Exercise Sheet n°3

Exercise 1: We consider a Turing machine

$$M = (\{q_0, q_1, q_2, q_{acc}, q_{rej}\}, \{0, 1\}, \{0, 1, \sqcup\}, \delta, q_0, q_{acc}, q_{rej}).$$

- 1. Describe the language of M if δ consists of the following set of rules¹:
 - (a) $\delta(q_0, 0) = (q_1, 1, R); \ \delta(q_1, 1) = (q_0, 0, R); \ \delta(q_1, \sqcup) = (q_{acc}, \sqcup, R).$
 - (b) $\delta(q_0,0) = (q_1,1,R); \ \delta(q_1,1) = (q_2,0,L); \ \delta(q_2,1) = (q_0,1,R); \ \delta(q_1,\sqcup) = (q_{acc},\sqcup,R).$
- 2. Give a transition function δ such that M computes $n \mapsto n+1$ in binary. We take the convention that for example $0101 \sqcup \sqcup \sqcup \cdots$ represents the decimal number 10.

Exercise 2: Show that for every bi-infinite tape Turing machine M there exists an equivalent Turing machine \overline{M} , that is such that $\mathcal{L}(\overline{M}) = \mathcal{L}(M)$.

Exercise 3: In this exercise we consider the following variant of a Turing machine. Let an *n*-state Turing machine be

- A Turing machine with n states labelled A, B, C...plus a Halt state H. A is the starting state;
- with a single **bi-infinite** tape;
- with $\{0,1\}$ as tape alphabet, where 0 also serves as the blank symbol;
- whose head must move to the left or to the right at each step of the configuration;
- whose transition relation is deterministic but entering the Halt state takes immediate effect, that is, no transitions need to be defined from the Halt state
- 1. How many one state Turing machines do not loop on the empty word?
- 2. How many 1s can a one state Turing machine write starting on the empty word before halting?
- 3. Find a two states Turing machine which halts when starting on the empty word and end up with four 1s written on its tape.

Remark. To go a little further, we let

- E_n be the finite set of *n*-state Turing machines which halt on the empty word;

¹Undefined transitions lead to the reject state by convention.

- $\sigma(M)$ for each $M \in E_n$ is the number of 1s on the tape at the end of the computation;
- $\Sigma(n) = \max\{\sigma(M) \mid M \in E_n\};$

Since $\{\sigma(M) \mid M \in E_n\}$ is a finite set of natural numbers, the maximum is well defined. A *n*-state Turing machine which realises $\Sigma(n)$ is called a Busy Beaver, a term due to Tibor Radó, who first introduced this concept.

The language $\{(\lceil n \rceil, \lceil \Sigma(n) \rceil) \mid n \in \omega\}$ is not Turing decidable. The known values of Σ are $\Sigma(0) = 0$, $\Sigma(1) = 1$, $\Sigma(2) = 4$, $\Sigma(3) = 6$ and $\Sigma(4) = 13$. It is also known that $\Sigma(5) \geq 4098$ and that $\Sigma(6) \geq 10^{18267}$.

Exercise 4:

- 1. Show that Turing decidable languages are closed under complementation, union, and intersection.
- 2. Show that Turing recognisable languages are closed under union and intersection.