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1. a)
b)
c) Let ε > 0. Let Pε be the set defined as

Pε := {p prime : p ⩽ e
d
ε }.

By the definition of Pε and by the well-known inequality ℓ + 1 ⩽ eℓ , which
holds for all ℓ ∈ N , we have that

(ℓ+ 1)d

pεℓ
⩽ 1 for all p ̸∈ Pε and ℓ ∈ N.

Next, we define the positive real number Mε as follows,

Mε := max
λ∈[0,∞)

(λ+ 1)d

2ελ
.

Now, given a positive integer n with prime decomposition

n = p1
ℓ1 · · · prℓr ,

it follows from the results proven in 1a and 1b that

rK(n)

nε
⩽

r∏
i=1

(ℓi + 1)d

piεℓi
⩽

∏
1⩽i⩽r
pi∈Pε

(ℓi + 1)d

piεℓi
⩽

∏
1⩽i⩽r
pi∈Pε

(ℓi + 1)d

2εℓi
⩽ Mε

|Pε|.

Thus
rK(n) ⩽ Cεn

ε,

where we have set Cε := Mε
|Pε| .

d)
2. a) We first prove the claim for the special case where a◁ OK . As of Sh. 2 Ex. 2a

it suffices to show that

covol(σ∞(OK)) = 2−r2|disc(K)|
1
2 .

Let (α1, . . . , αd) ∈ Od
K be a Z-basis of OK . Then(
σ∞(α1), . . . , σ∞(αd)

)
∈ K∞

is a Z-basis for σ∞(OK). We recall that for r1 < i ⩽ r2 and z ∈ OK we have(
1 1
1 −1

)
︸ ︷︷ ︸

=A

(
Reσi(z)
Imσi(z)

)
=

(
σi(z)
σi(z)

)

and therefore

covol
(
σ∞(OK)

)
= det

(
σ∞(α1), . . . , σ∞(αd)

)
= (detA)−r2 det

σ1(α1) · · · σ1(αd)
...

. . .
...

σd(α1) · · · σd(αd)


︸ ︷︷ ︸

=∆

.

1



We have seen that ∆2 = disc(K). As detA = −2, the claim follows.
Now suppose that f◁K is a non-zero fractional ideal. We first define a Q-linear

embedding ι : K → Matd(R) as follows. Fix a Z-basis (ω1, . . . , ωd) ∈ Od
K of OK

and recall that
(
σ∞(ω1), . . . , σ∞(ωd)

)
∈ (Rd)d is a basis of Rd . Given b ∈ K ,

we define ι(b) ∈ Matd(R) by the unique linear extension of

∀1 ⩽ i ⩽ d σ∞(ωi)ι(b) = σ∞(ωib).

Note that the diagram

K
σ∞
//

[×b]K/Q
��

Rd

ι(b)
��

K σ∞
// Rd

commutes. Hence density of σ∞(K) ⊆ Rd implies that det
(
ι(b)

)
= det([×b]K/Q).

Now suppose that b ∈ OK and a ◁ OK satisfy that f = b−1.a = [×b]K/Q(a).

Then

covol
(
σ∞(f)

)
= covol

(
σ∞([×b−1]K/Q(a))

)
= covol

(
σ∞(a)ι(b)−1

)
=

∣∣ det (ι(b))∣∣−1
covol

(
σ∞(a)

)
= |NrK/Q(b)|−12−r2|disc(OK)|

1
2Nr(a)

= 2−r2 |disc(OK)|
1
2Nr(f).

b) Let (α1, . . . , αd) ∈ Kd a Q-basis of K . Then (α1 ⊗ 1, . . . , αd ⊗ 1) ∈ (K ⊗Q R)d
is an R-basis of K ⊗Q R . We define a linear map Φ: K ⊗Q R → Rr1 ⊕ Cr2 by
linearly extending

Φ(αi ⊗ 1) = σ∞(αi) (1 ⩽ i ⩽ d).

