Exercise Sheet n°4

Exercise 1:

In this exercise we want to show that the problem of deciding when a given DFA has a finite or infinite language is Turing decidable.

We only consider – without loss of generality – the DFAs $(Q, \Sigma, \delta, q_0, F)$ where $Q = \{0, 1, \dots, k-1\} = k$, $\Sigma = \{0, 1, \dots, n-1\} = n$, and $q_0 = 0$ for some natural numbers k > 0 and n > 0.

1. Represent any DFA as a finite string on the finite alphabet

$$A = \{\langle,\rangle,0,1,2,3,4,5,6,7,8,9,(,),\{,\},\}.$$

Formulate the problem of deciding when a given DFA has a finite or infinite language as the membership problem for a language INF_{DFA} on A.

- 2. In a similar fashion, we consider the language E_{DFA} consisting of the DFAs whose language is empty. Show that the language E_{DFA} is Turing decidable.
- 3. Show that INF_{DFA} is Turing decidable.

Hint: The pumping lemma for languages recognised by DFA and the previous point can be useful.

Exercise 2:

The symbol ω denotes the set of all natural numbers. For a non empty set A, let $x \in A^{<\omega} \cup A^{\omega}$ be a finite or infinite sequence of elements of A. The domain of x is given by Dom(x) = n if $x \in A^n$ and $\text{Dom}(x) = \omega$ if $x \in A^{\omega}$. For $k \in \text{Dom}(x)$, $x_{\upharpoonright k}$ is the restriction of x on k.

A tree on a set A is subset $T \subseteq A^{<\omega}$ closed by prefixes, i.e. such that for all $t \in T$ and all $k < \text{Dom}(t), t_{\lceil k \rceil} \in T$. An infinite branch of a tree T on a set A is a sequence $x \in A^{\omega}$ such that for all $n \in \omega, x_{\lceil n \rceil} \in T$.

1. Let T be a tree on a finite set. Show that T has no infinite branch if and only if T is finite.

Consider the following

Definition. A language L is called nondeterministic Turing decidable if there exists a nondeterministic Turing machine N such that

- (i) for all input w, no computation of N on w loops for ever;
- (ii) for all input $w, w \in L$ if and only if there is at least a computation of N on w which is accepting.
- 2. Show that a language is nondeterministic Turing decidable if and only if it is Turing decidable.

Hint: Modify the proof of the equivalence between deterministic and nondeterministic Turing machine. You can use the following definition:

Let $\mathcal{M} = (Q, \Sigma, \Gamma, \Delta, q_0, q_{acc}, q_{rej})$ be a non deterministic Turing machine and view Δ as a relation, in symbols $\Delta \subseteq (Q \times \Gamma) \times (Q \times \Gamma \times \{L, R\})$. For any input word $w \in \Sigma^*$ we define the *computation tree* of \mathcal{M} on w as the tree $T_{\mathcal{M}}(w)$ on Δ given by

$$(s_0, \ldots, s_{n-1}) \in T_{\mathcal{M}}(w) \Leftrightarrow \begin{cases} s_i \in \Delta \text{ for } 0 \leq i \leq n-1 \text{ and} \\ \text{there exists a sequence of configurations} \\ (c_0, \ldots, c_n) \text{ such that} \\ -c_0 = q_0 w, \text{ and} \\ -c_i \text{ yields } c_{i+1} \text{ through } s_i \text{ for all } i < n. \end{cases}$$

Exercise 3:

- 1. Let Σ be a finite alphabet not containing \sqcup . Give a recursive coding $c: \Sigma^{<\omega} \to \{0,1\}^{<\omega}$.
- 2. Let $\Gamma = \Sigma \cup \{\sqcup\}$ and consider the recursive coding c you gave in 1. Show that for any Turing machine M with tape alphabet Γ , and input alphabet Σ , there exists a Turing machine M_c with input alphabet $\{0,1\}$ and tape alphabet $\{0,1,\sqcup\}$ such that for all $w \in \Sigma^{<\omega}$

M accepts w iff M_c accepts c(w).