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1. a) First of all, if d is square-free we must have d ≡ 1, 2, 3 mod 4 since d ≡ 0

mod 4 would imply that 22 divides d .
b) Now we can consider the two cases:

(i) d ≡ 2, 3 mod 4. The discriminant of the basis (1,
√
d) is(

det

(
1

√
d

1 −
√
d

))2

= 4d.

Let B be a Z-basis of OK , and let M be an integer matrix such that

BM = (1,
√
d). We have

disc(OK) =
disc(1,

√
d)

det(M)2
=

4d

det(M)2
.

Since d is square-free the only possibilities are | det(M)| = 1 and | det(M)| =
2. In the latter case we would have disc(OK) = d ≡ 2, 3 mod 4, which
is impossible since, as we have shown on Sheet 8 in Exercise 2 that the
discriminant of the ring of integers is always 0 or 1 mod 4. Therefore we

must have | det(M)| = 1, meaning that (1,
√
d) is a Z-basis of OK and

therefore OK = Z[
√
d] .

(ii) d ≡ 1 mod 4. We observe that 1+
√
d

2
∈ OK since it is a root of the integer

polynomial p(x) = x2 − x− d−1
4
. We leave the verification to the reader.

The discriminant of the Q-basis
(
1, 1+

√
d

2

)
of K is(

det

(
1 1+

√
d

2

1 1−
√
d

2

))2

= d.

Let B be a Z-basis of OK , and let M be an integer matrix such that

BM =
(
1, 1+

√
d

2

)
. We have

disc(OK) =
disc

(
1, 1+

√
d

2

)
det(M)2

=
d

det(M)2
.

Since d is square-free the only possibility is | det(M)| = 1, meaning that(
1, 1+

√
d

2

)
is a Z-basis of OK and therefore OK = Z

[
1+

√
d

2

]
.

2. a) Let K1 = Q(
√
−m) and K2 = Q(

√
−n). The extensions K1/Q and K2/Q

are of degree 2 and hence Galois, with Galois group isomorphic to Z/2Z . The
composite field K1K2 is K , and the intersection K1 ∩K2 is Q since m,n are
distinct and squarefree. Therefore the extension K/Q is Galois of degree 4, and
we have

Gal(K/Q) ∼= Gal(K1/Q)×Gal(K2/Q) ∼= Z/2Z× Z/2Z.
b) Proper subfields of K are in one-to-one correspondence with non-trivial sub-

groups of the Galois group. Since Gal(K/Q) ∼= Z/2Z × Z/2Z , it has three
proper non-trivial subgroups, all isomorphic to Z/2Z and generated by the pairs
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(1, 0), (0, 1), (1, 1) in Z/2Z× Z/2Z . Therefore there are exactly three subfields
L that satisfy Q ⊂ L ⊂ K with proper inclusions. We can find them explicitly:

they are Q(
√
−m), Q(

√
−n) and Q(

√
mn). They are all non-isomorphic, and

the last one is the only real subfield.
c) We recall that OL is the set of elements in L that are integral over Z , and

OK is the set of elements in K that are integral over Z . Since L ⊆ K , it is
immediate that OL = L ∩ OK . Moreover, if x ∈ OL has an inverse in OL then
this inverse is also in OK , hence O×

L ⊆ L∩O×
K . Conversely, if x ∈ L∩OK has an

inverse in OK , since L is a field this inverse must lie in L and, since elements
of OK are integral, hence in OL , providing the inclusion L ∩ O×

K ⊆ O×
L .

d) By Dirichlet’s unit theorem, an element in O×
K is a root of unity if and only if it

is in the kernel of the logarithmic embedding. Therefore, for ε ∈ O×
K , we have

ε
σ(ε)

∈ µK if and only if

∀τ ∈ HomQ(K,C)
∣∣∣∣τ ( ε

σ(ε)

)∣∣∣∣ = 1 .

This is true if and only if |τ(ε)| = |τ(σ(ε))| for all τ ∈ HomQ(K,C). Since
K/Q is Galois we have HomQ(K,C) = Gal(K/Q) and, since the Galois group is
commutative, the condition is equivalent to |τ(ε)| = |σ(τ(ε))| ∀τ ∈ Gal(K/Q).

Now one shows that the assumptions imply that σ must send 1 to 1,
√
mn to√

mn ,
√
−m to −

√
−m , and

√
−n to −

√
−n . One checks that this implies

that σ agrees with the restriction to K of the conjugation in C and therefore
preserves the absolute value. We leave the details and the remaining parts to
the reader.

e) Let µ2
K = {ζ ∈ O×

K : ∃ξ ∈ µK ζ = ξ2} . Then µ2
K is the image of the squaring

homomorphism µK → µK , ζ 7→ ζ2 , hence a subgroup of µK . We denote by
Φ: O×

K → µK/µ
2
K the composition of ϕ with the canonical projection. Then

kerΦ = µKO
×
L . We sketch a proof of kerΦ ⊆ µKO

×
K and leave the opposite

direction to you. Suppose that ε ∈ kerΦ and write ε = rζ with r ∈ (0,∞)

and ζ ∈ S1 . One checks that ψ(ε) = ζ2 . Since ζ2 ∈ µ2
K . One checks that this

implies ζ ∈ µK and, hence, r ∈ O×
K ∩ LR = O×

LR
.

