Solution Sheet n°9

Solution of exercise 1:

Let n stand for $S \cdots S(0)$. Consider the language $\mathcal{L}'_{\mathcal{A}} = \mathcal{L}_{\mathcal{A}} \cup \{c\}$, where c is a constant symbol and consider the theory $\mathcal{T} = \mathcal{R}ob \cup \{c \neq n \mid n \in \mathbb{N}\}$ in the language $\mathcal{L}'_{\mathcal{A}}$. Then \mathbb{N} is a model of each finite subset of \mathcal{T} , since it is a model of each finite subset of $\mathcal{R}ob$ and, for each finite subset $A \subset \mathbb{N}$, \mathbb{N} models $\mathcal{R}ob \cup \{c \neq n \mid n \in A\}$ by interpreting c as an integer greater than the maximum of A. By the compactness theorem, \mathcal{T} has a model \mathfrak{M} . The interpretation of c in \mathfrak{M} is an element which is not the successor of any integer, so \mathfrak{M} is not isomorphic to \mathbb{N} , and neither is its restriction to $\mathcal{L}_{\mathcal{A}}$.

Solution of exercise 2:

1. We let κ be the number of countable models of $\mathrm{Th}(\mathbb{N})$ up to isomorphism. We first observe that up to ismorphism any countable $\mathcal{L}_{\mathcal{A}}$ -structure consists in choosing one element of \mathbb{N} , a function from \mathbb{N} to \mathbb{N} and two functions from \mathbb{N}^2 into \mathbb{N} . Hence, $\kappa \leq 2^{\aleph_0}$.

We next show that there are exactly 2^{\aleph_0} such models. Let \mathbb{P} be the set of all prime numbers of \mathbb{N} . We denote by x|y the formula $\exists z(x\cdot z=y)$. For all countable models \mathfrak{M} of Th(\mathbb{N}) and all elements a in the domain of \mathfrak{M} , we denote by $Div_{\mathfrak{M}}(a)$ the set of prime numbers dividing a in \mathfrak{M} , that is

$$\operatorname{Div}_{\mathfrak{M}}(a) = \{ p \in \mathbb{P} \mid \mathfrak{M} \models p | a \}$$

where p stands for $S \cdots S(0)$. We then let

$$D = \left\{ P \subset \mathbb{P} \;\middle|\; \begin{array}{l} \text{there exists a countable model } \mathfrak{M} \text{ of } \mathrm{Th}(\mathbb{N}) \\ \text{and } a \in \mathfrak{M} \text{ such that } P = \mathrm{Div}_{\mathfrak{M}}(a) \end{array} \right\}.$$

We now show that two isomorphic countable models have the same contributions to D. Let \mathfrak{M} and \mathfrak{M}' be two countable models of $\mathrm{Th}(\mathbb{N})$ and f be an isomorphism form \mathfrak{M} onto \mathfrak{M}' . Observe that the formulas $\exists !x \forall y \neg (S(y) = x)$ and $\forall y \neg (S(y) = 0)$ are satisfied in N and thus in \mathfrak{M} and \mathfrak{M}' . It follows that 0 must be interpreted by the unique element of the domain not in the range of the interpretation of S. Hence necessarily f maps $0^{\mathfrak{M}}$ to $0^{\mathfrak{M}'}$. It follows by induction that f sends $n^{\mathfrak{M}}$ to $n^{\mathfrak{M}'}$ for all natural numbers n. Next, since f is an isomorphism we have that for all $a \in \mathfrak{M}$ and all $p \in \mathbb{P}$ that

$$\mathfrak{M} \models p|a$$
 iff $\mathfrak{M}' \models p|f(a)$

and thus

$$\operatorname{Div}_{\mathfrak{M}}(a) = \operatorname{Div}_{\mathfrak{M}'}(f(a)).$$

Consequently, since f is a bijection, the contribution of \mathfrak{M} and \mathfrak{M}' to D are identical. Since a countable model can contribute only to (at most) \aleph_0 elements of D, we have $Card(D) \leq \kappa \cdot \aleph_0$.

We finally show that D is equal to the whole power set of $\mathbb{P}.$ This concludes the proof since,

$$2^{\aleph_0} = \operatorname{Card}(\mathcal{P}(\mathbb{P})) = \operatorname{Card}(D) \le \kappa \cdot \aleph_0 = \max\{\kappa, \aleph_0\}$$

and $\kappa \leq 2^{\aleph_0}$ implies $\kappa = 2^{\aleph_0}$.

Let c be a new constant symbol and let $\mathcal{L}'_{\mathcal{A}} = \mathcal{L}_{\mathcal{A}} \cup \{c\}$ be the extended language. For each subset P of \mathbb{P} , we define the $\mathcal{L}'_{\mathcal{A}}$ -theory

$$T_P = \operatorname{Th}(\mathbb{N}) \cup \{p | \mathbf{c} \mid p \in P\} \cup \{\neg(p | \mathbf{c}) \mid p \in \mathbb{P} \backslash P\},$$

For each such P, T_P is finitely satisfiable since for any finite subset F of P, we can interpret c in \mathbb{N} as the product of the prime numbers in F. By the compactness theorem, T_P is satisfiable. Furthermore, by the downward Löwenheim-Skolem theorem T_P admits a countable model \mathfrak{M}_P . But this means that the symbol of constant c is interpreted as an $a \in \mathfrak{M}_P$ such that $\mathrm{Div}_{\mathfrak{M}_P}(a) = P$. Since \mathfrak{M}_P is a countable model of $\mathrm{Th}(\mathbb{N})$, it follows that $P \in D$. Therefore $D = \mathcal{P}(\mathbb{P})$. This concludes the proof.

2. As we have seen above above, there cannot be more than 2^{\aleph_0} pairwise non isomorphic countable models of the language $\mathcal{L}_{\mathcal{A}}$, so in particular this holds for models of $\mathcal{R}ob$. Since $\mathcal{R}ob \subset \operatorname{Th}(\mathbb{N})$, all models of $\operatorname{Th}(\mathbb{N})$ are models of $\mathcal{R}ob$, so the cardinality of the set of countable models of $\mathcal{R}ob$ up to isomorphism is exactly 2^{\aleph_0} .

Solution of exercise 3:

See the solution of exercise 1 of Chapter 6 p. 267 in *Logique mathématique*, vol. 2, Cori, R. and Lascar, D., 1993, Masson.