Professor J. Duparc Godel and Recursivity December 12, 2024

Partial Mock Exam (about 75% size)Solutions

An A4 two side sheet of personal notes is allowed.
Points are only given as an indication of the length
and/or the difficulty of each exercise.

Last name:

First name: /53 pOintS

Section:

Problem 1: @]points) Automata, grammars.

2 pt Question 1.1: Draw the graph of a nondeterministic finite automaton which
recognises the language

L = {w e {0,1}* | w contains two consecutive 0 and ends with an odd number of 1}.

Solution:
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2 pt Question 1.2:  Draw the graph of a deterministic finite automaton which

recognises the language

L = {w € {0,1}* | w contains two consecutive 0 and ends with an odd number of 1}.

Solution:
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Let WFF be the language on the alphabet {), (,3, —, v, =, +,21,...,2,} con-
sisting in all the well-formed formulas of first order logic with the one and only
+ as symbol of binary function and with variables among x1, ..., ;.

Question 1.3:  Show briefly that WFF is context free.

Solution:

S—3x S| |, S| -S| (SvS)|T=T
T->T+T)|z1]...|zn

Question 1.4:  Show briefly that WFF is not recognised by a deterministic
finite automaton.

Hint: Use the Pumping Lemm{l.

Solution:
Suppose towards contradiction WFF is recognized by a deterministic finite au-
tomaton and let p be the natural number which would be given by the pumping
lemma. Let
w = (((Il +I1)+I1)+"'+1‘1) =I1).
—

p times

Then for whatever splitting w = xyz satisfying the hypothesis of the pumping
lemma, zy?z would have more left brackets than right ones.

/9 points

lPumping Lemma Let L be a language on a finite alphabet A recognised by some DFA.
There exists a natural number p such that any word w € L with |w| = p can be split into three
pieces, w = xyz, satisfying the following properties:

1. for all natural number n, xy™z € L;
2. |yl >0;
3. |zy| < p.



2 pt

2 pt
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Problem 2: (16| points) Recursive sets, decidable sets.

Read attentively the following:

Definition. Two sets A € N and B € N are called recursively inseparable if
1. they are disjoint, that is An B = &; and
2. there is no recursive set X such that A X and X n B = (.

Otherwise A and B are called recursively separable.

Question 2.1: Let A < N and B < N be such that 1. and 2. hold. Show
that there exists no recursive set Y such that Y n A= g and BC Y.

Solution:
Otherwise X = (N\Y') would witness that 2. is false.

Question 2.2: Show that any two disjoint recursive (AY) sets are recursively
separable.

Solution:
Just take one of the two as X.

Question 2.3:  Let A be recursively enumerable (29). When is it the case
that A and its complement N\ A are recursively separable.

Solution:
Exactly when A (and a fortiori its complement) is recursive.




3 pt Question 2.4:  Give two disjoint sets A4 € )\AJ and B € TIY\AY which are
recursively separable.

Hint: You can use without any justification the fact that there exists primitive re-
cursive functions as : N> — N and 83,82 : N — N such that m(ﬁ%,ﬁ%) = idy and

(Bi(az), B3 (az)) = idye.

Solution:

Let S € X{\AY and define A = a2({0} x S), B = az({1} x N\S). Then A, B are
as required and X = ay({0} x N) separates them.

In what follows, we consider a recursive enumeration of all Turing machines
which compute partial functions from N to N. According to this enumeration,
we call My, the k-th Turing machine. For all £ € N, we let ) be the partial
function from N to N computed by M.

Consider the two following sets of natural numbers
A={keN|ypik)=0} and B={keN|ypi(k)=1}.

3 pt Question 2.5: Explain briefly why A (and B) are Turing recognisable.

Solution:
Let M simulate ¢ on input k£ and accept if the simulated computation halts
and prints 0. Then M recognizes A. Similarly for B.

3 pt Question 2.6: Show that A and B are recursively inseparable.

Hint: Towards a contradiction, suppose that a recursive set X separates A and B. And
then, consider the characteristic function of X.

Solution:

Towards contradiction let X separate A, B and let k be such that ¢y is the
characteristic function of X. If k € X then ¢k (k) =1, 80 k € B. If k ¢ X then
vr(k) =0, s0 ke A. A contradiction.

16|points
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Problem 3: points) Incompleteness of Rob.

We recall that any recursively enumerable set A  N* is representable by a
¥, formula in Rob, namely there is an arithmetic formula ¢(zg,...,zr—_1) with
free variable among g, ..., r;_1 such that for every (ng,...,np_1) € N*:

e if (ng,...,nk—1) € A, then Rob - o(ng,...,nx—1),
o if (ng,...,nk—1) ¢ A, then Rob - —p(ng,...,nE—1).

