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1. a) This follows from Sh. 11, Ex. 3.
b)
c) The existence of z follows immediately from Minkowski’s first theorem. If
lo1(2)] < 1, then |o;(2)| < 1/Y < 1 for all ¢ = 2,...,r; + ry implies that,
letting s;, =1 for 1 <7< r and s; =2 for ry < i < ry, we have

r1+72 1 d—1
det((xzloo)l = INi(a)| = [T o) < () <1
i=1
which is absurd since the left-hand side, since [xz]x/q is invertible and its de-
terminant equals the constant term of the characteristic polynomial of [xz]x/q,
which was shown to have integer coefficients.
d)
e) If Q(z) # K, then the preceding exercise implies that

{1<i<d: o) = o1(d)}] > 2

It follows that there is 1 < i < 79 such that o1(z) = 0, 14(2).
Case 1: If r; > 0, then

)] = lon ()] < 3 <1< In(2),

which is absurd, and, hence, in this case it follows that Q(z) = K.

Case 2: If r; = 0, we know that |Re(o1(21))] < 1 and |o1(z)| > 1, hence
Im(oy(2)) # 0. Hence 01(z) # 01(2) and, thus, there is 2 < j < 5 such that
01(z) = 0;(2). In particular

1
1< oi(z)| = |oj(2)] < v

which is absurd.
f) The conclusion follows immediately.
2. We follow the hint. Let C' C R compact. By Heine-Borel, there is A > 0 such
that for any v = (v1,..., 0, 1r,) € C' we have

>

Vi<i<ri+r, —A<vy <
Suppose that z € O and suppose that Logoo(z) € C'. Hence

VI<i<ry+re <oi(2)]% < et

i = 1 if1<i<r,
2 else.

Let P € Z[X] denote the characteristic polynomial of [xz]x/q. Then

d
=[] (X —aiz
=1
1

where



Let ag,...,aq_1 € Z denote the coefficients of P, i.e.,

P(X)=X"+ag 1 X"+ 4 ap.

Then

VO <i<d Jag <dler

The set

{we R V1 <i < d|w| < dle}nZ?

is finite, hence the set of z € O such that Log. (z) € C is finite. Now local com-

X

pactness and the Hausdorff property for R™*"2 imply that Log, (O%) is discrete.
The kernel is the preimage of {0} under Log|qx . As singletons are compact in

R™*72 | the kernel is finite.

3. a)

Recall that G = Gal(Q(¢s)/Q) = (Z/8Z)* is a group of cardinality 4, which is
given by the group table
|1 3 57
111 3 5 7
3/13 175
55 7 1 3
TI7T 5 31

In particular, Gal(Q(¢s)/Q) has exactly three subgroups of index 2 (and those
are exactly the subgroups H < G such that |G/H| = 2). Note that Q((s)
certainly contains the Gaussian numbers Q(i) = Q(¢Z). Now let M C Q((s)

be any other quadratic number field. Then L = Q(i)M has degree four, since
[L: M] > 2 and

4=1Q(¢): Q] = 2[Q(Cs): LI[L: M] — 1= [Q(¢s): L].
As of Sh. 10, Ex. 4, we know that

disc(Q(¢s)) = disc((@(i))zdisc(.M)2 = 16 disc(M)?.
As of Sh. 7, Ex. 2, we know that
disc(Q(¢s)) = 25,

hence |disc(M)| = 2% = 8. Tt follows that M = Q(v/d) for d € {£2} and, since
i€ Q(¢), we have

Q(1), Q(v2),Q(vV-2) € Q(¢).

The extension Q((,)|Q is Galois with abelian Galois group A of order p —
1. Recall that the multiplicative subgroup of a finite field is cyclic. Hence A
p—1

contains a unique subgroup B of index *5=. Indeed, if H, M < A are distinct

subgroups of cardinality ’%1, then HM < A is a subgroup strictly containing
H and, therefore, HM = A. In particular, HM contains an element of order
p— 1. Any such element is of the form Am with h € H and m € M. The order
of hm is lem(a, b) , where a and b denote the orders of h and m respectively. By
assumption, lem(a, b)|p%1, which contradicts the assumption that H, M were
distinct.

Let M C Q((p) be the subfield given by Gal(M/Q) = A/B. Since [A: B] = 2,
we find that M is quadratic.

Suppose that ¢ is a prime that divides the discriminant of M, then ¢ ramifies
in M and, therefore, also ramifies in QQ(¢,). Since the only prime that ramifies
in Q(¢,) is p, it follows that g = p.



In particular, we have M = Q(,/ep), where € € {£1}. Note that the discrimi-
nant d of M has to satisfy d = 0,1 mod 4 and, since 2 is unramified in Q(¢,),
we know that d =1 mod 4. Hence

1 ifp=1 mod 4,
E =
—1 ifp=3 mod 4.

