
Pr J. Duparc Gödel and Recursivity October 10, 2024

Solution Sheet n◦5

Solution of exercise 1: We suppose we are given a reasonable coding in the alphabet {0, 1} of the Turing machines
with Σ = {0, 1} and Γ = {0, 1,⊔} (cf. Lecture). We consider the following languages

Acc = {⟨M, w⟩ | M is a Turing machine which accepts w.}
Halt = {⟨M, w⟩ | M is a Turing machine which halts on w.}

Halt∅ = {M | M is a Turing machine which halts on the empty word.}

MaxStep =

⟨n, S(n)⟩

∣∣∣∣∣∣
S(n) is the maximal number of steps that
an n-state Turing machine can do before halting
when starting on the empty word.

 .

The language Acc was proved to be undecidable during the lecture. We first show that the (un)decidablity of Acc is
equivalent to the (un)decidability of Halt.

First suppose that we can decide Halt. To decide Acc do as follows.

On input (M, w):

1. Decide whether M halts on w. If not, reject. Otherwise go to step 2.
2. Run M on w. If M rejects w then reject. If M accepts w, then accept.

Conversely suppose that we can decide Acc. We can decide Halt as follows:

On input (M, w):

1. Modify M into a machine M̃ by replacing each transition to the rejecting state for a transition to the
accepting state.

2. Decide whether M̃ accepts w. If M accepts w, then accept. Otherwise reject.

Now for the questions of the exercise sheet, we have:

1. Suppose towards a contradiction that Halt∅ is Turing decidable. Then we can decide Halt as follows.

On input (M, w):
(a) Write on a second tape the code of a Turing machine Mw which, on the empty input, acts as follows:

i) writes w and then goes back to the left hand end of the tape in the initial state;
ii) then works just as M.

(b) Decide whether Mw halts or not on the empty word. If Mw halts on the empty word, then accept.
Otherwise reject.

2. Suppose towards a contradiction that MaxStep is decidable. Then we can decide Halt∅ as follows:

On input M:
(a) Modify M into a machine M̃ by replacing each transition to the rejecting state for a transition to

the accepting state.
(b) For n the number of states of M̃, compute S(n). This can be achieved by testing for i = 0 to ∞

whether (n, i) ∈ MaxStep; since MaxStep is decidable, the computation will eventually halt.
(c) Simulate the first steps of M̃ on the empty word. If a halting state is reached, accept. If no halting

state is reached after S(n) steps, reject.

Solution of exercise 2: This solution is based on Sipser, M. (2006). Introduction to the Theory of Computation,
pp. 203–209.

1. Reduction of PCP to MPCP: Notice that there exists a match for an instance I = ⟨p1, . . . , pm⟩ of PCP if and
only if there exists a match for one of the instances I1, I2, . . . , In of MPCP where Ii = ⟨pi, pi+1, . . . , pn, p0, . . . , pi−1⟩
for i = 1, . . .m.

Reduction of MPCP to PCP Let ⋆ and ⋄ be symbols which do not belong to A and let us denote by Σ+ =
Σ∗ \ {ε} the set of non empty words on a finite alphabet Σ. We define two Turing computable functions
p, s : A+ → (A ∪ {⋆})+ by

p(a1a2 · · · an) =⋆a1⋆a2 · · ·⋆an

s(a1a2 · · · an) =a1⋆a2⋆ · · · an⋆.

1

Notice that for all v, w ∈ A+, p(vw) = p(v)p(w) and s(vw) = s(v)s(w). Moreover for each v ∈ A+ we have
p(v)⋆ = ⋆s(v). Now consider the instance of MPCP on the alphabet A

I =

〈
x1

y1
, . . . ,

xn

yn

〉
where x1, . . . , xn, y1, . . . , yn ∈ A+ and a pair (x, y) is depicted as x

y . We define a corresponding instance of
PCP with m+ 2 pairs on the alphabet A ∪ {⋆, ⋄}:

I ′ =

〈
p(x1)

⋆s(y1)
,
p(x1)

s(y1)
,
p(x2)

s(y2)
, . . . ,

p(xn)

s(yn)
,
⋆⋄
⋄

〉
,

Notice that the only pair both whose strings start with the same symbol is p(x1)
⋆s(y1)

, while the only pair for
which both strings end with the same symbol is ⋆⋄

⋄ . Hence any match for I ′ is necessarily of the following
form: it starts with the pair p(x1)

⋆s(y1)
, followed by some pairs among the p(x1)

s(y1)
for 1 ≤ i ≤ n and then ends with

the pair ⋆⋄
⋄ . We see that any match for I ′ therfore corresponds to a match for I which starts with the pair

(x1, y1).
Conversely if (i1, . . . , ik) is a match for I, then we have i1 = 1 and x1xi2 . . . xik = y1yi2 . . . yik . It follows that
the following sequence constitues a match for I ′:

p(x1)

⋆s(y1)
,
p(xi2)

s(yi2)
, . . . ,

p(xik)

s(yik)
,
⋆⋄
⋄

.

2. Let M = (Q,Σ = {0, 1},Γ = {0, 1,⊔}, δ, q0, qacc, qrej) be (the code of) a Turing machine and w ∈ Σ∗ be an input1.
Assume that Q and Γ are disjoint an let # be a new symbol which does not belong to Γ. We define an instance
IM,w of MPCP on the alphabet A = Q ∪ Γ ∪ {#} which is Turing computable from M,w. The idea is to define
IM,w so that a match encodes the computation history of an accepting run of M on w. Let us first give an example.
Suppose M = ({q0, qacc}, {0, 1}, {0, 1,⊔}, δ, q0, qacc) with notably δ(q0, 0) = (q0, 1, R), δ(q0, 1) = (qacc, 0, L), and
w = 01 then IM,w is designed so that the following is a match:

q0 0 1 # 1 q0 1 # qacc 1 0 # qacc 0 # qacc #

q0 0 1 # 1 q0 1 # qacc 1 0 # qacc 0 # qacc #

In general, we define the first pair of IM,w (the starting pair for a match) to be:

r0) #
#q0w# if w is non empty and #

#q0⊔# otherwise.

Other pairs are added to IM,w using the following rules:

r1) For each transition δ(q, a) = (r, b, R) with q ̸= qrej, we add qa
br .

r2) For each transition δ(q, a) = (r, b, L) with q ̸= qrej and each tape symbol c ∈ Γ we add cqa
rcb .

r3) For each a ∈ Γ we add a
a (this allows to copy unchanged symbols from one configuration to the next).

r4) We add #
and

#⊔ (this allows to go from one configuration to the next by possibly adding a blank ⊔, in case
the head has reached the right end of the configuration).

r5) Finally for every a ∈ Γ we add the pairs aqacc
qacc

, qacca
qacc

and qacc##
(this allows to conclude a match when the

accepting state qacc is reached).

Since applying rule r0) gives us a strictly longer string on the “bottom”, and rules r1) to r4) add the same amount
of symbols to both strings, a match must contain qacc from rule r5). So it is the encoding of an accepting run of
M on w.

3. Assume PCP is decidable. We construct a decider for the acceptance problem as follows.

On input M,w:

(a) compute the instance IM,w of MPCP corresponding to M,w as described in the previous item.
(b) compute the corresponding instance I ′M,w of PCP as in the first item.
(c) Decide the existence of a match for I ′M,w.

1We assume for convenience that M never attempts to run off the left-hand of the tape while computing on w. This requires first modifying
M to prevent this behaviour. Can you see how to perform this in a Turing computable way?

2