The verification that Φ defines a homomorphism of R-algebras is purely formal.
As

dimR(K ⊗ R) = dimQK = d = dimR(Rr1 ⊕ Cr2),

it suffices to prove that Φ is injective. This follows from(
Φ(α1 ⊗ 1), . . . ,Φ(αd ⊗ 1)

)
= (σ∞α1, . . . σ∞αd)

being linearly independent over R as was proven in class.
3. One calculates

a2 =

(
4

2

π

4

)2

=
π2

4
> 2

and

ad+1

ad
=

(
(d+ 1)d+1

dd
1

d+ 1

(π
4

) 1
2

)2

=
π

4

(
1 +

1

d

)2d

.

Now we note that(
1 +

1

d

)2d

= 1 + 2d
1

d
+

2d∑
k=2

(
2d

k

)
d−k ⩾ 3

and conclude that
ad+1

ad
⩾

3π

4
> 1.



As of Minkowski’s bound, we can find a non-zero ideal a◁ OK such that

1 ⩽ Nr(a)2 ⩽

(
d!

dd

(
4

π

)r2)2

|disc(K)|

and hence

|disc(K)| ⩾
(
dd

d!

)2 (π
4

)2r2
⩾

(
dd

d!

)2 (π
4

)d

= ad ⩾ 2.

4. Given a number field K/Q , we let ∆K = disc(OK). Given d, n ⩾ 2 integers, define
γd(n) by

nγd(n) =
d!

dd

(
4

π

)r2

.

Hence, if K is a number field of degree d ⩾ 2, since |∆K | ⩾ 2, we obtain

d!

dd

(
4

π

)r2

|∆K |
1
2 = |∆K |

1
2
+γd(|∆K |).

As of Ex. 1d and Minkowski’s bound, for every ε > 0 there is Cε > 0 such that

|Cl(K)| ⩽
∣∣{a◁ OK : Nr(a) ⩽ |∆K |

1
2
+γd(|∆K |)}∣∣ ⩽ Cε|∆K |

1
2
+ ε

2
+2γd(|∆K |).

Note that limn→∞ γd(n) = 0. Hence the claim follows after enlarging Cε to account

for the finitely many n satisfying n
ε
2
+2γd(n) ⩾ nε .

5.
6. As proven in the preceding exercise, Cl(K) is generated by prime ideals lying above

primes satisfying the bound

1 ⩽ a ⩽
4

π
· 2!
22

·
√
19 < 3.

In order to determine Cl(K), we thus need to find the factorization of (2).
Note that we have

OK = Z[θ] with θ =
1 +

√
−19

2
,

with the minimal polynomial of θ given by

P (X) = X2 −X + 5.

Now, observing that

P (X) ≡ X2 −X + 1

and since P (X) is irreducible mod 2 using Dedekind recipe, we see that (2) is
in fact prime. Hence every ideal in OK is equivalent to a principal ideal. In other
words, Cl(OK) is trivial.

7.

8.1 # PRE: Integer D

2 # POST: If D is not a perfect square , the class number of

3 # the quadratic field QQ(sqrt(D)). Otherwise 1.

4 def ClassNumber(D):

5 if is_square(D):

6 return 1

7 else:

8 z = sqrt(D)

9 K.<b> = QQ[z]

10 return K.class_number ()

11



12 # PRE: Positive integers T and n

13 # POST: The proportion of number fields with class number

14 # n among quadratic fields of discriminant between 2

15 # and T.

16 def ProportionClassNumber(T,n):

17 N = 0

18 R = 0

19 for D in range(T):

20 if is_fundamental_discriminant(D):

21 N += 1

22 h = ClassNumber(D)

23 if h == n:

24 R += 1

25 return R/N

26

27 # PRE: Positive integers T and n

28 # POST: The proportion of number fields with class number

29 # n among quadratic fields of prime discriminant

30 # between 2 and T.

31 def ProportionClassNumberPrime(T,n):

32 N = 0

33 R = 0

34 for D in range(T):

35 if is_fundamental_discriminant(D) and is_prime(D):

36 N += 1

37 h = ClassNumber(D)

38 if h == n:

39 R += 1

40 return R/N


