## Solution Sheet n°2

## Solution of exercise 1:

1. For example,  $G_1 = (V = \{S\}, \Sigma = \{(,)\}, R, S)$  with R being

$$S \to \varepsilon$$
,  $S \to SS$ ,  $S \to (S)$ .

2. For example  $G_2 = (V = \{E, T, F\}, \Sigma = \{(,), +, \cdot, a\}, R, E)$  where R consists of the following rules

$$E \to T$$
,  $E \to E + T$ ,  $T \to T \cdot F$ ,  $T \to F$ ,  $F \to (E)$ ,  $F \to a$ .

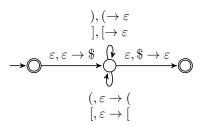
3. For example  $G_3 = (V = \{A, F\}, \Sigma = \{\forall, \exists, (,), \land, \lor, \neg, =, x_1, \dots, x_n\}, R, F)$  with R contains the followings rules:

$$F \to \forall x_i F, \ F \to \exists x_i F, \ \text{for every } i \in \{1, \dots, n\}$$
  
 $F \to \neg F, \ F \to (F \lor F), \ F \to (F \land F), \ F \to A$   
 $A \to x_i = x_j \ \text{for every } i, j \in \{1, \dots, n\}.$ 

**Solution of exercise 2:** A transition  $a, b \to c$  can be used if you read "a" on the input (or whenever if  $a = \varepsilon$ ) and b is on top of the stack (or whatever is on top of the stack if  $b = \varepsilon$ ) and it means

- if  $b = \varepsilon$ , then write "c" on the top of the stack,
- if  $b \neq \varepsilon$ , then replace "b" by "c" (or simply erase "b" in case  $c = \varepsilon$ ).

We can consider for example the following pushdown automaton:



**Solution of exercise 3:** We first observe that we can focus on even simpler grammars: A language is generated by a regular grammar if and only if it is generated by a *simply regular* grammar, namely a grammar  $(V, \Sigma, R, S)$  whose set R of rules satisfied

$$R \subseteq (V \times \Sigma V) \cup (V \times \Sigma) \cup (V \times \{\varepsilon\}),$$

i.e. the rules of which are all of one of the following form

- $A \to aB$  for some  $A, B \in V$  and  $a \in \Sigma$ ,
- $A \to a$  for some  $A \in V$  and  $a \in \Sigma$ ,

•  $A \to \varepsilon$  for some  $A \in V$ .

Indeed to each rule of the form  $A \to a_1 \cdots a_n B$  we can substitute the set of rules

$$A \to a_1 B_1, \ B_1 \to a_2 B_2, \ \dots, \ B_{n-1} \to a_n B_n$$

where  $B_1, \ldots, B_{n-1}$  are new variables.

1. For  $G=(V,\Sigma,R,S)$  a simply regular grammar we let  $A=(Q,\Sigma,\Delta,q_0,\{q_F\})$  be the NFA defined by  $Q=V\cup\{q_F\},\ q_0=S$  and

$$\Delta = \{ (p, a, q) \in V \times \Sigma_{\varepsilon} \times V \mid (p \to aq) \in R \}$$
  
 
$$\cup \{ (p, a, q_F) \mid p \in V, a \in \Sigma_{\varepsilon} \text{ and } (p \to a) \in R \},$$

where  $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$ . Then A recognises the language generated by G.

2. For a DFA  $A = (Q, \Sigma, \delta, q_0, F)$  we consider the (simply) regular grammar  $G = (V, \Sigma, R, S)$  where  $V = Q, S = q_0$  and

$$R = \{p \to aq \mid p, q \in Q, a \in \Sigma, \text{ and } \delta(p, a) = q\}$$

$$\cup \{p \to a \mid p \in Q, a \in \Sigma, \text{ and } \delta(p, a) \in F\}$$

$$(\cup \{q_0 \to \varepsilon\}, \text{ if } q_0 \in F).$$

Then the language generated by G is the language recognised by A.

## Solution of exercise 4:

1. First notice that the language  $L_1$  is generated by the context free grammar  $G = (\{S, A, B\}, \{a, b, c\}, R, S)$  with R consisting in

$$S \to AB, A \to aA, A \to \varepsilon, B \to bBc, B \to \varepsilon.$$

Similarly,  $L_2$  is context free. Now  $L_1 \cap L_2 = \{a^n b^n c^n \mid n \in \omega\}$  is not context free. Hence context free languages are not closed under intersection.

2. Let  $P = (Q_1, \Sigma, \Gamma_1, \Delta_1, s_1, F_1)$  be a pushdown automaton recognising C and  $A = (Q_2, \Sigma, \delta_2, s_2, F_2)$  be a DFA recognising R. We define a pushdown automaton  $M = (Q, \Sigma, \Gamma, \Delta, s, F)$  by setting  $Q = Q_1 \times Q_2$ ,  $\Gamma = \Gamma_1$ ,  $s = (s_1, s_2)$ ,  $F = F_1 \times F_2$ ,

$$\Delta = \{ (((q_1, q_2), a, \beta), ((p_1, \delta(q_2, a)), \gamma)) \mid a \in \Sigma, ((q_1, a, \beta), (p_1, \gamma)) \in \Delta_1, q_2 \in Q_2 \}$$

$$\cup \{ (((q_1, q_2), \varepsilon, \beta), ((p_1, q_2), \gamma)) \mid ((q_1, \varepsilon, \beta), (p_1, \gamma)) \in \Delta_1, q_2 \in Q_2 \}$$

The pushdown automaton M recognises the language  $C \cap R$ , which is therefore context free.

3. Suppose towards a contradiction that

$$L_3 = \{w \in \{a, b, c\}^* | w \text{ contains an equal number of } a$$
's, b's and c's \}

is context free. Since  $a^*b^*c^*$  is regular (easy!), by the previous point it would follow that  $L_3 \cap a^*b^*c^*$  is context free, a contradiction. Therefore  $L_3$  is not context free.