Partial Mock Exam (about 75% size)

An A4 two side sheet of personal notes is allowed. Points are only given as an indication of the length and/or the difficulty of each exercise.

Last name:	
First name:	/53 points
Section:	<i>'</i>

<u>Problem 1</u>: (9 points) Automata, grammars.

2 pt **Question 1.1:** Draw the graph of a *nondeterministic* finite automaton which recognises the language

 $L = \{w \in \{0,1\}^* \mid w \text{ contains two consecutive } 0 \text{ and ends with an odd number of } 1\}.$

2 pt **Question 1.2:** Draw the graph of a *deterministic* finite automaton which recognises the language

 $L = \{w \in \{0,1\}^* \mid w \text{ contains two consecutive } 0 \text{ and ends with an odd number of } 1\}.$

Let WFF be the language on the alphabet $\{\}, (\exists, \neg, \lor, =, +, x_1, \ldots, x_n\}$ consisting in all the well-formed formulas of first order logic with the one and only + as symbol of binary function and with variables among x_1, \ldots, x_n .

2 pt Question 1.3: Show briefly that WFF is context free.

3 pt **Question 1.4:** Show *briefly* that WFF is not recognised by a deterministic finite automaton.

Hint: Use the Pumping Lemma¹.

/9 points

¹**Pumping Lemma** Let L be a language on a finite alphabet A recognised by some DFA. There exists a natural number p such that any word $w \in L$ with $|w| \ge p$ can be split into three pieces, w = xyz, satisfying the following properties:

^{1.} for all natural number $n, xy^nz \in L$;

^{2.} |y| > 0;

 $^{3. |}xy| \leq p.$

<u>Problem 2</u>: (16 points) Recursive sets, decidable sets.

Read attentively the following:

Definition. Two sets $A \subseteq \mathbb{N}$ and $B \subseteq \mathbb{N}$ are called recursively inseparable if

- 1. they are disjoint, that is $A \cap B = \emptyset$; and
- 2. there is no recursive set X such that $A \subseteq X$ and $X \cap B = \emptyset$.

Otherwise A and B are called recursively separable.

2 pt **Question 2.1:** Let $A \subseteq \mathbb{N}$ and $B \subseteq \mathbb{N}$ be such that 1. and 2. hold. Show that there exists no recursive set Y such that $Y \cap A = \emptyset$ and $B \subseteq Y$.

2 pt **Question 2.2:** Show that any two disjoint recursive (Δ_1^0) sets are recursively separable.

3 pt **Question 2.3:** Let A be recursively enumerable (Σ_1^0) . When is it the case that A and its complement $\mathbb{N}\backslash A$ are recursively separable.

3 pt **Question 2.4:** Give two disjoint sets $A \in \Sigma_1^0 \backslash \Delta_1^0$ and $B \in \Pi_1^0 \backslash \Delta_1^0$ which are recursively separable.

Hint: You can use without any justification the fact that there exists primitive recursive functions $\alpha_2 : \mathbb{N}^2 \to \mathbb{N}$ and $\beta_2^1, \beta_2^2 : \mathbb{N} \to \mathbb{N}$ such that $\alpha_2(\beta_2^1, \beta_2^2) = \mathrm{id}_{\mathbb{N}}$ and $(\beta_2^1(\alpha_2), \beta_2^2(\alpha_2)) = \mathrm{id}_{\mathbb{N}^2}$.

In what follows, we consider a recursive enumeration of all Turing machines which compute partial functions from \mathbb{N} to \mathbb{N} . According to this enumeration, we call \mathcal{M}_k the k-th Turing machine. For all $k \in \mathbb{N}$, we let φ_k be the partial function from \mathbb{N} to \mathbb{N} computed by \mathcal{M}_k .

Consider the two following sets of natural numbers

$$A = \{k \in \mathbb{N} \mid \varphi_k(k) = 0\}$$
 and $B = \{k \in \mathbb{N} \mid \varphi_k(k) = 1\}.$

3 pt Question 2.5: Explain briefly why A (and B) are Turing recognisable.

3 pt $\mathbf{Question}$ **Question 2.6:** Show that A and B are recursively inseparable.

Hint: Towards a contradiction, suppose that a recursive set X separates A and B. And then, consider the characteristic function of X.

Problem 3: (12 points) Incompleteness of Rob.

