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Solution of exercise 1:
Let T be a theory on the language of arithmetic such that the set #T =
{⌜φ⌝ | φ ∈ T} is a recursively enumerable subset of N. If #T is empty then
it is recursive. So suppose it is not empty, then by Exercise 3 of Sheet 7, there
is a primitive recursive function f whose range is exactly #T . For all n ∈ N we
let φn be the unique formula in T such that f(n) = ⌜φn⌝. Now consider the
theory

T ′ =

{
n∧

i=0

φi

∣∣∣∣∣ n ∈ N

}
It is clear that T and T ′ are equivalent. Moreover let g : N → N be the function
n 7→ ⌜φ0 ∧ · · · ∧ φn⌝. It is defined by induction as

g(0) = ⌜φ0⌝ = f(0)

g(n+ 1) = α3(g(n), f(n+ 1), 6),

according to the coding of formulas used in the Lecture. Since f is total recur-
sive, so is g. Moreover g is strictly increasing, so using Exercise 4 of Sheet 7 we
conclude that T ′ is recursive.

Solution of exercise 2:
Suppose towards a contradiction that #Th1(N ) is recursively enumerable. Then
by Exercise 1, there is a recursive theory T ′ which is equivalent to Th1(N ).
Moreover for each of the finitely many formulas φ of Rob, since N |= φ we have
T ′ ⊢ φ. Therefore T ′′ = T ′ ∪ Rob is consistent, recursive and equivalent to
Th1(N ).

In particular since Th1(N ) is complete so is T ′′. As a recursive, consistent
and complete theory, T ′′ is decidable. But since T ′′ extends Rob we have a
contradiction with the Undecidability Theorem. We conclude that #Th1(N ) is
not recursively enumerable.

Solution of exercise 3:

Proposition. The only model (up to isomorphism) of PA2 is the standard
model (N, 0, S,+,×,≤).

Proof. Suppose that a LArithm-structure M models the second order theory
PA2. Then in particular M models the first order theory P0. One easily verifies
that the substructure of M whose domain is

NM =

{
a ∈ |M|

∣∣∣∣ there exists n ∈ N such that
a is the interpretation of n in M

}
is isomorphic to (N, 0, S,+,×,≤), via n 7→ nM.

Now, by hypothesis, M satisfies the induction principle consisting in the
second order formula (IP). So from the fact that NM contains the interpretation

1



of 0 and is closed under the interpretation of the symbol of function S, we can
conclude that NM is the whole domain of M. Consequently, M is isomorphic
to (N, 0, S,+,×,≤).

Theorem. There is no deductive system ⊢ for second order logic with the stan-
dard semantic satisfying the three desired attributes

(Soundness) Every provable formula is valid, i.e. for any sentence φ, if ⊢ φ
then M |= φ for any structure (or model) M;

(Completeness) Every valid formula is provable, i.e. for any sentence φ, if
M |= φ for all models M, then ⊢ φ.

(Effectiveness) The set of provable formulas is recursively enumerable, i.e.
the set {⌜φ⌝ | ⊢ φ} is recursively enumerable.

Proof. First observe that PA2 consists of a finite set of second order formulas.
The second order theory PA2 is thus equivalent to a unique second order formula
P , the conjunction of formulas of PA2.

Next, by the previous Proposition, the unique model of P is the standard
model (N, 0, S,+,×,≤). Hence for any closed formula φ of second order arith-
metic,

(N, 0, S,+,×,≤) |= φ iff P → φ is valid.

Now suppose that there exist a deductive system ⊢ for second order logic
with standard semantic satisfying the three conditions above. By soundness and
completeness of ⊢, the above equivalence yields that for any closed formula φ
of second order arithmetic,

(N, 0, S,+,×,≤) |= φ iff ⊢ P → φ.

By the effectiveness assumption on ⊢, it follows that the of set

#Th2(N, 0, S,+,×,≤)

of codes of closed formulas of second order logic arithmetic satisfied in (N, 0, S,+,×,≤
) is recursively enumerable. But this implies that the first order theory of
arithmetic Th1(N, 0, S,+,×,≤) is recursively enumerable, a contradiction with
Exercise 2. We must conclude that such a deductive system cannot exist.
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