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1.
2.
3. a) We first show that L1L2/K is a Galois extension. To this end, we note that

L1L2 = K(L1 ∪L2). Let ℓ ∈ Li . As was discussed in class, the K -vector space,
L1L2 decomposes as a direct sum of di = [L1L2 : Li] subspaces {Vj : 1 ⩽ j ⩽ di}
which are invariant under [×ℓ]L1L2/K and admitting K -linear isomorphisms

φ : Li → Vj such that

Li

[×ℓ]Li/K

��

φi
// Vi

[×ℓ]L1L2/K
|Vi

��

Li φi

// Vi

commutes. It follows that, since Li/K is Galois, [×ℓ]L1L2/K is diagonalizable

over Li ⊆ L1L2 for each ℓ ∈ Li . Since any collection of commuting diago-
nalizable maps is simultaneously diagonalizable, it follows that the K -algebra
generated by {[×ℓ] : ℓ ∈ L1∪L2} is diagonalizable over L1L2 and, since L1L2 =
K(L1 ∪ L2), this shows that [×x]L1L2/K is diagonalizable over L1L2 for every

x ∈ L1L2 , i.e., L1L2/K is Galois.
b) We first show that for any σ ∈ Gal(L1L2/K) we have that σ|Li

∈ Gal(Li/K).

Note that σ|Li
∈ HomK(Li, K). Since, by assumption, HomK(Li, K) = HomK(Li, Li),

i.e., since Li/K is Galois, it follows that σ|Li
∈ Gal(Li/K). We skip the for-

mal proof that the restriction map is a homomorphism. It follows that Ψ is a
homomorphism of groups.
In order to see that Ψ is injective, suppose that σ ∈ Gal(L1L2/K) satisfies
σ|Li

= idLi
for both i = 1 and i = 2. In particular, σ restricts to the identity

on L1 ∪ L2 . Since L1L2 = K(L1 ∪ L2), σ is trivial.
c) Recall that by the tower property of Galois extensions, L2/K being Galois

implies that in the sequence L1 ∩ L2/K , L2/L1 ∩ L2 the latter is Galois. In

particular, since HomL2∩L1(L2, K) = HomL2∩L1(L2, L2) and since any L1 -linear

embedding of L1L2 in K restricts to a L1 ∩ L2 -linear embedding of L2 in K ,
it follows that σ(L2) ⊆ L2 for any σ ∈ Gal(L1L2/L1).
Φ is injective: Let σ ∈ ker(Φ). In other words, σ fixes L2 . However, since σ ∈
Gal(L1L2/L1), we also know that σ fixes L1 . Thus it must be the identity map
on L1L2 .
Φ is surjective: By the fundamental theorem of Galois theory, we know that

(L1L2)
Gal(L1L2/L1) = L1.

Moreover, we know that for H < Gal(L2/L2 ∩ L1) we have

LH
2 = L2 ∩ L1 ⇐⇒ H = Gal(L2/L2 ∩ L1).

Hence it suffices to show that L
im(Φ)
2 = L1 ∩ L2 . If x ∈ L1 ∩ L2 and σ ∈

Gal(L1L2/L1), then σ(x) = x by definition and, hence, L1 ∩ L2 ⊆ L
im(Φ)
2 . For
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the opposite inclusion, note that

L2
im(Φ) ⊆ (L1L2)

Gal(L1L2/L1) ∩ L2 = L1 ∩ L2.

d) We only need to show surjectivity of Ψ. So, let

(σ1, σ2) ∈ Gal(L1/K)×Gal(L2/K).

By 3c we know there exists σ̃1 ∈ Gal(L1L2/L2) such that σ̃1|L1 = σ1 , and there
exists σ̃2 ∈ Gal(L1L2/L1) such that σ̃2|L2 = σ2 . Define σ = σ̃1 ◦ σ̃2 . Then σ
is K = L1 ∩ L2 -linear and, hence, σ ∈ Gal(L1L2/K). It remains to show that
σ|Li

= σi .
Let x ∈ L1 , then σ̃2(x) = x since σ̃2 ∈ Gal(L1L2/L1). Hence

σ(x) = σ̃1

(
σ̃2(x)

)
= σ̃1(x) = σ1(x).

