Error control in scientific modelling (MATH 500, Herbst)

Sheet 4: Matrix eigenvalue bounds
(not to be handed in)

Install some packages
begin
using LinearAlgebra
using PlutoUI
using PlutoTeachingTools
using Plots
end

Exercisel

Using the notation of the exercise and the setup of the proof of Theorem 3.6., the residual writes as
|7[|2 = cos?0 &2 +sin? 0 ||(A — A)w|%.
Following the proof of Theorem 3.6, we employ ||(A — Al)w| > & to yield
|7(|2 > cos® 6 €2 + sin? 0 §2 = (1 — sin? f)e? + sin? 0 6% = €% + sin? § (6% — £?)

Isolating sin? @ and taking the square root proves the desired result.

Exercise 2

Consider the near-diagonal matrix

[1.0 0.001 0.099 0.099 0.0]
0.001 2.0 —-0.0561 00 —0.1
M=10.099 -0.051 3.0 0.1 0.05
0.099 0.0 0.1 4.0 0.0
| 0.0 —0.1 0.05 0.0 5.0

with some Sliders to tune the off-diagonal elements:

. M1z = commmnl) 0.001
.« M13= sl 0.099
. Mg - ol 0.099
. M23 - ol -0.051

Final plot

This section compiles a nice plot of the errors and Gerschgorin disks as we go along, see below for
the tasks.

1.5 -
1.0
05
-0.5
X eigenvalues
-+ computed
-1.0 F Gerschgorin
' Bauer-Fike
Kato-Temple
_15 1 1 1 1 1 I
0 1 2 3 4 5 6

« Plot Geschgorin disks:
« Plot Bauer-Fike estimate:
« Plot Kato-Temple estimate:

Gerschgorin disks

First we want to add a plot of the Gerschgorin disks to the plot above. Add code to compute the
centres:

geschgorin_centres = [1.0, 2.0, 3.0, 4.0, 5.0]

geschgorin_centres = diag(M)

Now add code to compute the radii:

geschgorin_radii = [0.199, 0.152, 0.3, 0.199, 0.15]

geschgorin_radii = [sum(abs, row) - abs(row[i]) for (i, row) in
enumerate(eachrow(M))]

Approximate eigenpairs and residuals

Clearly M is nearly a diagonal matrix for most choices of the parameters. We thus take the
diagonal of M as our estimate for the eigenvalues:

computed_eigenvalues = [1.0, 2.0, 3.0, 4.0, 5.0]

computed_eigenvalues = diag(M)
A natural question is: How accurate is this estimate?
For comparison we compute the exact eigenvalues. Add code to do so:

exact_eigenvalues = [0.992159, 1.99427, 2.99511, 4.01379, 5.00467]

exact_eigenvalues = eigvals(M)

Apart from this computation we will assume from here on that we know nothing about the exact
spectrum and use the techniques developed in the lecture to estimate the error of

computed_eigenvalues.
Both Bauer-Fike and Kato-Temple need the residuals. Thus we first compute these.

Add code to do so, keeping in mind that the "computed" eigvectors in our example are just the unit
vectors.

computed_eigenvectors =
[view(::Matrix{Float64}, :, 1): [1.0, 0.0, 0.0, 0.0, 0.0], view(::Matrix{Float64}, :, 2): [O

computed_eigenvectors = collect(eachcol(Matrix{Float64}(I, 5, 5)))

residuals =
[[0.0, 0.001, 0.099, 0.099, 0.0], [0.001, 0.0, -0.051, 0.0, -0.1], [0.099, -0.051, 0.0, 0.1

< >

residuals = map(computed_eigenvalues, computed_eigenvectors) do A, v
Mxv-2Axv
end

A posteriori error estimation

With the residuals in place we can proceed to compute the error estimate following the Bauer-Fike
theorem.

The following code should produce a vector of error estimates, one for each eigenvalue

error_Bauer_Fike = [0.140011, 0.112259, 0.157804, 0.140716, 0.111803]

error_Bauer_Fike = norm. (residuals)

Next we tackle the Kato-Temple bound. For this we need as the trickier ingredient a lower bound on
the spectral distance § between the approximate eigenvalue 5\,- we have computed and the closest
exact eigenvalue A; with j # i (i.e. the closest exact eigenvalue not counting the one we currently

approximate).

For this we will employ the lower-bound trick mentioned in the lecture. In particular for the spectral
distance of the first eigenvalue we obtain

81 =|A1 = Aa| = |A1 — Xo| — |Ie]|.

For the second and higher eigenpairs we need to keep in mind that there are two neighbouring
eigenvalues and we need to take the smallest distance, thus we have

o1 = A2 — A1| > A2 — Aa| — ||
dor = | A2 — A3| > | A2 — A3| — [|r3]|
02 = min(dgy, do;)

An additional complication is that as the residuals ||7;|| get too large and d2 becomes negative. The
interpretion in this case is that it is no longer guaranteed that our numerical scheme provides the
correct ordering of the approximate eigenvalues \; versus ;- The Kato-Temple bound in this case
is not applicable, which we fix by explicitly setting d; to zero (and thus causing an infinite Kato-
Temple bound). We thus need an additional step where we set

Code up your algorithm for computing the d; again as a vector of floats, one for each eigenvalue.

5 = [0.887741, 0.842196, 0.859284, 0.842196, 0.859284]

& = map(l:size(M, 2)) do i
5_left = &_right = Inf

Atilde = computed_eigenvalues
if i >1
5_left = abs(Atilde[i] - Atilde[i-1]) - norm(residuals[i-1])
end
if i < size(M, 2)
6_right = abs(Atilde[i] - Atilde[i+1]) - norm(residuals[i+1])
end
max (0.0, min(&_left, &_right))
end

With & in place, the computation of the Kato-Temple bound is simple. Code it up here:

error_Kato_Temple = [0.0220819, 0.0149633, 0.0289799, 0.0235111, 0.014547]

error_Kato_Temple = norm.(residuals).?2 ./ &

Playing with the parameters

Once you have everything coded up and your plot above shows the Gerschgorin disks, the Bauer-
Fike bound and the Kato-Temple bound, play a bit with the sliders to make the off-diagonal
elements larger and smaller.

The tighter the bounds, the better — in this case they plainly provide a better way to estimate
errors. In which regime is which of the bounds the most favourable?

