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1. a) We only need to show that for v € KX and x € K*, we have \(z,v); # 0 for
all 7. As o0; has trivial kernel for all 7, this is immediate.
b) Assume v € KX and x € K* satisfy A(xz,v) = v. Then o;(z) = 1 for all
1 < i < r and, by injectivity of o;, it follows that x = 1.
c) Let ¢1,0o € HM and let hy,hy € H, my,my € M such that ¢; = h;m;, then

00" = hamimy "hy ' = hihy 'mamy ' € HM,

since K* is abelian. Since 1 =1-1 € HM, we know that HM is non-empty
and therefore a subgroup.

The map f: H x M — HM given by (h,m) — hm~' is a surjective group
homomorphism (since K* is abelian) with kernel

ker f = {(h,m) € H x M: hm™" =1}
— {(hym) e Hx M: h=m}=HnM={1}.

Hence f is injective and, therefore, an isomorphism.
d) Let ¢»: E/M — E/HM denote the canonical projection. Let O1,0, € E/M

such that ¥ (0;) = ¥(03). Equivalently, there are v; € O; and ¢ € HM such
that vy = A(¢,vy). Write £ = hm for h € H and m € M. Then

A, 1) = A(hy A(m, 1))

and z; € O; if and only if A(m,x;) € O;. Therefore, we have shown that
¥(01) = (0,) if and only if there are z; € O; and h € H such that xo =
)\(h,$1).

It remains to show that the fibers of ¢ form a disjoint union of M -orbits
parametrized by H. To this end suppose that O;,0, € E/M are such that
there exist x; € O; and h € H ~ {1} such that x5 = A(h,z1). Suppose that
y € O1 N Oy, then there are m; € M such that y = A(mq,x1) = Ama, z2).
Hence

x1 = Xmiy) = Mmy 'ma, x2) = Mmy 'mah, 1)
and therefore h = m;m, ' by freeness. As H N M = {1}, this is absurd.
e) Let y = Nrgg(z)z™" and consider z = x'~9y. By Dirichlet’s unit theorem,

there are A > 0 depending only on K and u € O such that

Vi<i<r —A<d;i(logloi(z)] — dloglo;(u)]) < A.
Since

V1<i<r o(zu?) = Nrgo(r)o(zu™?),

it follows that

Vi<i<r e oi(rvu)| < Nrgo(z) < e?oi(zu)|.

The details are left to the reader.
2. This can be found in the lecture notes.

3. a) This can be found in the lecture notes.
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b) If p splits,

1) - (-3) (-2 (-5

pl(p)

if p is inert,

1) - () () (-5

pl(p)

and, finally, if p is ramified,

) 2) () ()
Altogether, this gives
s = ] (1—i)1- 11 (1—X§§p))1=c<s>L<s,xK>,

pS

p prime p prime

as we wanted to show.

a) We note that |[¢)(n)| < 1 and hence, for Res > 1, the Euler product formula
follows in the same way as for the Riemann (-function from the fact that 1 is
completely multiplicative, i.e., if m,n € N, then )(mn) = ¥(m)i(n).

b) We have

W) L) L) en(-

(p,g)=1 p,q)#1 P plg

—~

c) Note that

q
2 V=2 xn
n=1 (n.q)=
and therefore ¥(z) = > _ ¥(n) < go(q). Using Abel summation, we have for
all 0 < T} <15 that

o R

Ti<n<T> T

Since U(&) <, 1, the right hand side converges uniformly on compact subsets
of {s: Res > 0}.

d) We do not provide a solution to this exercise yet.

e) Note that G is a finite product, hence holomorphic on {s: Res > 0}. Simi-
larly, L(wg, s) is a product of a holomorphic function and a meromorphic func-
tion on {s: Res > 0} with a simple pole at s = 1. Recall that for ¢ # 1), the
function L(v,s) is holomorphic on {s: Res > 0}. Hence the function

Cre(s) = L(¢o,s) J] L(¥.5)
Y#bo

is meromorphic with a unique simple pole at s = 1 if and only if L(¢,1) # 0
for all ¥ # 1g. Since, as shown in class, the Dedekind (-function (x has a
simple pole at s = 1, the claim follows.



f) We show that L(¢, s) admits an Euler product. We recall from complex analysis
that an infinite product of non-zero numbers (2,)nen € CN converges (in C~
{0}) if and only if the series > | log z, converges, where log z, is the logarithm
for the principal branch. Moreover, the product converges absolutely if and
only if the series converges absolutely and, in fact, this is equivalent to the
convergence of the series >~ |z, — 1|. In this case, we have

H Zn = exp (Z log(zn)> :

n neN

(

We apply this to the sequence z,(s) =1 — , where Res > 1 and where we

use the primes to index the sequence (as opposed to using the natural number
n to index the n-th prime).
Hence, in order to prove that the product

ro=T1(1-57)

converges absolutely, it suffices to show that the series Zp % converges ab-

solutely. To this end, we use the convergence of the Riemann (-function for
Res > 0 to obtain

2.

p

v(p)

ps

1
< Z hes ((Res) < oc.

neN

Next we argue that P(s) is holomorphic on {Res > 1}. To this end it suffices
to prove that P(s) = L(1, s), of which we know holomorphicity by Abel sum-
mation. Given N € N, let P(N) denote the collection of the first N primes
and let N(NV) denote the set of natural numbers whose prime factorization only
involves primes in P(N).

Then
Y(p)\ b(p)* Y (n)
[I(-"2) -2’y =
peP(N) pEP(N) LeN neEN(N)
Therefore
Y(p)\ 1 N
s I (1-57) < X o

n>max P(N)

and thus P(s) = L(v, s), as desired.
Since L(1,s) = P(s) is holomorphic on {Res > 1} and P(s) does not vanish,
L(1), s) admits an analytic logarithm on {Res > 1}. Moreover, we have that

L(v, s) —exp< Zlog( )>)

and hence a choice of a logarithm at Res > 1 is given by

log L(1), s) Zlog( ))




As shown in class, the right—hand side satisfies
v(p
S (1-57) =X P e DX
D p £>2 P
=gy

with g, converging uniformly on compact subsets of {Res > 1/2}. Hence the
claim.

In order to prove that there are infinitely many primes with residue a mod g,
it suffices to show that

p=a

To this end, we note that by the orthogonality relations

z = S tusalols = e )

(q) ;
1 1 _ L a ! s
=@ % P(a ") log L1, s) 2(q) % U(a™)gy(s)

The function

1 -1
5 m%iﬂ(a )9y (s >1)

admits a holomorphic continuation to {Res > 3/4} and hence it remains
bounded as s | 1.
For the first sum, we note that

Z¢ L(¥o,s)+ > (@) L(¢,s)

and the sum on the right hand side remains bounded as s | 1 because of part
(e). On the other hand, we know that L(ty,s) — oo as s | 1 and hence the
claim.



