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1. a) This follows from Sh. 11, Ex. 3.
b)
c) The existence of z follows immediately from Minkowski’s first theorem. If

|σ1(z)| < 1, then |σi(z)| < 1/Y < 1 for all i = 2, . . . , r1 + r2 implies that,
letting si = 1 for 1 ⩽ i ⩽ r1 and si = 2 for r1 < i ⩽ r2 , we have

|det([×z]K/Q)| = |Nr(z)| =
r1+r2∏
i=1

|σi(z)|si <
(
1

Y

)d−1

< 1,

which is absurd since the left-hand side, since [×z]K/Q is invertible and its de-

terminant equals the constant term of the characteristic polynomial of [×z]K/Q ,

which was shown to have integer coefficients.
d)
e) If Q(z) ̸= K , then the preceding exercise implies that

|{1 ⩽ i ⩽ d : σi(z) = σ1(d)}| ⩾ 2.

It follows that there is 1 ⩽ i ⩽ r2 such that σ1(z) = σr1+i(z).
Case 1: If r1 > 0, then∣∣σr1+i(z)

∣∣ = |σr1+i(z)| <
1

Y
< 1 ⩽ |σ1(z)|,

which is absurd, and, hence, in this case it follows that Q(z) = K .
Case 2: If r1 = 0, we know that |Re(σ1(z1))| < 1 and |σ1(z)| ⩾ 1, hence

Im(σ1(z)) ̸= 0. Hence σ1(z) ̸= σ1(z) and, thus, there is 2 ⩽ j ⩽ r2 such that
σ1(z) = σj(z). In particular

1 ⩽ |σ1(z)| = |σj(z)| <
1

Y
,

which is absurd.
f) The conclusion follows immediately.

2. We follow the hint. Let C ⊆ Rr1+r2 compact. By Heine-Borel, there is A > 0 such
that for any v = (v1, . . . , vr1+r2) ∈ C we have

∀1 ⩽ i ⩽ r1 + r2 − A ⩽ vi ⩽ A.

Suppose that z ∈ O×
K and suppose that Log∞(z) ∈ C . Hence

∀1 ⩽ i ⩽ r1 + r2 e−A ⩽ |σi(z)|di ⩽ eA,

where

di =

{
1 if 1 ⩽ i ⩽ r1,

2 else.

Let P ∈ Z[X] denote the characteristic polynomial of [×z]K/Q . Then

P (X) =
d∏

i=1

(
X − σi(z)

)
.
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Let a0, . . . , ad−1 ∈ Z denote the coefficients of P , i.e.,

P (X) = Xd + ad−1X
d−1 + · · ·+ a0.

Then
∀0 ⩽ i < d |ai| ⩽ d!eAd.

The set
{w ∈ Rd : ∀1 ⩽ i ⩽ d |wi| ⩽ d!eAd} ∩ Zd

is finite, hence the set of z ∈ O×
K such that Log∞(z) ∈ C is finite. Now local com-

pactness and the Hausdorff property for Rr1+r2 imply that Log∞(O×
K) is discrete.

The kernel is the preimage of {0} under Log∞|O×
K
. As singletons are compact in

Rr1+r2 , the kernel is finite.
3. a) Recall that G = Gal(Q(ζ8)/Q) ∼= (Z/8Z)× is a group of cardinality 4, which is

given by the group table

1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

In particular, Gal(Q(ζ8)/Q) has exactly three subgroups of index 2 (and those
are exactly the subgroups H ◁ G such that |G/H| = 2). Note that Q(ζ8)

certainly contains the Gaussian numbers Q(i) = Q(ζ28 ). Now let M ⊆ Q(ζ8)
be any other quadratic number field. Then L = Q(i)M has degree four, since
[L : M ] ⩾ 2 and

4 = [Q(ζ8) : Q] = 2[Q(ζ8) : L][L : M ] =⇒ 1 ⩾ [Q(ζ8) : L].

As of Sh. 10, Ex. 4, we know that

disc
(
Q(ζ8)

)
= disc

(
Q(i)

)2
disc(M)2 = 16 disc(M)2.

