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Solution of exercise 1:

1. A seen during the lecture the relation

R∃(n⃗, z) ←→ ∃i ≤ z R(n⃗, i)

is primitive recursive as long as R ⊆ Np is. Now if h : Np → N is primitive
recursive the characteristic function of Rh

∃ is primitive recursive since it
can be defined by

χRh
∃
= χR∃(projp,1, . . . , projp,p, h(projp,1, . . . , projp,p)).

2. First we observe that if f : Np+1 → N is primitive recursive, then so is the
function

∑
f (n⃗, y) =

∑
i<y f(n⃗, i). Indeed it is obtained by recursion on

primitive recursive functions:∑
f

(n⃗, 0) = 0

∑
f

(n⃗, y + 1) = f(n⃗, y) +
∑
f

(n⃗, y).

Now let f : Np → N be defined by

f(n⃗, i) =

{
1 if ∀j ≤ i ¬R(n⃗, j),
0 if ∃j ≤ i R(n⃗, j).

Since R and ¬R are assumed to be primitive recursive, ∀j ≤ i ¬R(n⃗, j) and
∃j ≤ i R(n⃗, j) are primitive recursive too. Hence f is primitive recursive
as it is defined by constants on primitive recursive sets (seen during the
lecture). Therefore µm < h(n⃗) R(n⃗,m) is primitive recursive as it is
equal to

∑
f (n⃗, h(n⃗)).

Solution of exercise 2: For A ⊆ N:

1.→ 2. If A is recursively enumerable, then as seen during the lecture there is
a primitive recursive relation B ⊆ N2 such that A = {m | ∃n (m,n) ∈ B}.
Now since A is non empty fix some k ∈ A. It is easy to see that A is the
range of the primitive recursive function g : N→ N defined by

g(x) =

{
β1
2(x) if (β1

2(x), β
2
2(x)) ∈ B

k otherwise.

= β1
2(x) · χB(β

1
2(x), β

2
2(x)) +

(
1−̇χB(β

1
2(x), β

2
2(x))

)
· k

2.→ 3. Any primitive function is a partial recursive function.

1



3.→ 1. As seen during the lecture a partial function f : N → N is Tur-
ing computable iff {(x, f(x)) | f is defined at x} is Turing recognisable.
Therefore a partial function f is recursive iff its graph is recursively enu-
merable. So if A is the image of a partial recursive function f then
A = {m | ∃n f(n) = m} is recursively enumerable since iti is the graph of
f .

Solution of exercise 3:

1. Let f : N→ N be total recursive and such that n < f(n) for all n ∈ N. By
the previous exercise, the range A of f is recursively enumerable. Moreover
we see that so is its complement. Indeed for all m ∈ N we have

m ̸∈ A ←→ ∀j < m f(j) ̸= m.

2. Let f : N → N be total recursive and strictly increasing. We know by
exercise 3 that A = {m | ∃nf(n) = m} is recursively enumerable. We
show its complement is also recursively enumerable. Since f is strictly
increasing, for all m ∈ N

m ̸∈ A ←→ ∃k
(
f(k) > m and ∀i < k(f(i) ̸= m)

)
.

3. Let A be an infinite recursive subset of N. Then we can define by induction
a total recursive and strictly increasing function gA : N→ N by

gA(0) = µz χA(z) = 1

gA(n+ 1) = µz (χA(z) = 1 and z > gA(n)).

Clearly, the range of gA is A. As for the second part, notice that if
f : N→ N is a total recursive strictly increasing function then gf(N) = f .
Thus if f is not primitive recursive, then so is g. For example, take
ξ(x, 2x), where ξ is the Ackerman function. In the last sheet we have seen
it is recursive but non primitive recursive and it is easy to show that it is
strictly increasing.
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