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1. a) We only need to show that for v ∈ K×
∞ and x ∈ K× , we have λ(x, v)i ̸= 0 for

all i . As σi has trivial kernel for all i , this is immediate.
b) Assume v ∈ K×

∞ and x ∈ K× satisfy λ(x, v) = v . Then σi(x) = 1 for all
1 ⩽ i ⩽ r and, by injectivity of σi , it follows that x = 1.

c) Let ℓ1, ℓ2 ∈ HM and let h1, h2 ∈ H , m1,m2 ∈M such that ℓi = himi , then

ℓ1ℓ
−1
2 = h1m1m

−1
2 h−1

2 = h1h
−1
2 m1m

−1
2 ∈ HM,

since K× is abelian. Since 1 = 1 · 1 ∈ HM , we know that HM is non-empty
and therefore a subgroup.
The map f : H ×M → HM given by (h,m) 7→ hm−1 is a surjective group

homomorphism (since K× is abelian) with kernel

ker f = {(h,m) ∈ H ×M : hm−1 = 1}
= {(h,m) ∈ H ×M : h = m} ∼= H ∩M = {1}.

Hence f is injective and, therefore, an isomorphism.
d) Let ψ : E/M → E/HM denote the canonical projection. Let O1, O2 ∈ E/M

such that ψ(O1) = ψ(O2). Equivalently, there are vi ∈ Oi and ℓ ∈ HM such
that v2 = λ(ℓ, v1). Write ℓ = hm for h ∈ H and m ∈M . Then

λ(ℓ, x1) = λ(h, λ(m,x1))

and x1 ∈ O1 if and only if λ(m,x1) ∈ O1 . Therefore, we have shown that
ψ(O1) = ψ(O2) if and only if there are xi ∈ Oi and h ∈ H such that x2 =
λ(h, x1).
It remains to show that the fibers of ψ form a disjoint union of M -orbits
parametrized by H . To this end suppose that O1, O2 ∈ E/M are such that
there exist xi ∈ Oi and h ∈ H ∖ {1} such that x2 = λ(h, x1). Suppose that
y ∈ O1 ∩ O2 , then there are mi ∈ M such that y = λ(m1, x1) = λ(m2, x2).
Hence

x1 = λ(m−1
1 , y) = λ(m−1

1 m2, x2) = λ(m−1
1 m2h, x1)

and therefore h = m1m
−1
2 by freeness. As H ∩M = {1} , this is absurd.

e) Let y = NrK/Q(x)x
−1 and consider z = x1−dy . By Dirichlet’s unit theorem,

there are A > 0 depending only on K and u ∈ O×
K such that

∀1 ⩽ i ⩽ r − A ⩽ di
(
log|σi(z)| − d log|σi(u)|

)
⩽ A.

Since

∀1 ⩽ i ⩽ r σi(zu
−d) = NrK/Q(x)σi(x

−du−d),

it follows that

∀1 ⩽ i ⩽ r e−A/d|σi(xu)| ⩽ NrK/Q(x) ⩽ eA/d|σi(xu)|.

The details are left to the reader.
2. This can be found in the lecture notes.
3. a) This can be found in the lecture notes.
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b) If p splits,∏
p|(p)

(
1− 1

N(p)s

)−1

=

(
1− 1

ps

)−2

=

(
1− 1

ps

)−1(
1− χK(p)

ps

)−1

,

if p is inert,

∏
p|(p)

(
1− 1

N(p)s

)−1

=

(
1− 1

p2s

)−1

=

(
1− 1

ps

)−1(
1− χK(p)

ps

)−1

,

and, finally, if p is ramified,

∏
p|(p)

(
1− 1

N(p)s

)−1

=

(
1− 1

ps

)−1

=

(
1− 1

ps

)−1(
1− χK(p)

ps

)−1

.

Altogether, this gives

ζK(s) =
∏

p prime

(
1− 1

ps

)−1

·
∏

p prime

(
1− χK(p)

ps

)−1

= ζ(s)L(s, χK),

as we wanted to show.
4. a) We note that |ψ(n)| ⩽ 1 and hence, for Re s > 1, the Euler product formula

follows in the same way as for the Riemann ζ -function from the fact that ψ is
completely multiplicative, i.e., if m,n ∈ N , then ψ(mn) = ψ(m)ψ(n).

b) We have∏
p

(
1− ψ0(p)

ps

)−1

=
∏

(p,q)=1

(
1− 1

ps

)−1

=
∏

(p,q)̸=1

(
1− 1

ps

)∏
p

(
1− 1

ps

)−1

= ζ(s)
∏
p|q

(
1− 1

ps

)
.

c) Note that
q∑

n=1

ψ(n) =
∑

(n,q)=1

χ(n) = 0,

and therefore Ψ(x) =
∑

n⩽x ψ(n) ≪ φ(q). Using Abel summation, we have for

all 0 < T1 < T2 that∑
T1<n⩽T2

ψ(n)

ns
=

[
Ψ(ξ)

ξs

]T2
T1

+ s

∫ T2

T1

Ψ(ξ)

ξs+1
s.

