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1. First observe that the interpretation in N of each term t(x1, . . . , xp) is a
primitive recursive function ht : Np → N. This is shown by induction.
The interpretations of variables and constant are respectively the projec-
tion proj11 : N → N and the constant functions const10, const11 : N → N
which are by definition primitive recursive. Then for terms t and s whose
interpretation are the primitive recursive functions ht and hs, the inter-
pretation of the terms t+s and t ·s are respectively the primitive recursive
functions add(ht, hs) and mult(ht, hs).

Atomic formulas: Since the usual relations = and ≤ on N are primitive
recursive binary relations (as seen during the lecture), for each couple of
terms s and t the atomic formulas t = s and t ≤ s define the primi-
tive recursive relation whose characteristic functions are χ=(hs, ht) and
χ≤(hs, ht), respectively. Thus sets which are arithmetically defined by
atomic formulas are primitive recursive.

∆0
0-rudimentary formulas: Suppose now that ∆0

0-rudimentary formulas φ
and ψ (arithemtically) define sets which are primitive recursive. Then the
same is true of the formulas ¬φ, φ ∧ ψ, φ ∨ ψ by the fact that primitive
recursive sets are closed under complementation, intersection and union.
Also, a set which is defined by the formulas ∀x < t φ or ∃x < t φ is
primitive recursive since it is obtained by bounded quantification

∃i ≤ ht(n⃗) R(n⃗, i) or ∀i ≤ ht(n⃗) R(n⃗, i)

where ht is the interpretation of the term t and R is a relation defined by
φ. We proved in Sheet 7 that such relations are primitive recursive when
both ht and R are.

2. During the lecture we saw that a set B ⊆ Np is recursively enumerable
iff there exists A ⊆ Np+1 primitive recursive such that B = {x⃗ ∈ Np |
∃y ∈ N (x⃗, y) ∈ A}. Thus by 1. any set which is definable by a formula
of the form ∃xφ(x) where φ is a ∆0

0-rudimentary formulas is recursively
enumerable.

3. This function is arithmetically defined by the ∆0
0-rudimentary formula:

quot(x1, x2, y) : (x2 = 0 ∧ y = 0) ∨ ∃u < x2(x1 = y · x2 + u).

4. This function is arithmetically defined by the ∆0
0-rudimentary formula:

rest(x1, x2, y) : (x2 = 0 ∧ y = x1) ∨ (y < x2 ∧ ∃u ≤ x1(x1 = u · x2 + y)) .

5. This follows from 4. and the fact that (t · (1 + i)) + 1 is a term of the
language A.

6. Let k ∈ N and (n0, . . . , nk) ∈ Nk+1. We set m = max{n0, . . . , nk, k} and
t = m!. We show that for i and j with 0 ≤ i < j ≤ k the natural numbers
t(i+1)+1 and t(j+1)+1 are coprime (i.e. their greatest common divisor
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is 1). To this end, suppose that a natural number r divides both t(i+1)+1
and t(j + 1) + 1. Then it must divide their difference t(j − i). Thus r
divides j − i or t = m!. Since j − i ≤ m, trivially j − i divides t = m!,
necessarily r divides t. But t and t(i+ 1) + 1 are coprime since, if t = qr
and qr(i+1)+ 1 = qr′ then q(ri+ r− r′) = −1 so q = ±1. Consequently,
r must equal 1 and t(i+ 1) + 1 and t(j + 1) + 1 are coprime as desired.

We have thus obtained that the sequence of natural numbers t + 1, 2t +
1, . . . , t(k+ 1)+ 1 is pairwise coprime and thus by the Chinese remainder
theorem there exists a natural number s such that for all i with 0 ≤ i ≤ k
we have ai = rest(s, t(i+ 1) + 1) = β(s, t, i).

We can thus use Gödel’s β function to code sequences of natural numbers
of arbitrary length using just two natural numbers, s and t in the above
formulation.

7. Basic recursive function: the constant functions, the projections and the
successor function are respectively defined by the ∆0

0-rudimentary formu-
las:

constpn(x1, . . . , xp, y) : y = n
projpj (x1, . . . , xp, y) : y = xj

succ(x, y) : y = x+ 1.

Composition: Now suppose that g : Nm → N and f1, . . . , fm : Np → N
are (partial) recursive functions defined by generalised existential ∆0

0-
rudimentary formulas (gen-∃-∆0

0-rud) φg(x1, . . . , xm, y) and φfi(x1, . . . , xp, y)
respectively. Then the partial recursive function g(f1, . . . , fm) is defined
by the gen-∃-∆0

0-rud formula:

ψ(x1, . . . , xp, y) : ∃y1∃y2 · · · ∃ym

(
m∧
i=1

φfi(x1, . . . xp, yi) ∧ φg(y1, . . . , ym, y)

)
.

