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1. a)
b)
c) Let € > 0. Let P. be the set defined as

d

P.:={p prime : p < e }.

By the definition of P. and by the well-known inequality ¢ 4+ 1 < e, which
holds for all ¢ € N, we have that

¢+ 1)%
(;;E) <1 forall pgP. and (e N.
Next, we define the positive real number M, as follows,

(A +1)4
M. =
c Arer[l(?,i(o) 2eA

Now, given a positive integer n with prime decomposition

l Ly
’]’L:pll-..pr ,

it follows from the results proven in [1a] and [ID| that
’I“K(TL) . (fl + 1)d (& + 1)d (gz + 1)d [Pe]
= <II < 11 o < [~ <™
=1 1<igr 1<ir
piE€Pe pi€Pe
Thus
ri(n) < Conf,
where we have set C. := ME‘%.
d)
2. a) We first prove the claim for the special case where a <1 Ok . As of Sh. 2 Ex. 2a
it suffices to show that
covol(ow (O )) = 2772|disc(K)|2.
Let (ay,...,aq) € O% be a Z-basis of Og. Then

(aoo(al), . ,aoo(ad)) € K

is a Z-basis for 0, (O). We recall that for 7 < i <7y and z € Og we have

() (er) = (20)
i

and therefore
covol (0o (O)) = det (0o(a1), . . ., O (a))

O'1<Oél> O'l(Oéd)
= (det A)™" det : :

oa(aq) -+ oglag)
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-~
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1



We have seen that A% = disc(K). As det A = —2, the claim follows.
Now suppose that <1 K is a non-zero fractional ideal. We first define a Q-linear
embedding ¢: K — Maty(R) as follows. Fix a Z-basis (wy,...,ws) € 0% of O
and recall that (ou(wi),...,0x(wa)) € (R is a basis of R?. Given b € K,
we define ¢(b) € Mat,(R) by the unique linear extension of

V1<i<d 0o(w)i(b) = 0s(wd).
Note that the diagram

K -2, R4

[Xb]K/@l lb(b)

K <R

commutes. Hence density of oo (K) € R? implies that det (¢(b)) = det([xb]x/q)-
Now suppose that b € Ox and a < O satisfy that f = b~".a = [xb]g/q(a).

Then
covol (0o (f)) = covol (oo ([xb~ ] k/0(a)))
= covol (oo (a)e(b) ")
= | det (4(b))|~ 1covol(aoo(a))
I~

(
(b)| 71272 |disc(O ) |2 Nr( )
— 2_T2|diSC(OK)|5NT(f)~

b) Let (aq,...,aq) € K% a Q-basis of K. Then (a; ®1,...,a4®1) € (K ®g R)?
is an R-basis of K ®g R. We define a linear map ®: K ®g R — R™ @& C™ by
linearly extending

D(a; ®1) =05(ag) (1 <i<d).

= |NI‘K/Q

The verification that ® defines a homomorphism of R-algebras is purely formal.
As

dimg(K ® R) = dimg K = d = dimg(R™ ¢ C™),

it suffices to prove that @ is injective. This follows from
(®(a1 ®1),...,P(ag®1)) = (000, . .. Ooctq)

being linearly independent over R as was proven in class.

3. One calculates
B 471\?2 B w2 > 9
“@=\22) 1

ad—l—l_ (d—l—l)d+1 1 (Z)é 2_I 1_’_1 2d
ag A d+1\4 4 d)

Now we note that

1\ % 1 /24
1+=) =1+2d- —k
<+d) +dd+;(k)d

and conclude that

and
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As of Minkowski’s bound, we can find a non-zero ideal a << O such that

1 < Nr(a)? < (;i—i (%)m)Q |disc(K)|

|disc(K)| > <2—T)2 (%>2r2 > (2—7)2 (%)d =aq 2 2.

and hence

. Given a number field K/Q, we let Ax = disc(Ok). Given d,n > 2 integers, define

Ya(n) by

d 4\
Ya(n) — 2 = )
=5 (3)

Hence, if K is a number field of degree d > 2, since |Ak| > 2, we obtain

T2
i! (%) |AK|% = |AK|%+W(|AK|)-

dd
As of Ex. 1d and Minkowski’s bound, for every € > 0 there is C. > 0 such that
ICI(K)| < |[{a < O0k: Nr(a) < ’AK‘%JF’MUAKD}} < CL|Ag |2 TEt2a(AxD),

Note that hm,HOO ~va(n) = 0. Hence the claim follows after enlarging C. to account
for the finitely many n satisfying n2+2%( > pe.

. As proven in the preceding exercise, Cl(K) is generated by prime ideals lying above

primes satisfying the bound

4 2! 5
1<a\——2 9 < 3.
T

In order to determine CI(K), we thus need to find the factorization of (2).
Note that we have

O = Z[6] with 60— @
with the minimal polynomial of 6 given by
P(X)=X?-X+5.
Now, observing that
PX)=X*-X+1
and since P(X) is irreducible mod 2 using Dedekind recipe, we see that (2) is

in fact prime. Hence every ideal in O is equivalent to a principal ideal. In other
words, Cl(Og) is trivial.

# PRE: Integer D
# POST: If D is not a perfect square, the class number of
# the quadratic field QQ(sqrt(D)). Otherwise 1.
def ClassNumber (D) :
if is_square(D):
return 1
else:
z = sqrt(D)
K.<b> = QQ[z]
return K.class_number ()
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# PRE: Positive integers T and n
# POST: The proportion of number fields with class number
# n among quadratic fields of discriminant between 2
# and T.
def ProportionClassNumber (T,n):
N =0
R =20
for D in range(T):
if is_fundamental_discriminant (D) :
N += 1
h = ClassNumber (D)
if h == n:
R += 1
return R/N
# PRE: Positive integers T and n
# POST: The proportion of number fields with class number
# n among quadratic fields of prime discriminant
# between 2 and T.
def ProportionClassNumberPrime (T,n):
N =20
R =20

for D in range(T):
if is_fundamental_discriminant (D) and is_prime(D):

N += 1
h = ClassNumber (D)
if h == n:

R += 1

return R/N



