Exercise Sheet n°12

Exercise 1: Let T be a recursively enumerable theory on the language of arithmetic, i.e. a set of arithmetic formulas T such that $\{\lceil \varphi \rceil \mid \varphi \in T\}$ is recursively enumerable.

Show that there is a recursive theory T' that is equivalent to T, that is, $T \vdash \varphi$ if and only if $T' \vdash \varphi$ for every arithmetic formula φ .

Exercise 2: Show that the set of codes of first order arithmetical truths.

$$\#\operatorname{Th}_1(\mathcal{N}) = \left\{ \lceil \varphi \rceil \, \middle| \, \begin{array}{c} \varphi \text{ is a closed formula of first order arithmetic} \\ \text{satisfied in the standard model } \mathcal{N}. \end{array} \right\},$$

is not recursively enumerable.

Exercise 3:

The aim of this exercise is to show that second order logic with standard semantics admits no "good" deductive system. The language of *second order logic* is defined similarly as in the case of first order logic:

- We consider an infinite countable set of first order variables x_0, x_1, x_2, \ldots and for all n > 0 an infinite countable set of *n*-ary relation variables $X_0^n, X_1^n, X_2^n, \ldots$
- As in the case of first order logic, a second order logic language is specified by a set \mathcal{L} of non-logical symbols, that is symbols of constant, of function, or of relation.
- The set of terms on \mathcal{L} is defined as in the case of first order logic: it is the smallest set containing the first order variables and the symbols of constant of \mathcal{L} which is closed under the application of symbols of function in \mathcal{L} .
- ullet The second order atomic formulas on $\mathcal L$ are the expressions of one of the three following forms

$$t_1 = t_2$$
 $R(t_1, \dots, t_n)$ $X^n(t_1, \dots t_n)$

where t_1, \ldots, t_n are terms on \mathcal{L} , R is a symbol of n-ary relation in \mathcal{L} , and X^n is a n-ary relation variable.

• The set of second order formulas on \mathcal{L} is the smallest set containing the atomic formulas on \mathcal{L} which is closed under composition by logical connectives, quantification over first order variables and quantification over n-ary relation variables.

The **standard** (or **full**¹) semantic of second order logic is very intuitive. A standard \mathcal{L} -structure for the language of second order is the same as a \mathcal{L} -structure in first order logic. The n-ary relation variables are interpreted in a \mathcal{L} -structure as the n-ary relations on the domain of the structure. The satisfaction by a \mathcal{L} -structure of a second order formula on \mathcal{L} is extended in a straightforward manner from the semantic of first order logic.

We now consider the second order theory of Peano arithmetic denoted by PA². It consists of the first order axioms of \mathcal{P}_0 (that is, first order Peano arithmetics minus the induction scheme), the second order induction principle

$$\forall X^{1}((X(\mathbf{0}) \land \forall x(X(x) \to X(\mathbf{S}(x)))) \to \forall x \ X(x))$$
 (IP)

and the first order definition of \leq

$$\forall x \forall y (x \leq y \leftrightarrow \exists z (x + z = y)).$$

Show the following proposition.

Proposition. The only model (up to isomorphism) of PA² is the standard model $(\mathbb{N}, 0, S, +, \times, \leq)$.

We now show that there is no good notion of proof for second order logic with the standard semantic. Precisely, show that

Theorem. There is no deductive system \vdash for second order logic with the standard semantic satisfying the three desired attributes

(Soundness) Every provable formula is valid, i.e. for any sentence φ , if $\vdash \varphi$ then $\mathcal{M} \models \varphi$ for any structure (or model) \mathcal{M} ;

(Completeness) Every valid formula is provable, i.e. for any sentence φ , if $\mathcal{M} \models \varphi$ for all models \mathcal{M} , then $\vdash \varphi$.

(Effectiveness) The set of codes of provable formulas is recursively enumerable, i.e. the set $\{\lceil \varphi \rceil \mid \vdash \varphi\}$ is recursively enumerable.

Hint: Show that the existence of such a deductive system contradicts the fact that the set of codes of arithmetical truth is not recursively enumerable.

 $^{^{1}}$ as opposed to $Henkin\ semantics$