Let now x ∈ L2 , then σ̃2(x) = σ2(x) ∈ L2 and, using σ̃1 ∈ Gal(L1L2/L2),

σ(x) = σ̃1

(
σ̃2(x)

)
= σ̃2(x) = σ2(x).

In particular, σ|Li
= σi as desired.

4. a) Using Exercise 3 and L1 ∩ L2 = K , we have

[L1L2 : Q] = |Gal(L1L2/Q)| = |Gal(L1/Q)| · |Gal(L2/Q)| = n1n2.

In particular, L1L2 is a number field.
By Exercise 3 we can describe the Galois group Gal(L1L2/Q) rather explicitly

in terms of Gal(L1L2/L2) and Gal(L1L2/L1). Namely, if we write

Gal(L1L2/L2) = {σ(1)
1 , . . . , σ(1)

n1
},

Gal(L1L2/L1) = {σ(2)
1 , . . . , σ(2)

n2
},

then the Galois group of L1L2/Q is given by

Gal(L1L2/Q) = {σ(1)
j1

◦ σ(2)
j2

: 1 ⩽ ji ⩽ ni}.

Furthermore, note that the Galois groups of L1/Q and L2/Q are then given by

Gal(L1/Q) =
{
σ
(1)
1 |L1 , . . . , σ

(1)
n1
|L1

}
,

Gal(L2/Q) =
{
σ
(2)
1 |L2 , . . . , σ

(2)
n2
|L2

}
.

We will use this notation through this exercise.
b) We start by observing that

d2 = (detT2)
2 with T2 =

σ
(2)
1

(
z
(2)
1

)
· · · σ

(2)
n2

(
z
(2)
1

)
...

. . .
...

σ
(2)
1

(
z
(2)
n2

)
· · · σ

(2)
n2

(
z
(2)
n2

)
 .

Note that T2 ∈ On2×n2
2 since L2/Q is Galois by assumption. Now set

α = β1z
(2)
1 + . . .+ βn2z

(2)
n2
,

and note that we have the relation(
σ
(2)
1 (α), · · · , σ(2)

n2
(α)

)
= (β1, . . . , βn2)T2

as claimed in the hint. The inverse of T2 can be described explicitly, e.g., by
use of Cramer’s rule, as

T2
−1 =

1

detT2

adj(T2),



where adj(T2) is the adjugate of T2 , which leads to the relation

(d2β1, . . . , d2βn2) = det(T2)
(
σ
(2)
1 (α), . . . , σ(2)

n2
(α)

)
adj(T2).

Since all the entries of T2 are contained in O2 , the same must be true for adj(T2),
whose entries are polynomials in the entries of T2 . Similarly, since α ∈ OL1L2

and since L1L2/Q is Galois, we have that σ
(2)
1 (α), . . . , σ

(2)
n2 (α) ∈ OL1L2 . Thus it

follows that
d2β1, . . . , d2βn2 ∈ L1 ∩ OL1L2 = OL1 ,

which is exactly what we wanted to show.
c) Let α ∈ OL1L2 . We need to express α as a Z-linear combination of the elements

in B . Write

α =
∑

1⩽j1⩽n1
1⩽j2⩽n2

αj1,j2z
(1)
j1
z
(2)
j2

with αj1,j2 ∈ Q.

We know that this is possible since the Z-bases of Oi are Q-bases of Li and,
since L1L2 = Q(L1∪L2), every element in L1L2 is a finite Q-linear combination
of elements in L1 and L2 , i.e., B generates L1L2 over Q . Since [L1L2 : Q] =
n1n2 , it follows that B is a Q-basis of L1L2 . We need to show that all the
coefficients αj1,j2 are elements of Z .
Consider, for 1 ⩽ j2 ⩽ n2 , the elements

βj2 =
∑

1⩽j1⩽n1

αj1,j2z
(1)
j1

∈ L1.

As of Exercise 4b we know that d2βj2 ∈ O1 for all 1 ⩽ j2 ⩽ n2 . Since

(z
(1)
1 , . . . , z

(1)
n1 ) is a Z-basis of O1 , this implies that d2αj1,j2 ∈ Z for all (j1, j2).

