Solution Sheet n°8

1. First observe that the interpretation in \mathcal{N} of each term $t(x_1,\ldots,x_p)$ is a primitive recursive function $h_t:\mathbb{N}^p\to\mathbb{N}$. This is shown by induction. The interpretations of variables and constant are respectively the projection $\operatorname{proj}_1^1:\mathbb{N}\to\mathbb{N}$ and the constant functions $\operatorname{const}_0^1,\operatorname{const}_1^1:\mathbb{N}\to\mathbb{N}$ which are by definition primitive recursive. Then for terms t and s whose interpretation are the primitive recursive functions h_t and h_s , the interpretation of the terms t+s and $t\cdot s$ are respectively the primitive recursive functions $\operatorname{add}(h_t,h_s)$ and $\operatorname{mult}(h_t,h_s)$.

Atomic formulas: Since the usual relations = and \leq on \mathbb{N} are primitive recursive binary relations (as seen during the lecture), for each couple of terms s and t the atomic formulas t=s and $t\leq s$ define the primitive recursive relation whose characteristic functions are $\chi_{=}(h_s,h_t)$ and $\chi_{\leq}(h_s,h_t)$, respectively. Thus sets which are arithmetically defined by atomic formulas are primitive recursive.

 Δ_0^0 -rudimentary formulas: Suppose now that Δ_0^0 -rudimentary formulas φ and ψ (arithemtically) define sets which are primitive recursive. Then the same is true of the formulas $\neg \varphi$, $\varphi \land \psi$, $\varphi \lor \psi$ by the fact that primitive recursive sets are closed under complementation, intersection and union. Also, a set which is defined by the formulas $\forall x < t \varphi$ or $\exists x < t \varphi$ is primitive recursive since it is obtained by bounded quantification

$$\exists i \leq h_t(\vec{n}) \ R(\vec{n}, i) \text{ or } \forall i \leq h_t(\vec{n}) \ R(\vec{n}, i)$$

where h_t is the interpretation of the term t and R is a relation defined by φ . We proved in Sheet 7 that such relations are primitive recursive when both h_t and R are.

- 2. During the lecture we saw that a set $B \subseteq \mathbb{N}^p$ is recursively enumerable iff there exists $A \subseteq \mathbb{N}^{p+1}$ primitive recursive such that $B = \{\vec{x} \in \mathbb{N}^p \mid \exists y \in \mathbb{N} \ (\vec{x}, y) \in A\}$. Thus by 1. any set which is definable by a formula of the form $\exists x \varphi(x)$ where φ is a Δ_0^0 -rudimentary formulas is recursively enumerable.
- 3. This function is arithmetically defined by the Δ_0^0 -rudimentary formula:

$$quot(x_1, x_2, y) : (x_2 = 0 \land y = 0) \lor \exists u < x_2(x_1 = y \cdot x_2 + u).$$

4. This function is arithmetically defined by the Δ_0^0 -rudimentary formula:

$$\mathsf{rest}(x_1, x_2, y) \ : \ (x_2 = 0 \land y = x_1) \lor (y < x_2 \land \exists u \le x_1 (x_1 = u \cdot x_2 + y)) \, .$$

- 5. This follows from 4. and the fact that $(t \cdot (1+i)) + 1$ is a term of the language A.
- 6. Let $k \in \mathbb{N}$ and $(n_0, \ldots, n_k) \in \mathbb{N}^{k+1}$. We set $m = \max\{n_0, \ldots, n_k, k\}$ and t = m!. We show that for i and j with $0 \le i < j \le k$ the natural numbers t(i+1)+1 and t(j+1)+1 are coprime (i.e. their greatest common divisor

is 1). To this end, suppose that a natural number r divides both t(i+1)+1 and t(j+1)+1. Then it must divide their difference t(j-i). Thus r divides j-i or t=m!. Since $j-i\leq m$, trivially j-i divides t=m!, necessarily r divides t. But t and t(i+1)+1 are coprime since, if t=qr and qr(i+1)+1=qr' then q(ri+r-r')=-1 so $q=\pm 1$. Consequently, r must equal 1 and t(i+1)+1 and t(j+1)+1 are coprime as desired.

We have thus obtained that the sequence of natural numbers $t+1, 2t+1, \ldots, t(k+1)+1$ is pairwise coprime and thus by the Chinese remainder theorem there exists a natural number s such that for all i with $0 \le i \le k$ we have $a_i = \text{rest}(s, t(i+1)+1) = \beta(s, t, i)$.

We can thus use Gödel's β function to code sequences of natural numbers of arbitrary length using just two natural numbers, s and t in the above formulation.

7. Basic recursive function: the constant functions, the projections and the successor function are respectively defined by the Δ_0^0 -rudimentary formulas:

$$\begin{aligned} & \operatorname{const}_n^p(x_1,\dots,x_p,y) \ : \ y=n \\ & \operatorname{proj}_j^p(x_1,\dots,x_p,y) \ : \ y=x_j \\ & \operatorname{succ}(x,y) \ : \ y=x+1. \end{aligned}$$

Composition: Now suppose that $g: \mathbb{N}^m \to \mathbb{N}$ and $f_1, \ldots, f_m: \mathbb{N}^p \to \mathbb{N}$ are (partial) recursive functions defined by generalised existential Δ_0^0 -rudimentary formulas (gen- \exists - Δ_0^0 -rud) $\varphi_g(x_1, \ldots, x_m, y)$ and $\varphi_{f_i}(x_1, \ldots, x_p, y)$ respectively. Then the partial recursive function $g(f_1, \ldots, f_m)$ is defined by the gen- \exists - Δ_0^0 -rud formula:

$$\psi(x_1,\ldots,x_p,y): \exists y_1 \exists y_2 \cdots \exists y_m \left(\bigwedge_{i=1}^m \varphi_{f_i}(x_1,\ldots x_p,y_i) \wedge \varphi_g(y_1,\ldots,y_m,y) \right).$$

