Exercise Sheet n°7

Exercise 1:

1. Let R be a primitive recursive relation on \mathbb{N}^{p+1} and h be a primitive recursive function on \mathbb{N}^p . Show that the relations R^h_{\exists} and R^h_{\forall} on \mathbb{N}^p defined by

$$R^h_{\exists}(\vec{n}) \Leftrightarrow \exists i \leq h(\vec{n}) \ R(\vec{n},i) \quad \text{and} \quad R^h_{\forall}(\vec{n}) \Leftrightarrow \forall i \leq h(\vec{n}) \ R(\vec{n},i)$$

are primitive recursive.

2. For a function $h: \mathbb{N}^p \to \mathbb{N}$ and a relation R on \mathbb{N}^{p+1} we let

$$\mu m < h(\vec{n}) \quad R(\vec{n},m) = \left\{ \begin{array}{ll} \text{the smallest } m < h(\vec{n}) \text{ such that } R(\vec{n},m) & \text{if it exists,} \\ h(\vec{n}) & \text{otherwise.} \end{array} \right.$$

Show that for h and R primitive recursive, the function $\min_{\leq}(h,R)$ on \mathbb{N}^p defined by $\vec{n}\mapsto \mu m < h(\vec{n})$ $R(\vec{n},m)$ is primitive recursive.

Exercise 2: Let $A \subseteq \mathbb{N}$ be non empty. Show that the following conditions are equivalent

- 1. A is recursively enumerable;
- 2. A is the range of a primitive recursive function;
- 3. A is the range of a partial recursive function.

Exercise 3:

- 1. Let $f : \mathbb{N} \to \mathbb{N}$ be a total unary recursive function satisfying n < f(n) for all n. Show that the range of f is recursive.
- 2. Show that the range of a strictly increasing total unary recursive function is recursive.
- 3. Show that any infinite recursive $A \subseteq \mathbb{N}$ is the range of a strictly increasing recursive function. Can one prove it is actually primitive recursive?