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1.

2.

3. a) We first show that L;L,/K is a Galois extension. To this end, we note that
Li1Ly = K(LyUL,). Let £ € L;. As was discussed in class, the K-vector space,
Ly Ly decomposes as a direct sum of d; = [LyLy: L;] subspaces {V;: 1 < j < d;}
which are invariant under [x/]., 1,/ x and admitting K -linear isomorphisms
¢: L; = V; such that

®i

(X, /x I[XE]LlLZ/KM

commutes. It follows that, since L;/K is Galois, [x/]y, 1,/ is diagonalizable
over L; C LiLs for each ¢ € L;. Since any collection of commuting diago-
nalizable maps is simultaneously diagonalizable, it follows that the K -algebra
generated by {[x/{]: ¢ € LyUL,} is diagonalizable over L; Ly and, since LiLy =
K(Ly U Ly), this shows that [xx|r, 1,/ is diagonalizable over L,L, for every
x € L1Ly, ie., L1Ly/K is Galois.

b) We first show that for any o € Gal(Ly Lo/ K) we have that o|;, € Gal(L;/K).
Note that o|;, € Homg (L;, K). Since, by assumption, Homg (L;, K) = Homg(L;, L;),
i.e., since L;/K is Galois, it follows that |, € Gal(L;/K). We skip the for-
mal proof that the restriction map is a homomorphism. It follows that ¥ is a
homomorphism of groups.

In order to see that W is injective, suppose that o € Gal(L;Ly/K) satisfies
o|r, = idy, for both ¢« =1 and 7 = 2. In particular, ¢ restricts to the identity
on Ly U Ly. Since LiLy = K(Ly U Ly), o is trivial.

c¢) Recall that by the tower property of Galois extensions, Ly/K being Galois
implies that in the sequence Ly N Ly/K, Ly/Ly N Ly the latter is Galois. In

particular, since Homp,nz, (Lo, K) = Homp,nr, (L2, Ly) and since any L -linear
embedding of LiLy in K restricts to a Ly N Ly-linear embedding of Ly in K,
it follows that o(Ls) C Ly for any o € Gal(L1Ly/L1).

® is injective: Let o € ker(®). In other words, o fixes Lo. However, since o €
Gal(L1Ls/Ly), we also know that o fixes L;. Thus it must be the identity map
on LiL,.

® is surjective: By the fundamental theorem of Galois theory, we know that

(Lle)Gﬂl(Lle/Ll) = L.
Moreover, we know that for H < Gal(Ly/Ly N Ly) we have
L =1L,NL <= H=Gal(Ly/LyNLy).

Hence it suffices to show that LiQm(q)) = LiNLy. If x € LiyNLy, and o €

Gal(LyLy/Ly), then o(z) = = by definition and, hence, L; N Ly C Ligm@). For
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the opposite inclusion, note that
Ly™®) C (L) Ly) S Eale/l) N [, = [ N L.
d) We only need to show surjectivity of ¥. So, let
(01,09) € Gal(L1/K) x Gal(Ly/K).

By [Bd we know there exists ¢, € Gal(L;Ly/Ls) such that 1|, = o1, and there
exists o € Gal(LyLs/Ly) such that 63|p, = 09. Define ¢ = &1 0 5. Then o
is K = Ly N Ly-linear and, hence, o € Gal(L;Ly/K). It remains to show that
O\L, = 0;.

Let x € Ly, then 65(x) = x since &9 € Gal(LiLy/L,). Hence

o(x) = 61(02(x)) = 51(z) = o1 ().
Let now = € Ly, then d9(x) = 09(x) € Ly and, using 71 € Gal(L1Ly/Ls),
o(z) = 61(62(2)) = 62(z) = o2(x).
In particular, 0|, = o; as desired.
4. a) Using Exercise 3|and L; N Ly = K, we have
[L1Ly: Q] = |Gal(L1 Ly /Q)| = |Gal(L,/Q)| - |Gal(Ls/Q)| = nyna.

In particular, L, L, is a number field.
By Exercise [3| we can describe the Galois group Gal(L;Ly/Q) rather explicitly
in terms of Gal(LiLy/Ls) and Gal(LiLy/Ly). Namely, if we write

Gal(LiLa/Ls) = {o1",..., 0V},

Y ni

Gal(L1Ly/Ly) = {o?, ..., 6@},

) no

then the Galois group of L;Ly/Q is given by
Gal(LiLy/Q) = {0\ 0 0P : 1 < jy < my}.

J2

Furthermore, note that the Galois groups of L;/Q and Ly/Q are then given by
Gal(Ll/Q) = {O’gl)‘Ll, Ce 7O’r(L]i)‘L1}7
Gal(Ly/Q) = {o\P|1,,. .., 0P|1,}.

We will use this notation through this exercise.
b) We start by observing that

U§2) (%2)) . 0222) (Z§2))
d2 = (det T2)2 with T2 - . :
09) (27(122)) . JT(L22) (27(?2))

Note that Ty € 052*"™ since Lo/Q is Galois by assumption. Now set

a=B22 4. 4 Bz

ng ?

and note that we have the relation

(o1 (@), 08 (@) = (B, o) Ty
as claimed in the hint. The inverse of 75 can be described explicitly, e.g., by
use of Cramer’s rule, as
—1_ 1
det TQ

Tg adj (Tg) y



where adj(7T») is the adjugate of Ty, which leads to the relation
(doB1, -, dafny) = det(Ty) (07 (@), ..., 02 (@) adj(Ty).