Now one uses the isomorphism theorems to deduce that

[O×
K : µKO

×
L ] ⩽ |µK/µ2

K |

and, therefore, it remains to show that [µK : µ2
K ] ⩽ 2. Then one shows that µK

is cyclic and, using the classification of finite cyclic groups, deduces that µ2
K

has index one in µK if N is odd and index two if N is even.
3. a) Note that for any x, y ∈ K× totally positive, the product xy is totally positive.

This implies that the totally positive elements in K× form a subgroup of K× ,
which then implies that P+

K is a subgroup of PK and, hence, of FK . We skip
the details of this bit of the proof. It remains to prove finiteness of the narrow

class group Cl+(K).

We let q : Cl+(K) → Cl(K) denote the canonical projection, which is well-

defined since P+
K ⊆ PK . Let H = ker q , Cl(K) ∼= Cl+(K)/H since q is surjec-

tive and, since Cl(K) is finite, it suffices to show that H is finite.

Our goal is to express H as a quotient of finite groups. Let ψ : K× → Cl+(K)

denote the map x 7→ (xOK)P
+
K . Then q ◦ψ maps K× to P+

K , i.e., ψ(K×) ⊆ H .

On the other hand, let f◁K be a fractional OK -ideal such that fP+
K ∈ H . Since,

by assumption, fPK = PK , i.e., since fP+
K ∈ H , we know that f is a principal



fractional ideal, i.e., there exists x ∈ K× such that f = xOK . In particular, we
find that ψ(K×) = H .

Now denote by K+ the totally positive elements in K and note that for any
x ∈ K× and for any y ∈ K+ we have that

ψ(xy) = (xyOK)PK+ = (xOK)(yOK)P
+
K = (xOK)P

+
K = ψ(x),

that is, ψ factors as

K× ψ
//

����

H

K×/K+

Ψ

;;

Next one show that kerΨ = O×
KK

+ using that the generator of a principal

fractional ideal is unique up to multiplication by O×
K . In the next step one

shows that O×
KK

+/K+ ∼= O×
K/O

×
K+ , where the main step involves checking

that if ε1, ε2 ∈ O×
K satisfy ε1K

+ = ε2K
+ , then ε1O

×
K+ = ε2O

×
K+ . Using the

appropriate isomorphism theorem, it follows that

|H| = [K× : K+]

[O×
K : O×

K+]
.

Hence, in the light of 3b, it remains to show that K+ has finite index in K× .
To this end, we recall that σ∞(K) is dense in Rs , thus one can show that for

all 1 ⩽ i ⩽ d there exists an element xi ∈ K× such that

∀1 ⩽ j ⩽ d σj(xi) < 0 ⇐⇒ j = i.

In particular, given I ⊆ {1, . . . , d} , let

yI =
∏
i∈I

x−1
i ,

then

K× ⊆
⋃

I⊆{1,...,d}

yIK
+

and, therefore, [K× : K+] ⩽ 2d .
The details are left to the reader.

b) Let φ : O×
K → O×

K denote the squaring homomorphism, i.e., for all ε ∈ O×
K we

have that

φ(ε) = ε2.

Then

Log∞(imφ) =
{
Log∞(ε2) : ε ∈ O×

K

}
= 2Log∞(O×

K)

and, hence, by Dirichlet’s unit theorem Log∞(imφ) ⊆ Zr−1 . In particular, we
find that

Zr−1 ∼= Log∞(imφ) ⊆ Log∞(O×
K+) ⊆ Log∞(O×

K)
∼= Zr−1;

therefore proving that Log∞(O×
K+)

∼= Zr−1 by the structure theory for Z-
modules. In particular, it suffices to show that ker Log∞|O×

K+
is trivial. Since

ker Log∞|O×
K+

= O×
K+ ∩ ker Log∞|O×

K
= O×

K+ ∩ µK ,



we just have to show that 1 is the only totally positive root of unity. But, in
fact, {±1} are the only real roots of unity and, since every relevant embedding
is Q-linear, 1 is the only totally positive real root of unity.

c) Let

E = (−∞, 0)Σ × (0,∞)HomQ(K,R)∖Σ.

Our goal is to show that

∅ ≠ Log∞(O×
K+) ∩ E.

We denote by 1 ∈ Rd the vector with constant coordinate equal to 1 and let

H = 1⊥ . We denote by ∥·∥ the norm induced by the standard inner product

on Rd . Given a subspace W of Rd , a vector w ∈ W , and a radius r > 0, we
denote

BW
r (w) =

{
w′ ∈ W : ∥w −w′∥ < r

}
,

i.e., BW
r (w) is the ball of radius r inside W around w , where the metric is the

one induced by the restriction of the inner product to W . Given v ∈ Rd , we
denote

Br(v) = BRd

r (v).