Exchanging the roles of L1 and L2 in this argument, the same reasoning implies
that d1αj1,j2 ∈ Z for all (j1, j2). Since (d1, d2) = (1), it follows that αj1,j2 ∈ Z
for all (j1, j2). More explicitly, let r1, r2 ∈ Z such that 1 = r1d1+r2d2 , it follows
that

αj1,j2 = (r1d1 + r2d2)αj1,j2 = r1d1αj1,j2 + r2d2αj1,j2 ∈ Z.

d) The discriminant of B is given by

discL1L2/Q(B) = (detM)2,

where M is the n1n2 × n1n2 -matrix

M =

M1,1 · · · M1,n2

...
. . .

...
Mn2,1 · · · Mn2,n2

 ,

with the Mi2,j2 the n1 × n1 -matrix defined as

Mi2,j2 =

σ
(1)
1 σ

(2)
i2

(
z
(1)
1 z

(2)
j2

)
· · · σ

(1)
1 σ

(2)
i2

(
z
(1)
n1 z

(2)
j2

)
...

. . .
...

σ
(1)
n1 σ

(2)
i2

(
z
(1)
1 z

(2)
j2

)
· · · σ

(1)
n1 σ

(2)
i2

(
z
(1)
n1 z

(2)
j2

)
 .

In order to calculate det(M), we first rewrite the latter matrix as

Mi2,j2 =

σ
(1)
1

(
z
(1)
1

)
σ
(2)
i2

(
z
(2)
j2

)
· · · σ

(1)
1

(
z
(1)
n1

)
σ
(2)
i2

(
z
(2)
j2

)
...

. . .
...

σ
(1)
n1

(
z
(1)
1

)
σ
(2)
i2

(
z
(2)
j2

)
· · · σ

(1)
n1

(
z
(1)
n1

)
σ
(2)
i2

(
z
(2)
j2

)




and therefore Mi2,j2 = T1Si2,j2 , where

T1 =

σ
(1)
1

(
z
(1)
1

)
· · · σ

(1)
1

(
z
(1)
n1

)
...

. . .
...

σ
(1)
n1

(
z
(1)
1

)
· · · σ

(1)
n1

(
z
(1)
n1

)
 ,

and

Si2,j2 =

σ
(2)
i2

(
z
(2)
j2

)
. . .

σ
(2)
i2

(
z
(2)
j2

)
 .

This way we can express M as follows,

M =

T1

. . .
T1

 S1,1 · · · S1,n2

...
. . .

...
Sn2,1 · · · Sn2,n2

 .

Now let Ei1,j2 be the n1×n2 -matrix whose only non-zero entry is 1 in the i1 -th
row and j2 -th column, and set

P =

E1,1 · · · En1,1
...

. . .
...

E1,n2 · · · En1,n2

 .

Clearly, P is a permutation matrix, so that det(P ) ∈ {−1, 1} . Furthermore, it
is not hard to see that

tP

 S1,1 · · · S1,n2

...
. . .

...
Sn2,1 · · · Sn2,n2

P =

T2

. . .
T2

 ,

where T2 is the matrix defined in 4b. Hence

M =

T1

. . .
T1

P

T2

. . .
T2

 tP,

which then gives

det(M) = (detT1)
n2(detT2)

n1 .

Because of d1 = (detT1)
2 and d2 = (detT2)

2 , we thus get

discL1L2/Q(B) = (detM)2 = d1
n2d2

n1 ,

which is exactly what we wanted to prove.
5. Clearly, it is of no relevance which specific primitive n-th root of unity we choose

for ζn . Thus, in order to simplify the notation, we will simply assume that

ζn = e
2πi
n .

Also, remember that for any two positive integers n1 and n2 , we have

n1n2 = [n1, n2](n1, n2).

a) Clearly

ζ[n1,n2]

n2
(n1,n2) = ζn1 and ζ[n1,n2]

n1
(n1,n2) = ζn2 ,



which shows that

Q(ζn1 , ζn2) ⊂ Q(ζ[n1,n2]) and Z[ζn1 , ζn2 ] ⊂ Z[ζ[n1,n2]].

