Error control in scientific modelling (MATH 500, Herbst)



Sheet 8: Matrix perturbation theory

# Install some packages
begin
using LinearAlgebra
using PlutoUI
using PlutoTeachingTools
using Plots
end

Exercisel

In this exercise we will compute some of the results of the lecture explicitly for the problem

A(t) = A+ tAAwith
ia=(* 0 aa= (" 1),
0 1446 10

For notational simplicity let A1 (¢) denote the exact first eigenvalue of A(t) and Ay(¢) denote the
exact second eigenvalue of A(t), ordered by size.

begin

Atilde = Diagonal([1, 1 + &]) # Reference matrix

AA = [0 15 1 0] # Perturbation

A(t) = Atilde + t * AA # Matrix depending on t

ts = -1.5:0.025:1.5 # Range of values for t for plotting
end;

Cap § = c— 1.0



Eigenvalues
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Eigenvectors
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let

p = plot(title="Eigenvectors")
xlabel! (p, "t")
if lismissing(x1_exact)
plot!(p, ts, getindex.(x1_exact, Ref(1)); label="x:[1] exact", lw=2, c=1)
plot!(p, ts, getindex.(xl_exact, Ref(2)); label="x:[2] exact", lw=2, c=2)
end

if lismissing(Ax1)
i_t0 = findfirst(iszero, ts)
x_tilde = x1_exact[i_t0]

x1_PT = [x_tilde + t % Ax1 for t in ts]
plot!(p, ts, getindex.(x1_PT, Ref(1)); label="x.[1] PT", lw=2, c=1,

1s=:dash)
plot!(p, ts, getindex.(x1_PT, Ref(2)); label="x.[2] PT", lw=2, c=2,
ls=:dash)

end

Y

end

Eigenvalues. First we are concerned with exploring the exact eigenvalues. Code up a function, that
computes the exact first and second eigenvalue of A(t) at the t-values given in ts and store the

results in A1_exact and A2_exact.

begin
A_exact = [sort(eigvals(A(t)), by=abs) for t in ts]
M_exact = getindex.(A_exact, Ref(1))
A2_exact = getindex.(A_exact, Ref(2))

end;



In the plot we clearly see the linear dependency in ¢ for large values of |¢| predicted by Proposition
7.

Now vary the slider of §. You should notice that the dependency of the eigenvalues of A(t) in ¢ is

smooth as long as the eigvalues of A are non-degenerate (i.e. § > 0). However, for § = 0 we
observe a clear kink.

Now we want to check Theorem 6, which suggests that the average eigenvalue

Su(0) + Xa(0)

should be smooth for all £.
Compute the average eigenvalue for each value of ¢:

A_exact_avg = (Al_exact .+ A2_exact) ./ 2;

You should observe in the plot that this average is continuous for all values of 4.

Now compute the first-order perturbative correction AX; = X;(0) and AXy = A} (0) according to
the perturbation theory treatment we proposed in the lecture, code them up here:

begin

>
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= [1; 0]" % AA % [1; O]
[05 11" = AA % [0; 1]
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end;

From this we can easily compute the first order (in ) approximation of A1(t) and A2(%) as the sum
5\1 +t AN, where 5\1 is the first eigenvalue of A. Code this up below:

begin
A1_tilde = 1.0
A2_tilde = 1.0 + &
AM_PT = 2M_tilde .+ ts .x AA_1
A2_PT = A2_tilde .+ ts .x AA_2
end;

Eigenvectors. Next we are concerned with the eigenvectors. Code up the computation of the exact
eigenvector 1 (t) of A(t) corresponding to A;(¢) atall tin ts. Make sure to produce a list of
vectors.