More concisely, letting p* = (—1)1)7_11), we have shown that Q(y/p*) is the
unique quadratic subfield of Q((,).

c¢) Using Sh. 10, Ex. 5 and the preceding exercise, we obtain that for any collection
P1, - .., pe of pairwise distinct odd primes, letting

L
c=TI-v™,

=1

we have

Q(vEpr—pe) S QDY) - QD)) € QGp) - Qo) = QGproop)-

The general case now becomes a case distinction.

Case 1: If D=1 mod 4 and A = D, then D is a product of pairwise distinct
odd primes and the number of prime factors p|D satisfying p =3 mod 4
is even. Hence, in the notation used above, ¢ = 1 and therefore we have
shown by the preceding argument that K = Q(v/A) C Q(¢p).

Case 2: If D=1 mod 4 and A = —D, then A =3 mod 4, which is not pos-
sible, as we have shown in Sh. 3, Ex. 5 that all discriminants of (quadratic)
number fields are 0,1 mod 4.

Case 3: If D=0 mod 4, D/4=2 mod 4, and D = A, then A =8p;---py
for p; pairwise distinct odd primes such that the number of prime factors
p; =3 mod 4 is even. Again, we obtain that in the notation used above,
e = 1 and therefore

Q(VA) CQ(V2)Q(vPr pe) € QE)Q(Cprepe) = Qsprpe) = QD).

Case 4: If D = 0 mod4, D/4 = 2 mod 4, and D = —A, then A =
—8p1 - - py for p; pairwise distinct odd primes such that the number of
prime factors p; = 3 mod 4 is even. Hence, by the same reasoning as
above

QWVA) € QV=2)Q(VPrpr) € QE)QGprp) = Qsprpe) = QUCp)-

Case 5: If D =0 mod4 and D/4 = 1 mod 4, then D = —A and A =
—picdotspy for p; pairwise distinct odd primes such that the number of
prime factors p; =3 mod 4 is even. Hence € = 1 and therefore

Q(VA) CQW)Q(vP1—pr) € QUe)QGpre) = QCp)-

Case 6: If D = 0 mod4 and D/4 = 3 mod 4, then D = A and hence
A = py---pp for pairwise distinct odd primes p; and an odd number of
prime factors satisfying p; =3 mod 4. Hence ¢ = —1 and therefore

Q(VA) € QHQV=prpr) € QGQ(Gpr-) = QCp).
d) Let K = Q(v/d) with d € Z squarefree. Remember that the isomorphism

(Z/DZ)" = Gal(Q(Cp)/Q)

is given by the map which sends a € (Z/DZ)* to the field automorphism
defined by (p — (p*.



a)

So, consider —1 € (Z/DZ)*. In Gal(Q((p)/Q), this corresponds to the auto-

morphism ¢: Q((p) — Q((p) given by ¢(Cp) = (p* = (p. If K is a real
quadratic field, i.e., if A > 0, then the restriction of ¢ to K is simply the
identity map, and thus yx(—1) = 1. On the other hand, if K is an imaginary
quadratic field, i.e., if A < 0, the restriction of ¢ to K is complex conjugation,
which is not the identity map, and thus we must have xx(—1) = —1.

Let p <« Og be a prime ideal over p, and let 8 be a prime ideal of Og(cp)
over p. Then there is a natural injection k, — kg between the residue fields
of p and B, which induces a surjective group homomorphism

v: Gal(ky/Fp) — Gal(k,/F)).

Note that under this last homomorphism, the Frobenius map Frob
to the Frobenius map Froby, .

The surjective group homomorphism Gal(Q((p)/Q) — Gal(K/Q) induces a
group homomorphism ¢: Dy — D, between the decomposition groups of ‘B
and p. Since, by assumption, p is not ramified, we have

Dy = Gal(kyg/F,) and D, = Gal(k,/F,),

plhy 18 sent

and under these isomorphisms, the Frobenius element (p, Q((p)/Q) corresponds
to Frobyk,, , while (p, K/Q) corresponds to Froby,, .

Furthermore, the homomorphism ¢ between Dy and D, corresponds to the
homomorphism v between the groups Gal(ky/F,) and Gal(k,/F,). In other
words, we have a commutative diagram:

0
Dy ———— D,

I I

Gal(ky /F,) —— Gal(k,/F,)

From these observations it is now clear that under the homomorphism ¢ the
element (p, Q((p)/Q) is indeed sent to (p, K/Q), as we wanted to show.
Note that, under the identification

(Z/Dz)* = Gal(Q(Cp)/Q),

the element p € (Z/DZ)* corresponds to the Frobenius element (p, Q(¢p)/Q).
As we have just shown above, x(p) then corresponds to the Frobenius ele-
ment (p, K/Q). The latter is trivial if and only if [k,: F,] = 1, which is the
case if and only if p splits in K. On the other hand, (p, K/Q) is non-trivial if
and only if [k,: F,] = 2, which happens if and only if p is inert in K.