Since Ψ(ξ) ≪q 1, the right hand side converges uniformly on compact subsets

of {s : Re s > 0} .
d) We do not provide a solution to this exercise yet.
e) Note that GK is a finite product, hence holomorphic on {s : Re s > 0} . Simi-

larly, L(ψ0, s) is a product of a holomorphic function and a meromorphic func-
tion on {s : Re s > 0} with a simple pole at s = 1. Recall that for ψ ̸= ψ0 , the
function L(ψ, s) is holomorphic on {s : Re s > 0} . Hence the function

ζK(s) = GK(s)L(ψ0, s)
∏
ψ ̸=ψ0

L(ψ, s)

is meromorphic with a unique simple pole at s = 1 if and only if L(ψ, 1) ̸= 0
for all ψ ̸= ψ0 . Since, as shown in class, the Dedekind ζ -function ζK has a
simple pole at s = 1, the claim follows.



f) We show that L(ψ, s) admits an Euler product. We recall from complex analysis

that an infinite product of non-zero numbers (zn)n∈N ∈ CN converges (in C ∖
{0}) if and only if the series

∑∞
n=1 log zn converges, where log zn is the logarithm

for the principal branch. Moreover, the product converges absolutely if and
only if the series converges absolutely and, in fact, this is equivalent to the
convergence of the series

∑∞
n=1|zn − 1| . In this case, we have

∏
n

zn = exp

(∑
n∈N

log(zn)

)
.

We apply this to the sequence zp(s) = 1− ψ(p)
ps

, where Re s > 1 and where we

use the primes to index the sequence (as opposed to using the natural number
n to index the n-th prime).
Hence, in order to prove that the product

P (s) =
∏
p

(
1− ψ(p)

ps

)−1

converges absolutely, it suffices to show that the series
∑

p
ψ(p)
ps

converges ab-

solutely. To this end, we use the convergence of the Riemann ζ -function for
Re s > 0 to obtain∑

p

∣∣∣∣ψ(p)ps

∣∣∣∣ ⩽∑
n∈N

1

nRe s
= ζ(Re s) <∞.

Next we argue that P (s) is holomorphic on {Re s > 1} . To this end it suffices
to prove that P (s) = L(ψ, s), of which we know holomorphicity by Abel sum-
mation. Given N ∈ N , let P(N) denote the collection of the first N primes
and let N(N) denote the set of natural numbers whose prime factorization only
involves primes in P(N).
Then ∏

p∈P(N)

(
1− ψ(p)

ps

)−1

=
∏

p∈P(N)

∑
ℓ∈N

ψ(p)ℓ

pℓs
=

∑
n∈N(N)

ψ(n)

ns
.

Therefore∣∣∣∣∣∣L(ψ, s)−
∏

p∈P(N)

(
1− ψ(p)

ps

)−1

∣∣∣∣∣∣ ⩽
∑

n>maxP(N)

1

nRe s

N→∞−→ 0

and thus P (s) = L(ψ, s), as desired.
Since L(ψ, s) = P (s) is holomorphic on {Re s > 1} and P (s) does not vanish,
L(ψ, s) admits an analytic logarithm on {Re s > 1} . Moreover, we have that

L(ψ, s) = exp

(
−
∑
p

log

(
1− ψ(p)

ps

))

and hence a choice of a logarithm at Re s > 1 is given by

logL(ψ, s) = −
∑
p

log

(
1− ψ(p)

ps

)
.



As shown in class, the right-hand side satisfies∑
p

log

(
1− ψ(p)

ps

)
=
∑
p

ψ(p)

ps
+
∑
p

∑
ℓ⩾2

ψ(pℓ)

ℓpℓs︸ ︷︷ ︸
=gψ

with gψ converging uniformly on compact subsets of {Re s > 1/2} . Hence the
claim.

g) In order to prove that there are infinitely many primes with residue a mod q ,
it suffices to show that ∑

p≡a

1

ps
s↓1−→ ∞.

To this end, we note that by the orthogonality relations∑
p≡a

1

ps
=
∑
p

1a+qZ(p)
1

ps
=
∑
p

11+qZ(a
−1p)

1

ps

=
∑
p

(
1

φ(q)

∑
ψ

ψ(a−1p)

)
1

ps
=

1

φ(q)

∑
ψ

ψ(a−1)
∑
p

ψ(p)

ps

=
1

φ(q)

∑
ψ

ψ(a−1) logL(ψ, s)− 1

φ(q)

∑
ψ

ψ(a−1)gψ(s).

The function

s 7→ 1

φ(q)

∑
ψ

ψ(a−1)gψ (s > 1)

admits a holomorphic continuation to {Re s > 3/4} and hence it remains
bounded as s ↓ 1.
For the first sum, we note that∑

ψ

ψ(a−1)L(ψ, s) = L(ψ0, s) +
∑
ψ ̸=ψ0

ψ(a−1)L(ψ, s)

and the sum on the right hand side remains bounded as s ↓ 1 because of part
(e). On the other hand, we know that L(ψ0, s) → ∞ as s ↓ 1 and hence the
claim.