We note that BW
r (w) = Br(w) ∩W .

Claim 1. For every r > 0 there exists v ∈ H such that

BH
r (v) ⊆ E.

Proof of Claim 1. Since BH
r (v) = Br(v) ∩ H , it suffices to show that there

exists v ∈ H such that Br(v) ⊆ E . In what follows, we denote by IΣ ∈ Rd =

RHomQ(K,R) the vector

∀σ ∈ HomQ(K,R) IΣ(σ) =

{
−|Σ|−1 σ ∈ Σ,

|HomQ(K,R)∖ Σ|−1 σ ̸∈ Σ.

Since by assumption Σ ̸∈ {∅,HomQ(K,R)} , the vector IΣ is well-defined, con-
tained in E , and∑

σ∈HomQ(K,R)

IΣ(σ) = − 1

|Σ|
∑
σ∈Σ

1 +
1

|HomQ(K,R)∖ Σ|
∑

σ∈HomQ(K,R)∖Σ

1 = 0

implies that IΣ ∈ H . We denote M = max
{
|Σ|, |HomQ(K,R)∖ Σ|

}
.

Let now r > 0 arbitrary and set v = 2rMIΣ , then v ∈ H since H is a vector
space. We leave it to you to check that Br(v) ⊆ E .

Now recall that Log∞(O×
K) is a lattice in H and, hence, so is Log∞(O×

K+). Fix

a Z-basis B = (v1, . . . ,vd−1) ∈ Hd−1 of Log∞(O×
K+). We denote by ∥·∥B the

sup-norm on H defined with respect to B and we recall that. Given r > 0

and v ∈ H , let BB
r (v) denote the r -ball around v with respect to the metric

induced by ∥·∥B . Recall that

P =

{
d−1∑
i=1

tivi : ∀1 ⩽ i < d − 1

2
⩽ ti <

1

2

}
is a fundamental domain for Log∞(O×

K+) ↷ H and note that

BB
1/2(0) ⊆ P ⊆ BB

1/2(0).



Claim 2. For every v ∈ H , the set BB
1 (v) = BB

1 (0) + 0 intersects Log∞(O×
K+)

non-trivially.
Proof of Claim 2. Since P is a fundamental domain, there exists ℓ ∈ Log∞(O×

K+)

such that v ∈ ℓ+P . One needs to show that ∥v− ℓ∥B < 1. The details are left
to you.
Now one uses the equivalence of norms on H to choose r∗ > 0 such that for all
v ∈ H we have

BB
1 (v) ⊆ BH

r∗(v).

Using Claim 1, there is v ∈ H such that BH
r∗(v) ⊆ E , hence BB

1 (v) ⊆ E and, as

of Claim 2, Log∞(O×
K+) intersects E non-trivially, which completes the proof.

The details are left to the reader.
4. a) We prove that∑

y<n⩽x

anψ(n) = A(x)ψ(x)− A(y)ψ(y)−
∫ x

y

A(ξ)ψ′(ξ)dξ.

Given α ∈ R , let [α] denote the largest integer bounding α from below. Note
that we can assume without loss of generality that [y] + 1 ⩽ [x] , since A is
constant on [n, n+ 1) for n ∈ Z .
We have∑

y<n<x

anψ(n) =
∑

y<n⩽[x]

(
A(n)− A(n− 1)

)
ψ(n)

=
∑

[y]+1⩽n⩽[x]

A(n)ψ(n)−
∑

[y]⩽n⩽[x]−1

A(n)ψ(n− 1)

= A(x)ψ([x])− A(y)ψ([y] + 1)−
∑

[y]⩽n<[x]

A(n)
(
ψ(n+ 1)− ψ(n)

)
= A(x)ψ([x])− A(y)ψ([y] + 1)−

∫ [x]

[y]+1

A(ξ)ψ′(ξ)dξ.

In order to conlude, one uses once more that A is constant on intervals of the
form [n, n+ 1) with n ∈ Z .

b) We apply Abel summation with the constant sequence an = 1, so that A(ξ) =

[ξ] , and ψ(ξ) = ξ−s with Re s > 1 to obtain that∑
1/2<n⩽N

1

ns
= N1−s − s

∫ N

1

[ξ]

ξs+1
dξ

= N1−s + s

∫ N

1

ξ − [ξ]

ξs+1
dξ − s

∫ N

1

dξ

ξs

=
1− 2s

1− s
N1−s +

1

1− s
− 1 + s

∫ N

1

ξ − [ξ]

ξs+1
dξ

N→∞−→ 1

1− s
− 1 + s

∫ ∞

1

ξ − [ξ]

ξs+1
dξ.

One checks that the function

s 7→
∫ ∞

1

ξ − [ξ]

ξs+1
dξ



is holomorphic on {s : Re(s) > 0}using the characterization of holomorphic
functions via the Cauchy-Riemann equations and differentiation under the in-
tegral sign via dominated convergence.

c) This can be found in the lecture notes. We leave the details to the reader.


