
Pr J. Duparc Gödel and Recursivity September 26, 2024

Solution Sheet n◦3

Solution of exercise 1:

1.

(a) This TM accepts the language {(01)n0 | n ∈ ω}. It actually computes
the function (01)n0 7→ (10)n1.

(b) This TM accepts the language {01n | n ∈ ω}. It actually computes
the function 01n 7→ 1n+1.

2. We can for example define δ by

δ(q0, 0) = (qacc, 1, R); δ(q0, 1) = (q0, 0, R); δ(q0,⊔) = (qacc, 1, R).

Solution of exercise 2:
Let M = (Q,Σ,Γ, δ, q0, qacc, qrej) be a bi-infinite TM. We define a one sided

infinite tape TM M = (Q,Σ,Γ, δ, qinit, qacc, qrej) which recognises the same
language. We duplicate the set of states and we add a state for each symbol in
Σ and a new initial state qinit

Q = Q ∪ {q | q ∈ Q} ∪ {qa | a ∈ Σ} ∪ {qinit}.

The idea is to “fold” the tape of M by setting Γ = Σ ∪ {
(
a
b

)
| a, b ∈ Γ} ∪ {�}.

We also added a new symbol � in order to make the left-hand end of the tape
explicit. We define the transition function as follows. We first modify the input
and come back to the left-hand end of the tape:

δ(qinit, a) =(qa,�, R) for all a ∈ Σ

δ(qa, b) =(qb,
(⊔
a

)
, R) for all a, b ∈ Σ

δ(qa,⊔) =(qinit,
(⊔
a

)
, L) for all a ∈ Σ

δ(qinit,
(⊔
a

)
) =(qinit,

(⊔
a

)
, L) for all a ∈ Σ

δ(qinit,�) =(q0,�, R) for all a ∈ Σ

On the input aba ⊔ ⊔ · · · this first step would lead to �
(⊔
a

)(⊔
b

)(⊔
a

)
⊔ ⊔ · · · .

We then simulate M on the “folded” tape:

δ(q,
(
a
b

)
) =(r,

(
a
c

)
, ϵ) if δ(q, b) = (r, c, ϵ)

δ(q,⊔) =(r,
(⊔
c

)
, ϵ) if δ(q,⊔) = (r, c, ϵ)

δ(q,�) =(q,�, R)

δ(q,
(
a
b

)
) =(r,

(
c
b

)
, ϵ∗) if δ(q, a) = (r, c, ϵ)

δ(q,⊔) =(r,
(
c
⊔
)
, ϵ∗) if δ(q,⊔) = (r, c, ϵ)

δ(q,�) =(q,�, R),

1

where ϵ ∈ {L,R} and R∗ := L,L∗ := R.
The idea here is that every time M passes through the “middle” of the bi-

infinite tape, M switches its focus from the bottom row to the top row of the(
a
b

)
s or vice versa. The Turing machine M recognises the same language as M .

Solution of exercise 3:
1. The transition for (A, 0), namely reading 0 in the starting state A, can be

defined by one of the following eight possibilities:

A0R, A1R, A0L, A1L, H0R, H0L, H1R, H1L,

where for instance A0R stands for write 0 and go Right in state A. The
transitions A0R, A1R, A0L, A1L eventually lead to an infinite compu-
tation (loop) on the empty word. For instance, in the case of 0RA the
consecutive configurations are

A0 → 0A0 → 00A0 → 000A0 → . . .

Therefore, there essentially is only four one-state machines which halt on
the empty word. Since we technically also have to define the transition for
(A, 1), reading 1 in state A, for which there are also 8 possibilities, there
are 4 · 8 = 32 one-state machines which halt on the empty word.

2. It follows from the previous answer that the answer is one, as realised by
the machines whose transitions for (A, 0) are either H1R or H1L.

3. The two-state machine whose transition function is given by the following
table does the work.

A B
0 B1R A1L
1 B1L H1R

Its computation on the empty word is the following:

A0 → 1B0 → A11 → B011 → A0111 → 1B111 → 11H11.

Solution of exercise 4:
1. Let L1 and L2 be Turing decidable languages. There are by definition

Turing machines M1 and M2 which respectively decide L1 and L2.

(a) A decider for L∁
1, the complement of L1, is a Turing machine which

is identical to M1, but whose accepting and rejecting states are
switched.

(b) A decider for L1 ∪ L2 is the 2-tape Turing machine M described by
the following instructions:

Beginning on input w on tape 1: copy w on tape 2; return
both heads to the leftmost position 1. Then simulate M1 on
tape 1 and M2 on tape 2. If at any point M1 (resp. M2)
enters a rejecting state, enter a dummy computation on the
first (resp. second) tape and continue the computation of
M2 (resp. M1).

1this requires o(|Σ|) additional states and a new symbol.

2

• If at some point M1 or M2 enter an accepting state, then
accept.

• If at some point both M1 and M2 have entered a rejecting
state, then reject.

(c) A decider for L1 ∩ L2 is the 2-tape Turing machine M described by
the following instructions:

Beginning on input w on tape 1: copy w on tape 2; return
both heads to the leftmost position1. Then simulate M1 on
tape 1 and M2 on tape 2. If at any point M1 (resp. M2)
enters an accepting state, enter a dummy computation on
the first (resp. second) tape and continue the computation
of M2 (resp. M1).

• If at some point M1 or M2 enter a rejecting state, then
reject.

• If at some point both M1 and M2 have entered an ac-
cepting state, then accept.

2. The ideas are analogous to the first point of the exercise. Notice that in
this case the computation on one or both of the tapes could fail to halt
on some input w.

3