We recall that any recursively enumerable set $A \subseteq \mathbb{N}^k$ is representable by a Σ_1 formula in $\mathcal{R}ob$, namely there is an arithmetic formula $\varphi(x_0,\ldots,x_{k-1})$ with free variable among x_0,\ldots,x_{k-1} such that for every $(n_0,\ldots,n_{k-1}) \in \mathbb{N}^k$:

- if $(n_0, \ldots, n_{k-1}) \in A$, then $\mathcal{R}ob \vdash \varphi(n_0, \ldots, n_{k-1})$,
- if $(n_0, \ldots, n_{k-1}) \notin A$, then $\mathcal{R}ob \vdash \neg \varphi(n_0, \ldots, n_{k-1})$.

4 pt **Question 3.1:** Let $\varphi(x_0)$ be an arithmetic formula with free variable x_0 . Show that the set

$$X = \{ n \in \mathbb{N} \mid \mathcal{R}ob \vdash \varphi(n) \}$$

is recursively enumerable.

4 pt Question 3.2: Let $A \subseteq \mathbb{N}^2$ be recursive, and let

$$B = \{ n \in \mathbb{N} \mid \exists m \in \mathbb{N} \ (n, m) \in A \}.$$

Show that there exists an arithmetic formula $\psi(x)$ with x as only free variable such that for all $n \in \mathbb{N}$

$$n \in B \quad \longleftrightarrow \quad \mathcal{R}ob \vdash \psi(n).$$

4 pt Question 3.3: Let $A \subseteq \mathbb{N}^2$ be recursive such that

$$B = \{ n \in \mathbb{N} \mid \exists m \in \mathbb{N} \ (n, m) \in A \}$$

is not recursive and let $\psi(x)$ be given for B by the previous question. Show that there exists $m \in \mathbb{N}$ such that neither $\mathcal{R}ob \vdash \psi(m)$ nor $\mathcal{R}ob \vdash \neg \psi(m)$.

<u>Problem 4</u>: (16 points) Undecidability.

We consider the Gödel numbering φ of arithmetic formulas φ as presented during the lecture. We let $\phi_{proof_{\mathcal{R}ob}}(x,y)$ be a Σ^0_1 arithmetic formula which represents in $\mathcal{R}ob$ the primitive recursive set of pairs of natural numbers

$$\operatorname{Proof}_{\mathcal{R}ob} = \left\{ (P, \varphi) \in \mathbb{N}^2 \middle| P \text{ is a proof of } \mathcal{R}ob \vdash_c \varphi \right\}.$$

Therefore by definition for all $(p, n) \in \mathbb{N}^2$

$$(p, n) \in \operatorname{Proof}_{\mathcal{R}ob} \text{ implies } \mathcal{R}ob \vdash \phi_{\operatorname{proof}_{\mathcal{R}ob}}(p, n), \text{ and } (p, n) \notin \operatorname{Proof}_{\mathcal{R}ob} \text{ implies } \mathcal{R}ob \vdash \neg \phi_{\operatorname{proof}_{\mathcal{R}ob}}(p, n).$$

We also assume we have a coding of 1-tape Turing machines with input alphabet $\{0,1\}$ into natural numbers. We write ${}^{r}\mathcal{M}{}^{r}$ for the code of \mathcal{M} . Our coding is assumed to have the property that there is a 1-tape Turing machine \mathcal{F} which when given the binary code of ${}^{r}\mathcal{M}{}^{r}$ as input computes the (binary) code of a Δ_{0}^{0} arithmetic formula $C_{\mathcal{M}}(x_{0}, x_{1})$ such that for all $n \in \mathbb{N}$

 \mathcal{M} accepts the binary code of n iff $\mathbb{N} \models \exists x_0 C_{\mathcal{M}}(x_0, n)$.

Let

5 pt

 $T_0 = \{n \mid n \text{ is the code of a theorem of } \mathcal{R}ob\},\$ $T_0^1 = \{n \mid n \text{ is the code of a } \Sigma_1 \text{ theorem of } \mathcal{R}ob\},\$

 $\mathcal{H} = \{n \mid n \text{ is the code of a TM which halts on } 0\}.$

Recall that $\mathcal{R}ob$ is Σ_1 -complete, that is, if φ is a Σ_1 arithmetic sentence which is true in \mathbb{N} , then $\mathcal{R}ob \vdash \varphi$.

Question 4.1: Show that T_0^1 is decidable iff T_0 is decidable.

5 pt Question 4.3: Show that if \mathcal{H} is decidable then T_0 is decidable.

1 pt Question 4.4: Conclude that T_0, T_0^1, \mathcal{H} are all undecidable.

/16 points