Algebraic Number Theory Exercise Sheet 13

Manuel Luethi
Federico Viola

Spring 2024

1. a) First

of all, if d is square-free we must have d = 1,2,3 mod 4 since d = 0

mod 4 would imply that 22 divides d.
b) Now we can consider the two cases:

(i)

d =2,3 mod 4. The discriminant of the basis (1,v/d) is

(det G _‘6%))2 _ 4d.

Let B be a Z-basis of O, and let M be an integer matrix such that
BM = (1,v/d). We have

disc(1,v/d)  4d

det(M)2 — det(M)?’
Since d is square-free the only possibilities are | det(M)| = 1 and | det(M)|
2. In the latter case we would have disc(Ox) = d = 2,3 mod 4, which

is impossible since, as we have shown on Sheet 8 in Exercise 2 that the
discriminant of the ring of integers is always 0 or 1 mod 4. Therefore we

must have |det(M)| = 1, meaning that (1,v/d) is a Z-basis of Ok and
therefore O = Z[V/d).
d=1 mod 4. We observe that %ﬁ € O since it is a root of the integer

polynomial p(z) = 2? — z — %. We leave the verification to the reader.

The discriminant of the Q-basis <1, 1+2‘/E> of K is

1 1+Vd 2
det |25 ) =4
2

Let B be a Z-basis of O, and let M be an integer matrix such that
BM = (1, 1+2‘/‘7>. We have

disc <1, ”2‘/&) d
det(M)2  det(M)?
Since d is square-free the only possibility is | det(M)| = 1, meaning that
(1, #) is a Z-basis of O and therefore O = 7Z [%ﬂ )

disc(Ok) =

disc(Ok) =

2. a) Let K1 = Q(v/—m) and Ky, = Q(v/—n). The extensions K;/Q and K,/Q
are of degree 2 and hence Galois, with Galois group isomorphic to Z/27Z. The
composite field KK, is K, and the intersection K7 N Ky is Q since m,n are
distinct and squarefree. Therefore the extension K/Q is Galois of degree 4, and
we have

Gal(K/Q) = Gal(K,/Q) x Gal(K»/Q) = Z/2Z x Z,/2Z.

b) Proper subfields of K are in one-to-one correspondence with non-trivial sub-
groups of the Galois group. Since Gal(K/Q) = Z/27Z x Z/2Z, it has three
proper non-trivial subgroups, all isomorphic to Z/2Z and generated by the pairs
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c)

2)

(1,0),(0,1),(1,1) in Z/27Z x Z/27. Therefore there are exactly three subfields
L that satisty Q C L C K with proper inclusions. We can find them explicitly:
they are Q(v/—m), Q(v/—n) and Q(y/mn). They are all non-isomorphic, and
the last one is the only real subfield.

We recall that Op is the set of elements in L that are integral over Z, and
Ok 1is the set of elements in K that are integral over Z. Since L C K, it is
immediate that Oy = L N Ok . Moreover, if € O has an inverse in Oy, then

this inverse is also in Ok, hence OF C LNOj . Conversely, if z € LNOg has an
inverse in O, since L is a field this inverse must lie in L and, since elements
of O are integral, hence in Op, providing the inclusion LN O C OF.

By Dirichlet’s unit theorem, an element in O} is a root of unity if and only if it
is in the kernel of the logarithmic embedding. Therefore, for € € O, we have

(aa)] =

> € MK if and only if

This is true if and only if |7(¢)| = |7(c(¢))| for all 7 € Homg(K,C). Since
K/Q is Galois we have Homg (K, C) = Gal(K/Q) and, since the Galois group is
commutative, the condition is equivalent to |7(g)| = |o(7(¢))| V7 € Gal(K/Q).
Now one shows that the assumptions imply that ¢ must send 1 to 1, /mn to

vmn, v/—m to —y/—m, and /—n to —y/—n. One checks that this implies

that o agrees with the restriction to K of the conjugation in C and therefore
preserves the absolute value. We leave the details and the remaining parts to
the reader.

