Exercise Sheet n°9

Let $\mathcal{L}_{\mathcal{A}}$ be the language of arithmetic consisting of $\{0, S, +, \cdot\}$.

Exercise 1:

Using the compactness theorem for first order logic, prove that there exists a model of Robinson Arithmetic $\mathcal{R}ob$ which is not isomorphic to the standard model \mathbb{N} .

Exercise 2:

Let $Th(\mathbb{N})$ be the theory consisting of all closed first order formulas of $\mathcal{L}_{\mathcal{A}}$ satisfied by the standard model \mathbb{N} .

$$Th(\mathbb{N}) = \{ \varphi \mid \varphi \text{ is a closed } \mathcal{L}_{\mathcal{A}}\text{-formula and } \mathbb{N} \models \varphi \}$$

1. Using the compactness theorem for first order logic and the downward Löwenheim-Skolem theorem, show that there exist exactly 2^{\aleph_0} countable models of $\operatorname{Th}(\mathbb{N})$ which are pairwise non isomorphic.

Hint: First show that there exist at most 2^{\aleph_0} countable $\mathcal{L}_{\mathcal{A}}$ -structure up to ismorphism. Second show that for any set (finite or infinite) P of prime numbers there exists a model \mathcal{M}_P of $\operatorname{Th}(\mathbb{N})$ in which there is an element which divisible by exactly all "prime numbers in P" and only by these prime. Show also that if \mathfrak{M} and \mathfrak{M}' are two countable isomorphic models of $\operatorname{Th}(\mathbb{N})$ then there exists $a \in \mathfrak{M}$ whose set of prime divisors (in \mathfrak{M}) is exactly P if and only if there exists $b \in \mathfrak{M}'$ whose set of prime divisors (in \mathfrak{M}') is exactly P. Conclude.

2. Conclude that there are exactly 2^{\aleph_0} pairwise non isomorphic countable models of the theory of first order Robinson Arithmetic $\mathcal{R}ob$.

Exercise 3: This exercise is taken from *Logique mathématique*, vol. 2, Cori, R. and Lascar, D., 1993, Masson.

Let X be a non empty set and f be a function from $X \times X$ to X. We consider the $\mathcal{L}_{\mathcal{A}}$ -structure \mathfrak{M} whose domain is $M = \mathbb{N} \cup (X \times \mathbb{Z})$ and where the symbols S, +, are interpreted as the functions S, +, and \cdot defined as follows:

- \mathfrak{M} is an extension of \mathbb{N} , in particular $0^{\mathfrak{M}} = 0 \in \mathbb{N}$;
- if $a = (x, n) \in M \setminus \mathbb{N}$, then S(a) = (x, n + 1);
- if $a = (x, n) \in M \setminus \mathbb{N}$ and $m \in \mathbb{N}$, then a + m = m + a = (x, n + m);
- if a=(x,n) and b=(y,m) belong to $M\backslash\mathbb{N}$, then (x,n)+(y,m)=(x,n+m);
- if $a = (x, n) \in M \setminus \mathbb{N}$ and $m \in \mathbb{N}$, then $(x, n) \cdot m = (x, n \cdot m)$ if $m \neq 0$, and $(x, n) \cdot 0 = 0$;
- if $a = (x, n) \in M \setminus \mathbb{N}$ and $m \in \mathbb{N}$, then $m \cdot (x, n) = (x, m \cdot n)$;
- if a=(x,n) and b=(y,m) belong to $M\backslash\mathbb{N},$ then $(x,n)\cdot(y,m)=(f(x,y),n\cdot m).$

- 1. Show that ${\mathfrak M}$ is a model of the theory ${\mathcal Rob}$ of Robinson arithmetic.
- 2. Show that the following formulas are not provable from $\mathcal{R}ob$:
 - (a) $\forall v_0 \forall v_1 (v_0 + v_1 = v_1 + v_0);$
 - (b) $\forall v_0 \forall v_1 \forall v_2 (v_0 \cdot (v_1 \cdot v_2) = (v_0 \cdot v_1) \cdot v_2);$
 - (c) $\forall v_0 \forall v_1 ((v_0 \le v_1 \land v_1 \le v_0) \Rightarrow v_0 = v_1);$
 - (d) $\forall v_0(0\cdot v_0 = 0)$.
- 3. Construct a model of $\mathcal{R}ob$ in which the addition is not associative.