As of Sh. 7, Ex. 2, we know that

disc
(
Q(ζ8)

)
= 28,

hence |disc(M)| = 23 = 8. It follows that M = Q(
√
d) for d ∈ {±2} and, since

i ∈ Q(ζ8), we have

Q(i),Q
(√

2
)
,Q

(√
−2

)
⊆ Q(ζ8).

b) The extension Q(ζp)|Q is Galois with abelian Galois group A of order p −
1. Recall that the multiplicative subgroup of a finite field is cyclic. Hence A

contains a unique subgroup B of index p−1
2
. Indeed, if H,M < A are distinct

subgroups of cardinality p−1
2
, then HM < A is a subgroup strictly containing

H and, therefore, HM = A . In particular, HM contains an element of order
p− 1. Any such element is of the form hm with h ∈ H and m ∈ M . The order
of hm is lcm(a, b), where a and b denote the orders of h and m respectively. By

assumption, lcm(a, b)|p−1
2
, which contradicts the assumption that H,M were

distinct.
Let M ⊆ Q(ζp) be the subfield given by Gal(M/Q) ∼= A/B . Since [A : B] = 2,
we find that M is quadratic.
Suppose that q is a prime that divides the discriminant of M , then q ramifies
in M and, therefore, also ramifies in Q(ζp). Since the only prime that ramifies

in Q(ζp) is p , it follows that q = p .



In particular, we have M = Q(
√
εp), where ε ∈ {±1} . Note that the discrimi-

nant d of M has to satisfy d ≡ 0, 1 mod 4 and, since 2 is unramified in Q(ζp),
we know that d ≡ 1 mod 4. Hence

ε =

{
1 if p ≡ 1 mod 4,

−1 if p ≡ 3 mod 4.

More concisely, letting p∗ = (−1)
p−1
2 p , we have shown that Q(

√
p∗) is the

unique quadratic subfield of Q(ζp).

c) Using Sh. 10, Ex. 5 and the preceding exercise, we obtain that for any collection
p1, . . . , pℓ of pairwise distinct odd primes, letting

ε =
ℓ∏

i=1

(−1)
pi−1

2 ,

we have

Q(
√
εp1 · · · pℓ) ⊆ Q(

√
p∗1) · · ·Q(

√
p∗ℓ) ⊆ Q(ζp1) · · ·Q(ζpℓ) = Q(ζp1···pℓ).

The general case now becomes a case distinction.
Case 1: If D ≡ 1 mod 4 and ∆ = D , then D is a product of pairwise distinct

odd primes and the number of prime factors p|D satisfying p ≡ 3 mod 4
is even. Hence, in the notation used above, ε = 1 and therefore we have

shown by the preceding argument that K = Q(
√
∆) ⊆ Q(ζD).

Case 2: If D ≡ 1 mod 4 and ∆ = −D , then ∆ ≡ 3 mod 4, which is not pos-
sible, as we have shown in Sh. 3, Ex. 5 that all discriminants of (quadratic)
number fields are 0, 1 mod 4.

Case 3: If D ≡ 0 mod 4, D/4 ≡ 2 mod 4, and D = ∆, then ∆ = 8p1 · · · pℓ
for pi pairwise distinct odd primes such that the number of prime factors
pi ≡ 3 mod 4 is even. Again, we obtain that in the notation used above,
ε = 1 and therefore

Q(
√
∆) ⊆ Q(

√
2)Q(

√
p1 · · · pℓ) ⊆ Q(ζ8)Q(ζp1···pℓ) = Q(ζ8p1···pℓ) = Q(ζD).

Case 4: If D ≡ 0 mod 4, D/4 ≡ 2 mod 4, and D = −∆, then ∆ =
−8p1 · · · pℓ for pi pairwise distinct odd primes such that the number of
prime factors pi ≡ 3 mod 4 is even. Hence, by the same reasoning as
above

Q(
√
∆) ⊆ Q(

√
−2)Q(

√
p1 · · · pℓ) ⊆ Q(ζ8)Q(ζp1···pℓ) = Q(ζ8p1···pℓ) = Q(ζD).

Case 5: If D ≡ 0 mod 4 and D/4 ≡ 1 mod 4, then D = −∆ and ∆ =
−p1cdotspℓ for pi pairwise distinct odd primes such that the number of
prime factors pi ≡ 3 mod 4 is even. Hence ε = 1 and therefore

Q(
√
∆) ⊆ Q(i)Q(

√
p1 · · · pℓ) ⊆ Q(ζ4)Q(ζp1···pℓ) = Q(ζD).

Case 6: If D ≡ 0 mod 4 and D/4 ≡ 3 mod 4, then D = ∆ and hence
∆ = p1 · · · pℓ for pairwise distinct odd primes pi and an odd number of
prime factors satisfying pi ≡ 3 mod 4. Hence ε = −1 and therefore

Q(
√
∆) ⊆ Q(i)Q(

√
−p1 · · · pℓ) ⊆ Q(ζ4)Q(ζp1···pℓ) = Q(ζD).

d) Let K = Q(
√
d) with d ∈ Z squarefree. Remember that the isomorphism

(Z/DZ)× ∼= Gal(Q(ζD)/Q)

is given by the map which sends a ∈ (Z/DZ)× to the field automorphism
defined by ζD 7→ ζD

a .



