Pr J. Duparc Godel and Recursivity October 3, 2024

Solution Sheet n°4

Solution of exercise 1:
1. Any DFA can be unambiguously described as a string of the form (k,n,d, F) where

e [k and n are strictly positive natural numbers in decimal representing the number of states and the cardinality
of the alphabet respectively (0 is the starting state by convention);
e § is a string of the form {(¢,1,7),...}, where 0 <4,j < k and 0 <[< n, representing the transition function;
e [is a string of the form {i,j...}, where 0 <i,j < k, representing the set of accepting states.
For example, the string
(2,2,{(0,0,0),(0,1,1)(1,0,0), (1,1, 1)}, {1}
represents the DFA

bt

We therefore define the languages

INFppa ={A € A" | A represents a DFA whose language is infinite},
Eppa ={A € A" | A represents a DFA whose language is empty}.

2. The following procedure allows one to decide Eppa:

On input (k,n,d, F') coding a DFA A:
1: Write 0, on a second tape;

2: Write 4, in a new position on a second tape, for each state ¢ < k which is reachable in one step from
state 0, avoiding repetitions. Repeat the procedure, writing down new states which are reachable in
one step, for all states which are written on the second tape, until no new states are reachable.

3: Check if some accepting state is written on the second tape. If yes, reject, if no accept.

3. The following procedure can be embodied in a Turing machine which decides INFppa:

On input (k,n,d4, F4) coding a DFA A:

1: Write on a second tape the code of a DFA B recognising all strings of length strictly greater than &
on the alphabet n, for example:
<k + 27”3 6[57 {k + 1}>

where

g ={(l,m,I+1)|Vm<n,VI<k+2}U
{(k+1,m,k+1)|Vm <n}

2: Write on a third tape the code of a DFA C recognising the intersection of the languages of A and B.
For example:

<k(k + 2)771, 6C7FC>
where, letting g : k x (k4 2) — k(k + 2) be the bijection g(l1,l2) = lok + 1,

6(? = {(9(11712),7”»9(/171/2)> ‘ (ll7m7lll) € 5-'4’ (127m’l/2) € 66}
and
Fe={g(l,k+1)|l € Fu}

3: Test the automata C for emptiness using the procedure of the previous point in this exercise. If the
language of C is empty reject, if not accept.

Solution of exercise 2:

1. We show the equivalent assertion that for all tree T on a finite set

T has an infinite branch < T is infinite.

= If T has an infinite branch, say = : w — A, then the set {z;,, | n € w} is infinite and included in 7. Therefore
T is infinite.

<: Suppose T is an infinite tree on a finite set A and let < be a total ordering of the finite set A. We define an
infinite branch of T by induction. Since T is infinite but A is finite, there exists a unique <-minimal a9 € A
such that {s € T' | sy = ao} is infinite. Otherwise T\ {0} = U,c4{5 € T' | s1¢ = a} would be a finite union of
finite sets and thus finite. Suppose now that for n € w the sequence (ayo, ..., a,) has been be defined so that
{seT| s, =(ag,...,an)} is infinite. In particular (ao,...,a,) € T. Then as before there exists a unique
<-minimal a,41 € A such that {s € T'|t}, ., = (a0, ..., an,an4+1)} is infinite. We have defined by induction
(and a week form of the axiom of choice, that is, DC, the aziom of dependent choice) a sequence x € A% with
x(n) = a,. It is an infinite branch of T since by construction for all n € w we have z;,, = (ag,...,an-1) € T.

2. Let M = (Q,%,T, A, qo, qace, Gre;j) be a non deterministic Turing machine and view A as a relation, in symbols

AC(QxT)x(QxT x{L,R}). For any input word w € ¥* we define the computation tree of M on w as the
tree T (w) on A given by

sie Afor0<i<n-—1and

there exists a sequence of configurations

(s sn-1) € Tm(w) & (co, ..., cn) such that
0y---ySn—1 v

® ¢y = qow, and
e ¢; yields ¢; 41 through s; for all i < n.

Firstly, observe that a (deterministic) Turing decidable language is trivially nondeterministic Turing decidable.

Secondly, observe that by definition a language L is nondeterministic Turing decidable iff there exists a non
deterministic Turing machine M such that

(i) on every input word w the computation tree of M on w has no infinite branch.
(ii) for every input word w, w € L iff there is at least an accepting run of M on w.

By the first part of this exercise, condition (i) is equivalent to saying that for all input word w the tree Th(w)
is finite. Now if L is nondeterministic Turing decidable witnessed by a machine M we design a (deterministic)
decider for L as follows:

On input w:
1: Compute Th(w) and write it (with an appropriate coding) on the tape.
2: Explore T (w) either by breadth first search or by depth first search (anyway Trq(,) is finite). If
an accepting computation is found, accept.

3: When all branches of the computation tree are exhausted without having found an accepting run,
reject.

Solution of exercise 3:

1.

Let Card(X) = n and let [be the smallest natural number such that n < 2!. Choose any injective function
é:3 — {0,1} and define ¢ : ©<% — {0,1}<% by c(ay - - - ax) = &(ay) - - - &(ay). This function is easily computed by
a Turing machine on the basis of the finite data ¢:

On input w:
1: When reading a € ¥ on the first tape, write é(a) on the second tape.
2: Move right the head reading the first tape and go back to step 1.

Let M = (Q,%,T, A, qo, Gaces ¢rej) be a Turing machine. The set of states of M, is given by Q=0Qx {0,1}=L.

On input w € {0,1}<%, M, starts on state (qg,?) and then compute as follows:
1: The current state is of the form (g, () for some ¢ € Q. For i =1 to ! do
e read b;, move right in state (g, by - - - b;).
2: The current state is of the form (g¢,by - - - b;) and
(i) by --- by is different from é(a) for all a € ¥ then reject, since the input is not of the form c(w) for
some w € ¥*. (Not strictly necessary)
(ii) by ---b = ¢(a) for some a € ¥ and 6(q,a) = (¢',b,e). If ¢’ is either an accepting or rejecting
state, accept or reject accordingly. Otherwise
(a) write ¢(b) over by - - by;
(b) move to the beginning of the sequence of | symbols to the left or to the right according to
e € {L,R}.