Question 3.1:  Let ¢(zg) be an arithmetic formula with free variable xg.
Show that the set
X ={neN|Robt ¢(n)}

is recursively enumerable.

Solution:
Using the recursive set

Proofr,, = {(m,n) e N?

n is the code of a proof from Rob
of the closed formula coded by m.

we obtain
X ={meN|3IneN (p(m),n) € Proofry}.

Now since m — (m) = subs(0,n, ¢) is a recursive function, it follows that X
is recursively enumerable.

Question 3.2: Let A < N2 be recursive, and let
B={neN|3meN (n,m)e A}.

Show that there exists an arithmetic formula ¢ (x) with x as only free variable
such that for all n e N

neB <« Robi ¥(n).

Solution:
Let ¢(xg,x1) represent A in Rob. Let n € B, so that for some m € N (n,m) €
A. We have Rob - ¢(n,m). Therefore in any model M of Rob, we have
M = p(n,m) and therefore M |= Jzp(n,z). Conversely if n ¢ B then N |=
—3Jxp(n,z), and therefore Rob £ Jxp(n,z). The formula (y) : Jrp(y,x) is
as desired.




4 pt Question 3.3: Let A < N? be recursive such that
B={neN|3meN (n,m)e A}

is not recursive and let 1)(x) be given for B by the previous question. Show that
there exists m € N such that neither Rob - ¢(m) nor Rob - —p(m).

Solution:

We have B = {n € N | Rob - ¥(n)} is recursively enumerable not recursive. We
let C = {neN|Rob+ —1(n)}. Since Rob is assumed consistent, B and C' are
disjoint. Moreover C' is not the complement of B in N. Indeed, by Question 1
the set C' is recursively enumerable, so if C' was the complement of B, which is
recursively enumerable, then B would be recursive, but this is not the case. So
we can pick some m € N with m ¢ B and m ¢ C. If Rob - 1(m), then m € B.
If Rob = —p(m), then m € C. Hence ¥(m) is undecidable in Rob.

12|points




Problem 4: (16 points) Undecidability.

We consider the Goédel numbering ¢ of arithmetic formulas ¢ as presented
during the lecture. We let ¢pro0f, ,(2,y) be a ¢ arithmetic formula which
represents in Rob the primitive recursive set of pairs of natural numbers

Proofry, = {(P,¢) € N |P is a proof of Rob - ¢} .
Therefore by definition for all (p,n) € N2

(p,n) € Proofr,, implies Rob = @proof,,, (P, 1), and
(p,n) ¢ Proofr,y implies Rob = —¢proofy,,, (P, 12)-
We also assume we have a coding of 1-tape Turing machines with input
alphabet {0, 1} into natural numbers. We write "M for the code of M. Our
coding is assumed to have the property that there is a 1-tape Turing machine F

which when given the binary code of "M as input computes the (binary) code
of a AJ arithmetic formula Cr(zo, 1) such that for all n € N

M accepts the binary code of n iff N k&= JxqChr(xg,n).
Let

Ty = {n | n is the code of a theorem of Rob},
Ty = {n | n is the code of a ¥; theorem of Rob},
H = {n | n is the code of a TM which halts on 0}.

Recall that Rob is ¥i-complete, that is, if ¢ is a ¥X; arithmetic sentence
which is true in N, then Rob - .

5 pt Question 4.1:  Show that Tj is decidable iff Ty is decidable.

Solution:

Suppose Ty is decidable. Then to decide whether n € T (1J it is enough to check
whether n € Ty and n is the code of a well formed closed ¥; formula.
Conversely, if T} is decidable, n € Ty if and only if N = 3p Gproofy,, (0, 1) if and

only if Rob = 3p dproof,,, (p,n) if and only if Ip Pproof, , (P, 1) € T




5 pt Question 4.2:  Show that if T§ is decidable then H is decidable.

Solution:

ne€H < N E JCupm(xg,n) < Rob + FxgCm(zo,n) <
320Cpm(z0,m) € T}. Given n, compute 3xoCpr(z0,n) via F (plus a bit of
computation).

5 pt Question 4.3: Show that if H is decidable then Tj is decidable.

Solution:
Since Ty is recursively enumerable there exists a TM M such that n € Ty if

and only if M(n) halts and accepts. Given n, compute the code for the TM
M, which on input 0 writes n on the tape and simulates M (but loops if M
rejects). Then n € Ty if and only if "M/" € H.

1 pt Question 4.4:  Conclude that Ty, T¢, H are all undecidable.

Solution:
‘H is, by Turing’s halting problem.

16|points