So, consider −1 ∈ (Z/DZ)× . In Gal(Q(ζD)/Q), this corresponds to the auto-

morphism ϕ : Q(ζD) → Q(ζD) given by ϕ(ζD) = ζD
−1 = ζD . If K is a real

quadratic field, i.e., if ∆ > 0, then the restriction of ϕ to K is simply the
identity map, and thus χK(−1) = 1. On the other hand, if K is an imaginary
quadratic field, i.e., if ∆ < 0, the restriction of ϕ to K is complex conjugation,
which is not the identity map, and thus we must have χK(−1) = −1.

e) Let p ◁ OK be a prime ideal over p , and let P be a prime ideal of OQ(ζD)

over p . Then there is a natural injection kp → kP between the residue fields
of p and P , which induces a surjective group homomorphism

γ : Gal(kP/Fp) → Gal(kp/Fp).

Note that under this last homomorphism, the Frobenius map Frobp|kP is sent

to the Frobenius map Frobp|kp .

The surjective group homomorphism Gal(Q(ζD)/Q) → Gal(K/Q) induces a
group homomorphism δ : DP → Dp between the decomposition groups of P
and p . Since, by assumption, p is not ramified, we have

DP
∼= Gal(kP/Fp) and Dp

∼= Gal(kp/Fp),

and under these isomorphisms, the Frobenius element (p,Q(ζD)/Q) corresponds
to Frobp|kP , while (p,K/Q) corresponds to Frobp|kpi .

Furthermore, the homomorphism δ between DP and Dp corresponds to the

homomorphism γ between the groups Gal(kP/Fp) and Gal(kp/Fp). In other
words, we have a commutative diagram:

DP

≀
��

δ
// Dp

≀
��

Gal(kP/Fp)
γ
// Gal(kp/Fp)

From these observations it is now clear that under the homomorphism δ the
element (p,Q(ζD)/Q) is indeed sent to (p,K/Q), as we wanted to show.

f) Note that, under the identification

(Z/DZ)× ∼= Gal(Q(ζD)/Q),

the element p ∈ (Z/DZ)× corresponds to the Frobenius element (p,Q(ζD)/Q).
As we have just shown above, χ(p) then corresponds to the Frobenius ele-
ment (p,K/Q). The latter is trivial if and only if [kp : Fp] = 1, which is the

case if and only if p splits in K . On the other hand, (p,K/Q) is non-trivial if
and only if [kp : Fp] = 2, which happens if and only if p is inert in K .

4. a) Let ζ ∈ Q(
√
d) a root of unity. As ζ is real, we know that ζ ∈ {±1} . As

rank(O×
K) = 1,

Log∞(O×
K) ⊆ {(x, y) ∈ R2 : y = −x}

has exactly two generators: There is v in Log∞(O×
K) such that any generator

w of Log∞(O×
K) satisfies w ∈ {±1} .

Let v = (x,−x) be a generator of Log∞(O×
K) and let ε ∈ O×

K be a preimage

of v . Then ε is well-defined up to multiplication by a root of unity in Q(
√
d).

Hence there is exactly one preimage ε satisfying ε > 0. By the choice of enumer-
ation of embeddings, we have ε > 1 if and only if x > 0, and thus uniqueness
follows.



b) Recall that OK = Z[D+
√
D

2
] , where D is the discriminant of Q(

√
d), i.e., D = d

if d ≡ 1 mod 4 and D = 4d if d ≡ 2, 3 mod 4. In particular, we find that

εd =
a+ b

√
d

2

for some integers a, b ∈ Z .
Assume that ab < 0, then

a+ b
√
d

2
=

2NrK/Q(εd)

a− b
√
d

.

But |a− b
√
d| = |a|+ |b|

√
d > 2 gives a contradiction.

Note that ab ̸= 0:

a = 0 =⇒ 1 = |NrK/Q(εd)| =
b2

4
d

=⇒ d = 1 since d is square-free.

b = 0 =⇒ εd ∈ OK ∩Q = Z =⇒ εd ∈ {±1}.

It follows that a, b > 0 since they have the same sign and εd > 0 by assumption.
c) By the preceding argument, we know that

Ufun∩ ]1, X] ⊆

{
m+ n

√
d

2
: m ∈ [1, 2X], n2d ∈ [1, 4X2]

}
,

and the right-hand side is clearly finite.

d) Note that 1 < u < X implies that there is some k ∈ N such that u = εkd . Let
αk, βk ∈ Q be given by

εkd = αk + βk

√
d (k ∈ N).