Let p? = {¢ € O%: 3¢ € ux ¢ = £*}. Then p3 is the image of the squaring
homomorphism pux — ur, ¢ = (2, hence a subgroup of px. We denote by
®: Ox — px/p3 the composition of ¢ with the canonical projection. Then
ker® = pxOF. We sketch a proof of ker® C uxOj and leave the opposite
direction to you. Suppose that ¢ € ker ® and write ¢ = r{ with r € (0, 00)
and ¢ € S*. One checks that () = ¢2. Since ¢* € p2% . One checks that this
implies ¢ € pux and, hence, 7 € O N Lg = OF .

Now one uses the isomorphism theorems to deduce that

V7 € Homg (K, C)

05 ukOF] < |prc/ 1|
and, therefore, it remains to show that [uf: p3%] < 2. Then one shows that px
is cyclic and, using the classification of finite cyclic groups, deduces that pu3
has index one in pug if N is odd and index two if N is even.
Note that for any x,y € K* totally positive, the product zy is totally positive.
This implies that the totally positive elements in K* form a subgroup of K*,
which then implies that P} is a subgroup of P and, hence, of Fx. We skip
the details of this bit of the proof. It remains to prove finiteness of the narrow
class group C17(K).
We let ¢: C1"(K) — CI(K) denote the canonical projection, which is well-
defined since P} C Py. Let H = kerq, CI(K) = C1"(K)/H since q is surjec-
tive and, since CI(K) is finite, it suffices to show that H is finite.
Our goal is to express H as a quotient of finite groups. Let ¢: K* — CI7(K)
denote the map = +— (zOf)P}. Then got) maps K* to PL, ie., »(K*)C H.
On the other hand, let <K be a fractional O-ideal such that P} € H. Since,
by assumption, {Px = Pk, i.e., since fP} € H, we know that f is a principal



fractional ideal, i.e., there exists z € K> such that f = 2Ok . In particular, we
find that ¥(K*) = H.

Now denote by KT the totally positive elements in K and note that for any
r € K* and for any y € K™ we have that

U(ry) = (2yO0K)Pr+ = (20k)(yOk) Py = (20k) Py = Y(2),
that is, ¢ factors as

KXLH

P P
| <
K*/K

Next one show that ker U = O K™ using that the generator of a principal
fractional ideal is unique up to multiplication by Oy . In the next step one
shows that O K /K* = O /O, where the main step involves checking
that if €),eo € Of satisfy 61 K™ = &K, then £,0, = 520f(+. Using the
appropriate isomorphism theorem, it follows that

[K*: KT]

H| == 21
[0%: 0%, ]

Hence, in the light of it remains to show that K has finite index in K*.
To this end, we recall that 0. (K) is dense in R?, thus one can show that for
all 1 <4 < d there exists an element x; € K* such that

In particular, given I C {1,...,d}, let
Yyr = Hx;la
il

then

and, therefore, [K*: K*] < 24.
The details are left to the reader.
Let ¢: O — Ok denote the squaring homomorphism, i.e., for all € € O we

have that
ple) =€
Then
Log,.(imyp) = {Logoo(52): €€ (‘)Iﬁ} = 2Log. . (0%)

and, hence, by Dirichlet’s unit theorem Log_ (imy) C Z"~!. In particular, we
find that

Z"" = Log,, (imp) C Log, (0%, ) € Log, (0x) = Z"1;

therefore proving that Log,(Ok,) = Z'~' by the structure theory for Z-
modules. In particular, it suffices to show that ker Logoo|(’);<( is trivial. Since
+

ker Logoo|0}x(+ = Of, NkerLog|ox = Ok Npxk,



o€Homg (K,R)

we just have to show that 1 is the only totally positive root of unity. But, in
fact, {1} are the only real roots of unity and, since every relevant embedding

is Q-linear, 1 is the only totally positive real root of unity.
Let

E = (—OO,O)E x (0’ OO)HomQ(K’R)\E.

Our goal is to show that
0 # Log,, (O, ) N E.