Let ¢ € Q(v/d) a root of unity. As ¢ is real, we know that ¢ € {£1}. As
rank(Ox) =1,

Log(0k) € {(z,y) € R*: y = —a}
has exactly two generators: There is v in Log. (Oj) such that any generator
w of Log. (OF) satisfies w € {£1}.
Let v = (z,—x) be a generator of Log. (OF) and let ¢ € O be a preimage
of v. Then ¢ is well-defined up to multiplication by a root of unity in Q(\/E)
Hence there is exactly one preimage ¢ satisfying € > 0. By the choice of enumer-

ation of embeddings, we have € > 1 if and only if x > 0, and thus uniqueness
follows.



b) Recall that O = Z[2EYP] where D is the discriminant of Q(v/d), i.c., D =d
if d=1 mod4 and D =4d if d=2,3 mod 4. In particular, we find that

a+bhv/d

Eq = B

for some integers a,b € Z.
Assume that ab < 0, then

a+ b\/a . QNFK/Q(Z:‘d)
2 a—bv/d

But |a — bV/d| = |a| + |b|v/d > 2 gives a contradiction.
Note that ab # 0:

2

b
a=0—= 1= |NrK/Q(5d>| = Zd

—> d =1 since d is square-free.
b=0 = EdEOKﬂQ:Z - EdE{ﬂ:l}.

It follows that a,b > 0 since they have the same sign and ¢; > 0 by assumption.
c) By the preceding argument, we know that

m+n\/a_
5 :

UrnN 11, X] C { m € [1,2X],n*d € [1,4X2]} :

and the right-hand side is clearly finite.
d) Note that 1 < u < X implies that there is some k € N such that u = &%. Let

ag, B € Q be given by

55 = Qg —i—ﬁk\/a (/ﬂ S N).
For all £ € N
Q1 = aqag + dfB B,
Br = a1 B + ag .
Hence 1 < u = a + bv/d < X implies, in particular, that a,b > 0 (since

aq, f1 > 0 by part b).
We treat the cases a = 1/2 and a = 1 separately. If a = 1/2, then +1 = a®—db?

with b a half-integer implies that u = 1 + /5. If a = 1, then +1 = a* — db?

implies that implies © = 1 or ©v = 1 + /2. So we can assume a > 1. Again,
using a? —b?d = £1, we obtain that b>d = a®> £ 1 and hence, since b is positive,
bvd = Va2 £ 1. Now the upper bound follows from v = a + Va2 £ 1:

u<X <= a+vatPEtl<X
— a®+1< X’ +a*—2aX
= a< (X?+1)/2X
e) We can again assume that a > 1. The number u = a + bv/d has norm o if and

only if a> — o = b*d. Write a = m/2, then we have

m? — 4o = 4b%d.



Note that m? — 40 > 0 since m > 3. Using the fundamental theorem of
arithmetic, it is clear that m? — 40 admits a unique factorization of the form
dn?, where d € N is square-free and n € N.

f) Using parts (d) and (e), we have to show that

211, (X*£1)/2X]NiZ| = 2X + O(1),

where the leading 2 on the leaft-hand side comes from the fact that there are
two possible signs o to choose from. Since (X? +1)/2X = X/2 + O(1), the
interval |1, (X2+1)/2X] contains X +O(1)-many half integers. Thus the claim
follows.

g) An element u € Uy lies in |1, X] if and only if there is a fundamental unit

e € Uy and some k € N such that u = ¢* and ¢ €]1, X'/¥]. Thus the claim is
immediate.
It remains to show that, for given X > 1, thereis k € N such that f(X/*) = 0.
From this, since f is non-decreasing, it follows that the sum in question is indeed
finite. One checks that for every fundamental unit u € Uy, we have u > 3/2.
Hence, whenever k > [log X/(log3 —log2)], we have f(X'/*) =0.

h) We start with a claim. Let g,h: N — C such that h has finite support and g
is bounded, then the function F': N* — C given by F(k,¢) = g(k)h(k() is in

LY(N?) and
3 F( 0 = Y k) Y gla)

keN (eN neN dn

In order to prove summability, suppose that M > 0 is such that ||g|lcc < M
and let ng € N such that

n>ny = h(n)=0.

Then

SO NFE O <MY S |k =M > |h(ke)] < oo,

keN ¢eN keN ¢eN £,k<ng

since the last sum runs over a finite set. Thus Tonelli’s theorem implies that F' €
LY(N?). In particular, the sum is independent of the order of summation, i.e.,
we can sum over shells. More precisely, by definition of the Lebesgue integral,
we have that

> F(k,0) = dim Y F(k0) = SN F(k,0).

keN kSN neN kl=n

Hence

S Fk O =03 g () k) =Y h(m) Y g(d).

k,leN neN kl=n neN dln

We apply this with g(k) = u(k) and h(¢) = f(X'/*) to obtain

D pR)a(XVF) =" u(k) Y f(X)



i) Recall that there is some M € N such that
k>MlogX — f(XV*) =o.
Hence, using part (g) and the fact that f is monotonic, we obtain that
|[F(X) = a(X)| < M(log X) f(X?).
Since f(X'/?) < a(X'?), we thus obtain that
F(X) = a(X)+O0(X"*(og X)) = 2X + o(X)
as desired. In particular,

un 17X .
lim —|Uf ﬂ] “ = lim

X—00 X—o00

9 _y