On the other hand, we know from Bézout’s lemma that there exist integers r1, r2 ∈
Z such that Then

ζn1

r1ζn2

r2 = e
2πi

r1n2+r2n1
n1n2 = e

2πi
[n1,n2] = ζ[n1,n2],

implying that

Q(ζ[n1,n2]) ⊂ Q(ζn1 , ζn2) and Z[ζ[n1,n2]] ⊂ Z[ζn1 , ζn2 ].

This concludes the proof.
b) We have

ζn1

n1
(n1,n2) = ζ(n1,n2) and ζn2

n2
(n1,n2) = ζ(n1,n2),

so that ζ(n1,n2) ∈ Q(ζn1) ∩Q(ζn2) and hence

Q(ζ(n1,n2)) ⊂ Q(ζn1) ∩Q(ζn2).

On the other hand, by Exercise 3c, together with what we have shown in 5a,
we see that

Gal
(
Q(ζ[n1,n2])/Q(ζn1)

) ∼= Gal
(
Q(ζn2)/Q(ζn1) ∩Q(ζn2)

)
.

By consequence,

[Q(ζn2) : Q(ζn1) ∩Q(ζn2)] = [Q(ζ[n1,n2]) : Q(ζn1)]

=
[Q(ζ[n1,n2]) : Q]

[Q(ζn1) : Q]

=
ϕ([n1, n2])

ϕ(n1)
=

ϕ(n2)

ϕ
(
(n1, n2)

)
=

[Q(ζn2) : Q]

[Q(ζ(n1,n2)) : Q]

= [Q(ζn2) : Q(ζ(n1,n2))].

Hence, we see that

[Q(ζn1) ∩Q(ζn2) : Q(ζ(n1,n2))] =
[Q(ζn2) : Q(ζ(n1,n2))]

[Q(ζn2) : Q(ζn1) ∩Q(ζn2)]
= 1,

or, in other words,

Q(ζn1) ∩Q(ζn2) = Q(ζ(n1,n2)),

as we wanted to show.
c) We use induction on the number of prime factors of n . If n has exactly one

prime factor, i.e., n = pℓ for some prime p , then we know by Exercise 5 of Sheet
7 that

OQ(ζn) = Z[ζn],
and that the discriminant ∆Q(ζn) is only divisible by p .

Now let n be an integer with exactly r + 1 different prime divisors, say

n = p1
ℓ1 · · · prℓrpr+1

ℓr+1 .

Let n1 = p1
ℓ1 · · · prℓr and n2 = pr+1

ℓr+1 , so that

n = n1n2 and (n1, n2) = 1.



By our induction hypothesis, we know that, for i = 1, 2,

OQ(ζni )
= Z[ζni

],

and that the discriminant ∆Q(ζni )
is only divisible by the prime factors of ni .

Furthermore, as we have shown in 5a and 5b, we have

Q(ζn1) ∩Q(ζn2) = Q and Q(ζn1)Q(ζn2) = Q(ζn1 , ζn2) = Q(ζn).

Hence, we can apply the results from Exercise 4 to see that

OQ(ζn) = OQ(ζn1 )Q(ζn2 )
=

{
r∑

i=1

a
(1)
i a

(2)
i : r ∈ N ∪ {0}, a(j)i ∈ OQ(ζnj )

}

=

{
r∑

i=1

a
(1)
i a

(2)
i : r ∈ N ∪ {0}, a(j)i ∈ Z[ζnj

]

}
= Z[ζn1n2 ],

and that the discriminant ∆Q(ζn) = ∆Q(ζn1 )Q(ζn2 )
is only divisible by the prime

factors of n = n1n2 . This concludes the proof.
d) We will show that if p|n , p ramifies in Z[ζn] . The other direction was already

proven in class.

Let d ⩾ 1 be such that pd||n . We have Z[ζpd ] ⊆ Z[ζn] an extension of Dedekind

domains. It follows from Exercise 2d of Sheet 7 and the ramification criterion
discussed in class that p ramifies in Z[ζpd ] , so it ramifies in Z[ζn] .