Make sure you use a homogeneous sign convention for all ¢ as otherwise the plot generated in the
"Eigenvectors” graph above may not be continuous (as it should be).



x1l_exact =
[[-0.811242, -0.58471], [-0.812724, -0.582649], [-0.814245, -0.580521], [-0.815809, -0.57

| >
x1_exact = [eigen(Hermitian(A(t))).vectors[:, 1] for t in ts]

Next up is the first-order correction Az; = z/(0) from perturbation theory. For the computation

keep in mind that (fi — S\I) is singular, but that the eigenvector corresponding to the 0-eigenvalue
is actually projected out by @5, such that you can arbitrarily shift the eigenvalue along this mode
to avoid issues when computing the inverse.

[-0.0, 1.0]

begin
i_t0 = findfirst(iszero, ts)
x_tilde = x1_exact[i_t0]

Q = [0 0;

0 1]
A_shifted = (Atilde - A1_tilde x I)
A_shifted[1, 1] = 1le-12

Ax1 = - A_shifted \ (Q * AA % x_tilde)
end

Exercise 2

Above we constructed the perturbative expansion of the eigenpairs of A(t) = A + tAA starting

from A and its eigenpairs (5\1’, &;) as the reference. We computed corrections to first order, i.e.
obtained an expansion

Ar(t) = A1+ tAX + O(|t]?)
wl(t) =3 +tAz; + 0(|t|2)

In this exercise we want to compute a lower bound for the radius of convergence for this expansions
using Theorem 6.4.

As a reminder this Theorem guarantees that A1 (¢) and 1 (t) are analytic as long as |t| < g, with

0o = inf [o(T()] with T(2) = R.(d)AA

zel

and I a contour in the complex plane enclosing only A1 and g (T'(2)) denoting the spectral radius
of T'(2). As a result the above expansions are guaranteed to converge for |¢| < g, [1].

We consider the same case as above, i.e.



/10 0 1
A‘(o 1+5) and AA_(l 0)’

but for simplicity we will assume § > 0.

(a) Show that the spectral radius of RZ(A)AA is
1 1

\/|1—z| \/|1-|—5—z|

0 (Rz(fi)AA) -

(a) solution We note

1

0= (v ) 1= )
R.(A) = ) and T(z) = R,(A) AA= ) :

0 14+0—2 14+0—2

We proceed to compute the eigenvalues of T'(2) for which we note that its trace (sum of
eigenvalues) is zero and its determinant (product of eigenvalues) is

1

et T(2) =~ A ato-2)

from which we deduce its eigenvalues to be

n 1
VI -2)(1+6-2)

Therefore its spectral radius is

1 1 1 1 1

o(T(2)) =

VO—20+0-2)| Wi-z Wito-2 -2 its—4

(b) Next we want to compute p,. For this we take a circular contour enclosing only Ay =1, i.e. the
contour is parametrised by

I'={1+re?|6€[0,2m)}
where 0 < r < dto avoid enclosing Ay = 1 + 4. With this ansatz
-1 . _
oo = inf [o(T@)] " = inf [o(T (1+re"))]

0€[0,27]
Show that g, = v/7é — r2.

(b) solution First we consider the argument of the infimum:



[o(T(1 +re®)] ™ = /11— (1 +re®)| /[1+6— (1+re)|
= /7 4/|1 — re®|
— /7 {/[6 — r cos(8)]? + r2 sin?(6)
= V7 {82 — 267 cos(6) + 1

Sincer > 0 and d > 0 this expression is smallest when cos(8) is maximal, i.e. 1. Therefore

0o = VT /8 — 20+ 72 = 1/ (§—7)2 = Vr§— 12

(c) The final step is to optimise the contour itself, such that g, (and thus the possible values for |¢|)
are largest. Show that we can guarantee convergence of the perturbation expansion for |t| < §/2.

(c) solution Since f(r) = rd — r2 has a maximum when
0=f'(r)=4d-2r,

the best choice is 7 = /2, yielding
0a =1/02/2 = 8%/4=4/8%/4=4/2.

[1]:
Note that this is an underestimation, the true radius of convergence depends on the analyticity of

[ R(A(t))dz.



