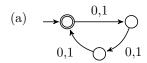
Solution Sheet n°1

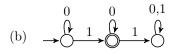
Solution of exercise 1:

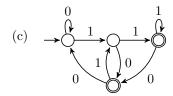
1. For example:



$$(c) \xrightarrow{0,1} 0$$

- 2. For example:
 - (a) 1a is deterministic.



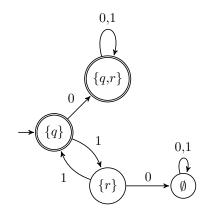


3. Let $N=(Q,\Sigma,\delta,q_0,F)$ be a NFA recognising some language L. We define a DFA $D=(Q',\Sigma,\delta',q_0',F')$ by letting $Q'=\mathcal{P}(Q),\ q_0'=\{q_0\},\ F'=\{R\subseteq Q\mid R\cap F\neq\emptyset\}$ and

$$\delta'(R,a) = \left\{q \in Q \mid \exists r \in R \, (r,a,q) \in \delta\right\} \quad \forall R \subseteq Q, \; \forall a \in \Sigma.$$

Then D recognises L.

4. For example:



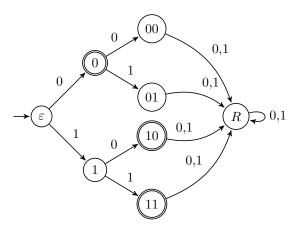
Solution of exercise 2:

- 1. Let $L \subseteq \Sigma^*$ be a finite language. Let $l = \max\{length(w) \mid w \in L\}$ and let $D = (Q, \Sigma, \delta, q_0, F)$ be the DFA in which:
 - $Q = \Sigma^{\leq l} \cup \{\varepsilon, R\};$
 - $q_0 = \varepsilon$;
 - $\delta(R, a) = R$ for all $a \in \Sigma$ and

$$\delta(w, a) = \begin{cases} wa & \text{for } w \in \Sigma^{< l} \cup \{\varepsilon\} \\ R & \text{for } w \in \Sigma^{l} \end{cases}$$

 $\bullet \ F = \{ w \in \Sigma^{\leq l} \mid w \in L \}.$

Then D recognises exactly the words of L. For example, the following automata recognises the finite language $\{0, 10, 11\}$ on the alphabet $\{0, 1\}$.



- 2. (a) A language L which is recognised by a NFA is also recognised by a DFA $D = (Q, \Sigma, \delta, q_0, F)$. Then the DFA $\tilde{D} = (Q, \Sigma, \delta, q_0, Q \setminus F)$ recognises $L^{\complement} = \Sigma^{<\omega} \setminus L$.
 - (b) Until the end of the exercise, let $L, K \in \mathcal{L}(\Sigma)$ be recognised by the NFAs N_1 and N_2 , respectively, and suppose that their sets of states are disjoint. To recognise the union $L \cup K$, construct a NFA N which is the union of a copy of N_1 and a copy of N_2 plus a new initial state, that ε -transitions to both the (old) initial states of N_1 and N_2 .
 - (c) To recognise the concatenation LK, construct a NFA N which is the union of a copy of N_1 and a copy of N_2 , whose initial state is the initial state of N_1 , whose accepting states are just the ones of N_2 , and such that it ε -transitions from the (old) accepting states of N_1 to the (old) initial state of N_2 .
 - (d) To recognise the star language L^* , add a new initial state, which is also accepting, and ε -transitions from the new initial state to the old one and from the accepting states to the old initial one.

For details and a proof of correctness see Sipser, M. (2012) Introduction to the Theory of Computation. Cengage Learning, pages 58-62.

3. $\mathcal{L}(\Sigma)$ is at least countably infinite, since it contains all finite languages. On the other side, since each $L \in \mathcal{L}(\Sigma)$ is recognised by at least one DFA, the cardinality of $\mathcal{L}(\Sigma)$ is less or equal than the cardinality of the set of all DFAs on the alphabet Σ . Fix $n \in \mathbb{N}$, then the number of DFAs with n states is less or equal than:

$$|\mathbb{N}^n \times {}^{(n \times \Sigma)} n \times n \times 2^n| = \aleph_0$$

2

Then the cardinality of the set of all DFAs is the cardinality of a countable union of countable sets, which is countable.

Solution of exercise 3:

- 1. Let $D=(Q,\Sigma,\delta,q_0,F)$ be a DFA recognising L. Let p=|Q| be the number of states of D. Now, suppose $w\in L$ has length m greater or equal than p. Let us write $w=w_1\cdots w_m$, and consider the sequence $q_0q_1\cdots q_m$ corresponding to the computation of D on w. Since $p=|Q|, q_0q_1\cdots q_p$ must contain some state at least twice, say $q_j=q_k$, for j< k. Let $x=w_1\cdots w_j, \ y=w_{j+1}\cdots w_k$ and $z=w_{k+1}\cdots w_m$. Now, |y|>0 since j< k and $|xy|\leq p$ since $k\leq p$. For the remaining property notice that the computation of D on xy^nz will pass through $q_0\cdots q_{j-1}$ then travel through the loop $q_j\cdots q_k$ n times and finally go through $q_{j+1}\cdots q_m$ and accept. So xy^nz belongs to L for each $n\in\mathbb{N}$.
- 2. (a) Assume towards contradiction that $L = \{0^n 1^n \mid n \in \omega\}$ is recognised by some DFA D and let $p \in \mathbb{N}$ be given by the pumping lemma. Since $|0^p 1^p| \geq p$ and $0^p 1^p \in L$, by the pumping lemma, there exist $k, l, m \in \mathbb{N}$ such that l > 0, $k + l \leq p$ and $0^k 0^{nl} 0^m 1^p \in L$, $\forall n \in \mathbb{N}$. But for each $n \geq 2$, k + nl + m > p, so $0^k 0^{nl} 0^m 1^p$ cannot be in L, contradiction.
 - (b) Assume towards contradiction that $L = \{ww \mid w \in \{0,1\}^{<\omega}\}$ is recognised by some DFA D and let $p \in \mathbb{N}$ be given by the pumping lemma. The word $0^p 10^p 1 \in L$ leads to a contradiction the same way as in 2a.
 - (c) Assume towards contradiction that $L = \{0^n \mid n \text{ is prime }\}$ is recognised by some DFA D and let $p \in \mathbb{N}$ be given by the pumping lemma. Let q > p be a prime and notice that we can write 0^q as $0^r0^s0^t$ with s > 0 and $r + s \le p$. By the pumping lemma $0^{r+ns+t} \in L$ for all $n \in \mathbb{N}$, that is, r + ns + t is prime for each n. But let n = r + t + 2s + 2, then r + ns + t = (r + 2s + t)(s + 1), and s + 1 > 1, contradiction.
- 3. Assume towards contradiction that the language of well-bracketed words is recognised by some DFA D and let $p \in \mathbb{N}$ be given by the pumping lemma. Since $|\binom{p}{p}| \geq p$ and $\binom{p}{p} \in L$, by the pumping lemma, there exist $k,l,m \in \mathbb{N}$ such that l > 0, $k+l \leq p$ and $\binom{k}{n} \binom{m}{p} \in L$, $\forall n \in \mathbb{N}$. But for each $n \geq 2$, k+nl+m > p, so $\binom{k}{n} \binom{m}{p}$ cannot be in L, contradiction.
- 4. You need some sort of memory to store the information about how many parenthesis have remained open.