Induction: Suppose that $g: \mathbb{N}^p \to \mathbb{N}$ and $h: \mathbb{N}^{p+2} \to \mathbb{N}$ are (partial) recursive functions defined by gen- \exists - Δ^0_0 -rud formulas $\varphi_g(\vec{x},y)$ and $\varphi_h(\vec{x},y)$ respectively. The function f defined by induction from g and h is defined by the gen- \exists - Δ^0_0 -rud formula:

$$\begin{split} \psi(\vec{x},y,z) &: \exists s \exists t \Big(\exists y_0 \left(\beta(s,t,0,y_0) \land \varphi_g(\vec{x},y_0) \right) \\ & \land \\ \forall w < y \exists y_1 \exists y_2 (\beta(s,t,w,y_1) \land \beta(s,t,w+1,y_2) \land \varphi_h(\vec{x},w,y_1,y_2)) \\ & \land \\ & \beta(s,t,y,z) \Big). \end{split}$$

What we have done is find s, t which code the sequence

$$\big(f(\vec{x},0),f(\vec{x},1),\dots,f(\vec{x},y)\big) = = (g(\vec{x}),h(\vec{x},0,g(\vec{x})),\dots,h(\vec{x},y-1,f(\vec{x},y-1)))$$

and finally check that z is equal to the last element of the sequence, that is $z=f(\vec{x},y).$

Minimisation: Suppose that $g: \mathbb{N}^{p+1} \to \mathbb{N}$ is a (partial) recursive function defined by a gen- \exists - Δ_0^0 -rud formula $\varphi_g(\vec{x}, y, z)$. The function $f(\vec{x}) = \mu y g(\vec{x}, y) = 0$ is defined by the gen- \exists - Δ_0^0 -rud formula

$$\psi(\vec{x}, z) : \varphi_q(\vec{x}, z, 0) \land \forall y < z \ \exists u (\varphi_q(\vec{x}, y, u) \land 1 \le u)).$$

- 8. (a) A formula φ is logically equivalent to $\exists w(w=w \land \varphi)$ for a variable w with no free occurrence in φ . Moreover if φ is Δ_0^0 -rud, then so is $w=w \land \varphi$.
 - (b) $\exists x \varphi(x) \land \exists y \psi(y)$ is arithmetically equivalent to

$$\exists w \exists x < w \ \exists y < w \ (\varphi(x) \land \psi(y))$$

for w with no free occurence in φ and ψ . The backward direction is straightforward, while the forward one follows from the fact that in \mathcal{N} for any two natural numbers n and m there exists a natural number greater than both, that is $\mathcal{N} \models \forall x \forall y \exists w (x < w \land y < w)$. Moreover if φ and ψ are Δ_0^0 -rud, then so is $\exists x < w \ \exists y < w \ (\varphi(x) \land \psi(y))$.

- (c) $\exists x \varphi(x) \lor \exists y \psi(y)$ is logically equivalent to $\exists x (\varphi(x) \lor \psi(x))$.
- (d) $\forall z < t(x_1, \ldots, x_p) \; \exists u \varphi(x_1, \ldots, x_p, z, u)$ is arithmetically equivalent

$$\exists w \forall z < t(x_1, \dots, x_p) \ \exists u < w \varphi(x_1, \dots, x_p, z, u).$$

where w has no free occurrence in φ and ψ . The backward direction is straightforward, while the forward one is based on the fact about \mathcal{N} according to which for every finitely many natural numbers u_0, \ldots, u_{t-1} there exists a natural number greater than all these u_z .

- (e) $\exists z < y \ \exists u \varphi(u, z)$ is logically equivalent to $\exists u \exists z < y \ \varphi(u, z)$.
- (f) For similar reasons as in (b), $\exists u \exists v \ \varphi(u, v)$ is arithmetically equivalent to $\exists w \exists u < w \ \exists v < w \ \varphi(u, v)$.
- 9. First notice that atomic formulas are ∃∆₀⁰-rud by (a) of the previous point. Next recall that gen-∃-∆₀⁰-rud formulas are built up from the atomic formulas by disjunctions, conjunctions, bounded quantifications and existential quantifications. Hence, by (b)-(f) of the previous point one can prove by induction on the height of the formulas that every gen-∃-∆₀⁰-rud is equivalent to an ∃∆₀⁰ formula.
- 10. By point 1. every set which is definable which by a $\exists \Delta_0^0$ -rud formula is recursively enumerable. Conversely, observe that a set is recursively enumerable iff it is the domain of a recursive function. Hence given a recursively enumerable set R there is a recursive function f whose domain is R. By 7. every recursive function is arithmetically definable by a gen- \exists - Δ_0^0 -rud formula $\varphi_f(\vec{x}, y)$. The domain R of f is thus arithmetically defined by the formula

$$\varphi_R(\vec{x}) : \exists y \; \varphi_f(\vec{x}, y)$$

which is arithmetically equivalent to a $\exists \Delta_0^0$ -rud formula by 9. Consequently, every recursively enumerable set is arithmetically definable by $\exists \Delta_0^0$ -rud formula.