
Sheet 10: Operators

Exercise 1

We work on the real line . Consider the following spaces: , , , , and
.

(a) Which of these spaces are Hilbert spaces? In each case, explain your answer briefly in one
sentence.

(a) solution

Out of these, only  and  are Hilbert spaces, when considered with their respective
inner products.

(b) Arrange these spaces by inclusion, where possible. Argue whether each inclusion is strict.

(b) solution

We have  and .

All inclusions are strict.

Exercise 2
In this exercise we want to discuss the subtlety between symmetric and self-adjoint operators on
one example: the Laplacian on . We take the operator as

with domain .

As mentioned in the Lecture the Laplacian is self-adjoint if the domain is taken to be .
However, in this setting  is not self-adjoint exactly because the domain is too small. To see that
proceed as follows:

(a) Show that  is symmetric.

(a) solution

Let . Since , integration by parts can be used to arbitrary order.



Thus  is symmetric.



Consider the definition of the adjoint , which is the operator  defined
by , where  is the unique element satisfying

where we take the domain  to be as large as possible.

(b) Due to the implicit definition of  and  it is not immediately obvious what exactly this
domain should be. However, with thinking back to our definition of weak derivatives one easily
identifies (1) to be satisfied for all  from a particular Sobolev space. Which one ?

(b) solution

Consider the Sobolev space .

By definition of the weak derivative, we have for every  and every  that

Rearanging both sides, we have:

We have thus shown that .

(c) Based on your results in (b) argue why  cannot be self-adjoint.

(c) solution

We have . Combined with the result  from (b), this yields
. Thus  is not self-adjoint.

Exercise 3
We stick to our example from the previous exercise, the Laplacian  on the Hilbert space

 with domain .

You may think the distinction between symmetric and self-adjoint is subtle and only a
mathematical peculiarity. However, it turns out this difference very much has physical significance.

We will discuss later that the negative Laplacian has only real and positive eigenvalues if one
choses the usual domain . This makes physical sense as this operator measures
the kinetic energy for a "free electron", which thus is necessarily a positive quantity. Further since
the electron can travel at any positive speed, it is reasonable that .

However, with  as we choose it here, we get the unphysical result that
, the entire complex plane. As we will see now.



(a) To find the spectrum of  we will construct its resolvent set , which is

Invertible in particular means that  is bijective. We will show that  is not bijective for
all . To arrive at this point proceed as follows:

1. Argue why  for all .
2. Show that  is not surjective. (Hint below)
3. From this conclude that  and .

Hint

(a) solution

1.  is closed under differentation to any order. Thus .

2. We have . Combined with (1), it follows that  cannot be surjective.

3. For every , we have the image . Thus the operator  is not
surjective either. It follows that the resolvent set is empty, and the spectrum is .