For all k ∈ N
αk+1 = α1αk + dβ1βk,

βk = α1βk + αkβ1.

Hence 1 < u = a + b
√
d < X implies, in particular, that a, b > 0 (since

α1, β1 > 0 by part b).

We treat the cases a = 1/2 and a = 1 separately. If a = 1/2, then ±1 = a2−db2

with b a half-integer implies that u = 1
2
+ 1

2

√
5. If a = 1, then ±1 = a2 − db2

implies that implies u = 1 or u = 1 +
√
2. So we can assume a > 1. Again,

using a2− b2d = ±1, we obtain that b2d = a2±1 and hence, since b is positive,

b
√
d =

√
a2 ± 1. Now the upper bound follows from u = a+

√
a2 ± 1:

u < X ⇐⇒ a+
√
a2 ± 1 < X

⇐⇒ a2 ± 1 < X2 + a2 − 2aX

⇐⇒ a < (X2 ± 1)/2X

e) We can again assume that a > 1. The number u = a+ b
√
d has norm σ if and

only if a2 − σ = b2d . Write a = m/2, then we have

m2 − 4σ = 4b2d.



Note that m2 − 4σ > 0 since m ⩾ 3. Using the fundamental theorem of
arithmetic, it is clear that m2 − 4σ admits a unique factorization of the form
dn2 , where d ∈ N is square-free and n ∈ N .

f) Using parts (d) and (e), we have to show that

2|]1, (X2 ± 1)/2X] ∩ 1
2
Z| = 2X +O(1),

where the leading 2 on the leaft-hand side comes from the fact that there are
two possible signs σ to choose from. Since (X2 ± 1)/2X = X/2 + O(1), the

interval ]1, (X2±1)/2X] contains X+O(1)-many half integers. Thus the claim
follows.

g) An element u ∈ Uall lies in ]1, X] if and only if there is a fundamental unit

ε ∈ Uk and some k ∈ N such that u = εk and ε ∈]1, X1/k] . Thus the claim is
immediate.
It remains to show that, for given X > 1, there is k ∈ N such that f(X1/k) = 0.
From this, since f is non-decreasing, it follows that the sum in question is indeed
finite. One checks that for every fundamental unit u ∈ Ufun we have u ⩾ 3/2.

Hence, whenever k ⩾ ⌈logX/(log 3− log 2)⌉ , we have f(X1/k) = 0.
h) We start with a claim. Let g, h : N → C such that h has finite support and g

is bounded, then the function F : N2 → C given by F (k, ℓ) = g(k)h(kℓ) is in

L1(N2) and ∑
k∈N

∑
ℓ∈N

F (k, ℓ) =
∑
n∈N

h(n)
∑
d|n

g(d).

In order to prove summability, suppose that M > 0 is such that ∥g∥∞ ⩽ M
and let n0 ∈ N such that

n > n0 =⇒ h(n) = 0.

Then∑
k∈N

∑
ℓ∈N

|F (k, ℓ)| ⩽ M
∑
k∈N

∑
ℓ∈N

|h(kℓ)| = M
∑

ℓ,k⩽n0

|h(kℓ)| < ∞,

since the last sum runs over a finite set. Thus Tonelli’s theorem implies that F ∈
L1(N2). In particular, the sum is independent of the order of summation, i.e.,
we can sum over shells. More precisely, by definition of the Lebesgue integral,
we have that∑

k,ℓ∈N

F (k, ℓ) = lim
N→∞

∑
kℓ⩽N

F (k, ℓ) =
∑
n∈N

∑
kℓ=n

F (k, ℓ).

Hence ∑
k,ℓ∈N

F (k, ℓ) =
∑
n∈N

∑
kℓ=n

g
(n
ℓ

)
h(n) =

∑
n∈N

h(n)
∑
d|n

g(d).

We apply this with g(k) = µ(k) and h(ℓ) = f(X1/ℓ) to obtain

∞∑
k=1

µ(k)a(X1/k) =
∞∑
k=1

µ(k)
∞∑
ℓ=1

f(X
1
kℓ )

=
∞∑
n=1

f(X1/n)
∑
d|n

µ(d) = f(X).



i) Recall that there is some M ∈ N such that

k ⩾ M logX =⇒ f(X1/k) = 0.

Hence, using part (g) and the fact that f is monotonic, we obtain that

|f(X)− a(X)| ⩽ M(logX)f(X1/2).

Since f(X1/2) ⩽ a(X1/2), we thus obtain that

f(X) = a(X) +O(X1/2(logX)) = 2X + o(X)

as desired. In particular,

lim
X→∞

|Ufun∩ ]1, X]|
X

= lim
X→∞

a(X)

X
= 2.