We denote by 1 € R? the vector with constant coordinate equal to 1 and let
H = 1+. We denote by ||| the norm induced by the standard inner product

on R?. Given a subspace W of R%, a vector w € W, and a radius r > 0, we
denote

BY(w)={w eW:|w-w|<r},

i.e., B (w) is the ball of radius r inside W around w, where the metric is the

one induced by the restriction of the inner product to W. Given v € R?, we
denote

B,(v) = B¥(v).
We note that B)Y (w) = B,.(w) N W.
Claim 1. For every r > 0 there exists v € H such that
Bf(v) CE.

Proof of Claim 1. Since BH(v) = B,(v) N H, it suffices to show that there
exists v € H such that B.(v) C E. In what follows, we denote by Iy € R? =
RHome(KR) the vector

-1z gey,

vo € Homg(K,R) - Is(o) = {|HomQ(K R)NZ[ o¢x

Since by assumption ¥ ¢ {0, Homg(K,R)}, the vector Iy is well-defined, con-
tained in F, and

1 1
2 O =omd M m ey 2 170

o€Homg (K,R)\X

implies that Iy € H. We denote M = max {|X|, |Homg(K,R) \ X|}.
Let now r > 0 arbitrary and set v = 2rMl1y, then v € H since H is a vector
space. We leave it to you to check that B,(v) C E.

Now recall that Log,,(Of) is a lattice in H and, hence, so is Log, (O ). Fix
a Z-basis B = (vi,...,vq-1) € H* ' of Log, (0, ). We denote by |[-|s the
sup-norm on H defined with respect to B and we recall that. Given r > 0

and v € H, let B?(v) denote the r-ball around v with respect to the metric
induced by |[|||s. Recall that

d—1
1 1
=1

is a fundamental domain for Log, (Ok,) ~ H and note that

Bi)5(0) C P C BY,(0).



Claim 2. For every v € H, the set BY(v) = B{(0) + 0 intersects Log, (0% )
non-trivially.

Proof of Claim 2. Since P is a fundamental domain, there exists £ € Log,, (O )
such that v € £+ P. One needs to show that ||v —{||z < 1. The details are left
to you.

Now one uses the equivalence of norms on H to choose r* > 0 such that for all
v € H we have

BY(v) C B(v).

Using Claim 1, there is v € H such that BZ(v) C E, hence BE(v) C E and, as
of Claim 2, Log, (O ) intersects E non-trivially, which completes the proof.

The details are left to the reader.
4. a) We prove that

S antb(n) = Al)ola) — Al)oly) — [ AV

y<n<zx

Given a € R, let [a] denote the largest integer bounding a from below. Note
that we can assume without loss of generality that [y] + 1 < [z], since A is
constant on [n,n + 1) for n € Z.

We have
> an(n)= Y (A(n) - A(n—1))¥(n)
y<n<x y<n<[z]
= > Amym) - D> An)yp(n—1)
[yl+1<n<]7] [y]<n<[z]-1
= Alx)e([z]) = A@)v(l + 1) — Y An)(¢(n+ 1) —(n))
[yl<n<[z]

[z]
— A@)o(a]) — Ayl +1) - / A6/ (€)de.

[y]+1

In order to conlude, one uses once more that A is constant on intervals of the
form [n,n+ 1) with n € Z.

b) We apply Abel summation with the constant sequence a, = 1, so that A(§) =
(€], and ¥ (&) = £ * with Res > 1 to obtain that

LR Nﬂd
1/2§<N n - 8/1 ¢t ‘
- Ne-1g Ve
:Nl s d _ >
—|—s/1 E—s 1

fs-‘,—l 58

1-2s . 1 Ne—[¢
= N ——1
s +1_8 +8/1 P d¢

g 1_8—1—1—5/1 far 6

One checks that the function

=E-1¢
S'_)/l €s+[1]d§




is holomorphic on {s: Re(s) > 0}using the characterization of holomorphic
functions via the Cauchy-Riemann equations and differentiation under the in-
tegral sign via dominated convergence.

c) This can be found in the lecture notes. We leave the details to the reader.