Induction: Suppose that g : Np → N and h : Np+2 → N are (partial)
recursive functions defined by gen-∃-∆0

0-rud formulas φg(x⃗, y) and φh(x⃗, y)
respectively. The function f defined by induction from g and h is defined
by the gen-∃-∆0

0-rud formula:

ψ(x⃗, y, z) : ∃s∃t
(
∃y0 (β(s, t, 0, y0) ∧ φg(x⃗, y0))

∧
∀w < y∃y1∃y2(β(s, t, w, y1) ∧ β(s, t, w + 1, y2) ∧ φh(x⃗, w, y1, y2))

∧

β(s, t, y, z)
)
.

What we have done is find s, t which code the sequence(
f(x⃗,0), f(x⃗, 1), . . . , f(x⃗, y)

)
= = (g(x⃗), h(x⃗, 0, g(x⃗)), . . . , h(x⃗, y − 1, f(x⃗, y − 1)))

and finally check that z is equal to the last element of the sequence, that
is z = f(x⃗, y).
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Minimisation: Suppose that g : Np+1 → N is a (partial) recursive func-
tion defined by a gen-∃-∆0

0-rud formula φg(x⃗, y, z). The function f(x⃗) =
µyg(x⃗, y) = 0 is defined by the gen-∃-∆0

0-rud formula

ψ(x⃗, z) : φg(x⃗, z, 0) ∧ ∀y < z ∃u(φg(x⃗, y, u) ∧ 1 ≤ u)).

8. (a) A formula φ is logically equivalent to ∃w(w = w ∧ φ) for a variable
w with no free occurrence in φ. Moreover if φ is ∆0

0-rud, then so is
w = w ∧ φ.

(b) ∃xφ(x) ∧ ∃yψ(y) is arithmetically equivalent to

∃w∃x < w ∃y < w (φ(x) ∧ ψ(y))

for w with no free occurence in φ and ψ. The backward direction is
straightforward, while the forward one follows from the fact that in N
for any two natural numbers n and m there exists a natural number
greater than both, that is N |= ∀x∀y∃w(x < w ∧ y < w). Moreover
if φ and ψ are ∆0

0-rud, then so is ∃x < w ∃y < w (φ(x) ∧ ψ(y)).
(c) ∃xφ(x) ∨ ∃yψ(y) is logically equivalent to ∃x(φ(x) ∨ ψ(x)).
(d) ∀z < t(x1, . . . , xp) ∃uφ(x1, . . . , xp, z, u) is arithmetically equivalent

to
∃w∀z < t(x1, . . . , xp) ∃u < wφ(x1, . . . , xp, z, u).

where w has no free occurrence in φ and ψ. The backward direc-
tion is straightforward, while the forward one is based on the fact
about N according to which for every finitely many natural numbers
u0, . . . , ut−1 there exists a natural number greater than all these uz.

(e) ∃z < y ∃uφ(u, z) is logically equivalent to ∃u∃z < y φ(u, z).

(f) For similar reasons as in (b), ∃u∃v φ(u, v) is arithmetically equivalent
to ∃w∃u < w ∃v < w φ(u, v).

9. First notice that atomic formulas are ∃∆0
0-rud by (a) of the previous point.

Next recall that gen-∃-∆0
0-rud formulas are built up from the atomic for-

mulas by disjunctions, conjunctions, bounded quantifications and existen-
tial quantifications. Hence, by (b)-(f) of the previous point one can prove
by induction on the height of the formulas that every gen-∃-∆0

0-rud is
equivalent to an ∃∆0

0 formula.

10. By point 1. every set which is definable which by a ∃∆0
0-rud formula

is recursively enumerable. Conversely, observe that a set is recursively
enumerable iff it is the domain of a recursive function. Hence given a
recursively enumerable set R there is a recursive function f whose domain
is R. By 7. every recursive function is arithmetically definable by a gen-∃-
∆0

0-rud formula φf (x⃗, y). The domain R of f is thus arithmetically defined
by the formula

φR(x⃗) : ∃y φf (x⃗, y)

which is arithmetically equivalent to a ∃∆0
0-rud formula by 9. Conse-

quently, every recursively enumerable set is arithmetically definable by
∃∆0

0-rud formula.
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