# Install some packages
begin

using LinearAlgebra
using PlutoUI
using PlutoTeachingTools
using Plots

end
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begin
Atilde = Diagonal([1, 1 + δ])  # Reference matrix
ΔA = [0 1; 1 0]                # Perturbation
A(t) = Atilde + t * ΔA         # Matrix depending on t
ts = -1.5:0.025:1.5            # Range of values for t for plotting

end;
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Eigenvalues. First we are concerned with exploring the exact eigenvalues. Code up a function, that
computes the exact first and second eigenvalue of  at the -values given in ts  and store the
results in λ1_exact  and λ2_exact .

let
p = plot(title="Eigenvectors")
xlabel!(p, "t")
if !ismissing(x1_exact)

plot!(p, ts, getindex.(x1_exact, Ref(1)); label="x₁[1] exact", lw=2, c=1)
plot!(p, ts, getindex.(x1_exact, Ref(2)); label="x₁[2] exact", lw=2, c=2)

end

if !ismissing(Δx1)
i_t0 = findfirst(iszero, ts)
x_tilde = x1_exact[i_t0]

x1_PT = [x_tilde + t * Δx1 for t in ts]
plot!(p, ts, getindex.(x1_PT, Ref(1)); label="x₁[1] PT", lw=2, c=1, 
ls=:dash)
plot!(p, ts, getindex.(x1_PT, Ref(2)); label="x₁[2] PT", lw=2, c=2, 
ls=:dash)

end

p
end
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begin
λ_exact = [sort(eigvals(A(t)), by=abs) for t in ts]
λ1_exact = getindex.(λ_exact, Ref(1))
λ2_exact = getindex.(λ_exact, Ref(2))

end;
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In the plot we clearly see the linear dependency in  for large values of  predicted by Proposition
7.

Now vary the slider of . You should notice that the dependency of the eigenvalues of  in  is
smooth as long as the eigvalues of  are non-degenerate (i.e. ). However, for  we
observe a clear kink.

Now we want to check Theorem 6, which suggests that the average eigenvalue

should be smooth for all .

Compute the average eigenvalue for each value of :

You should observe in the plot that this average is continuous for all values of .

Now compute the first-order perturbative correction  and  according to
the perturbation theory treatment we proposed in the lecture, code them up here:

From this we can easily compute the first order (in ) approximation of  and  as the sum
, where  is the first eigenvalue of . Code this up below:

Eigenvectors. Next we are concerned with the eigenvectors. Code up the computation of the exact
eigenvector  of  corresponding to  at all  in ts . Make sure to produce a list of
vectors.

Make sure you use a homogeneous sign convention for all  as otherwise the plot generated in the
"Eigenvectors" graph above may not be continuous (as it should be).

λ_exact_avg = (λ1_exact .+ λ2_exact) ./ 2;1

begin
Δλ_1 = [1; 0]' * ΔA * [1; 0]
Δλ_2 = [0; 1]' * ΔA * [0; 1]

end;
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begin
λ1_tilde = 1.0
λ2_tilde = 1.0 + δ

λ1_PT = λ1_tilde .+ ts .* Δλ_1
λ2_PT = λ2_tilde .+ ts .* Δλ_2

end;
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x1_exact

[[-0.811242, -0.58471], [-0.812724, -0.582649], [-0.814245, -0.580521], [-0.815809, -0.578
 = 

Next up is the first-order correction  from perturbation theory. For the computation
keep in mind that  is singular, but that the eigenvector corresponding to the -eigenvalue
is actually projected out by , such that you can arbitrarily shift the eigenvalue along this mode
to avoid issues when computing the inverse.

[-0.0, 1.0]

Exercise 2

Above we constructed the perturbative expansion of the eigenpairs of  starting
from  and its eigenpairs (  as the reference. We computed corrections to first order, i.e.
obtained an expansion

In this exercise we want to compute a lower bound for the radius of convergence for this expansions
using Theorem 6.4.

As a reminder this Theorem guarantees that  and  are analytic as long as  with

and  a contour in the complex plane enclosing only  and  denoting the spectral radius
of . As a result the above expansions are guaranteed to converge for  [1].

We consider the same case as above, i.e.

x1_exact = [eigen(Hermitian(A(t))).vectors[:, 1] for t in ts]1

begin
i_t0 = findfirst(iszero, ts)
x_tilde = x1_exact[i_t0]

Q = [0 0;
 0 1]

A_shifted = (Atilde - λ1_tilde * I)
A_shifted[1, 1] = 1e-12

Δx1 = - A_shifted \ (Q * ΔA * x_tilde)
end
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but for simplicity we will assume .

(a) Show that the spectral radius of  is

(a) solution We note

We proceed to compute the eigenvalues of  for which we note that its trace (sum of
eigenvalues) is zero and its determinant (product of eigenvalues) is

from which we deduce its eigenvalues to be

Therefore its spectral radius is

(b) Next we want to compute . For this we take a circular contour enclosing only , i.e. the
contour is parametrised by

where  to avoid enclosing . With this ansatz

Show that .

(b) solution First we consider the argument of the infimum:



Since  and  this expression is smallest when  is maximal, i.e. . Therefore

(c) The final step is to optimise the contour itself, such that  (and thus the possible values for )
are largest. Show that we can guarantee convergence of the perturbation expansion for .

(c) solution Since  has a maximum when

the best choice is , yielding

[1]:

Note that this is an underestimation, the true radius of convergence depends on the analyticity of
.