Since all the entries of T3 are contained in O, the same must be true for adj(73),
whose entries are polynomials in the entries of 7. Similarly, since o € Op,p,
and since L1L,/Q is Galois, we have that o\’ (a), ..., 02 (a) € Op,1,. Thus it
follows that

dofr, ..., dofp, € L1 N Opy, = Opy,
which is exactly what we wanted to show.

Let a € Op,1,. We need to express « as a Z-linear combination of the elements
in B. Write

E aj1,]2 ]1 Wlth ajl,jQ € Q

1<j1<n
1<j2<n2

We know that this is possible since the Z-bases of O; are Q-bases of L; and,
since Ly Ly = Q(L1UL,), every element in L Ly is a finite Q-linear combination
of elements in L; and Lo, i.e., B generates LiLs over Q. Since [LiLy: Q] =
ning, it follows that B is a Q-basis of LiLs. We need to show that all the
coefficients «;, j, are elements of Z.

Consider, for 1 < js < ng, the elements

(1)
Z aleQZjl GLl.

1<ji<na
As of Exercise we know that dy3;, € O; for all 1 < jo < mg. Since
(zfl), e zflll)) is a Z-basis of Oy, this implies that dyay, j, € Z for all (ji, ja).

Exchanging the roles of Ly and L, in this argument, the same reasoning implies
that dyay, j, € Z for all (jy,j2). Since (di,dy) = (1), it follows that «;, ;, € Z
for all (71, j2). More explicitly, let r1, 79 € Z such that 1 = r1d; +rads, it follows
that

ijl’jQ = (Tldl + T2d2)04j1,j2 = Tlleéjth + T'QdQOéjth - Z
The discriminant of B is given by
discr, 1,/0(B) = (det M)?,

where M is the niny X niny-matrix

My - Mg,
L e
an,l R ]\41127712
with the M;, ;, the ny X n;-matrix defined as
ALY ool )
M, j, = : .
Ugl)(j@) (%D%i)) s )(27(“)2522))

In order to calculate det(M), we first rewrite the latter matrix as

ot (Ao () - o ()l ()
Miz,Jé = : '
AL o ok o )



and therefore M;, ;, = 115, j,, where
1/ (1 1)/ (1
G D
07(111) (zfl)) 07(111) (Zr(Lll))
and
2) (.2
Ty (zj2 )
Sizja =
2) (.2
Tiy (ZjQ )
This way we can express M as follows,
T S St
M = : :
Tl Sng,l e Snz,ng

Now let F;, j, be the n; x ng-matrix whose only non-zero entry is 1 in the ¢;-th
row and j-th column, and set

Eipn -+ Eng
P = : f
El,nz e Em,m

Clearly, P is a permutation matrix, so that det(P) € {—1,1}. Furthermore, it
is not hard to see that

Siio Simg Ty
‘Pl . | P= :
Sng,l T Sng,ng T2
where T, is the matrix defined in Hence
11 Ty
M — P tp
T 15

which then gives
det(M) = (det T7)"*(det Ty)™*.
Because of d; = (detT})? and dy = (detTy)?, we thus get
discr, 1,/0(B) = (det M)* = d;"dy™,

which is exactly what we wanted to prove.
5. Clearly, it is of no relevance which specific primitive n-th root of unity we choose
for (,,. Thus, in order to simplify the notation, we will simply assume that

27i

Chn=2e€n.
Also, remember that for any two positive integers n; and nsy, we have
ning = [711,712](”17712)-

a) Clearly

_n2 _n1
C[nl,nz] (n1,ng) — Cm and C[m,nz] (n1,ng) — ana



which shows that
Q(Cnu Cm) - Q(C[nhm]) and Z[Cm’ an] C Z[C[TLLNQ]]'

On the other hand, we know from Bézout’s lemma that there exist integers 1,79 €
Z such that Then

. T1 N ToNn i
27r112+21 27i

<n1T1Cn2T2 =e nin2 = elmml = C[”lvnQ]’
implying that
Q) € Qs Gua)  and ZlGnamat] € 2l Gua)

This concludes the proof.
b) We have

ni n2

Cm (n1,n2) — C(nl,nz) and an (n1,n2) — C(n1,n2)7
50 that Cuymy) € QGuy) N Q(Gay) and hence

@(C(nth)) - Q(Cﬂl) N Q(C”Q)

On the other hand, by Exercise [3d, together with what we have shown in [5al,
we see that

Gal (Q(Cny,n2)) /QCny ) = Gal (Q(6ny)/Q(Gny) N Q(Gny))-
By consequence,
[Q(Crz) : QGnr) N Q(Gnz )] = [Q(Cfrma) : QLG )]
_ [@(C[m nz]) Ql
[@Q Q)
(

(Gnr):
¢([n1,no]) _ P(na)
¢(n1) ¢((n1,n2))
_ Q) Q)
Q¢ m)): Q
= [Q(Cnz) : Q¢ ,m2))]-

Hence, we see that

[Q(Gnz) : QCra,mo))] -1

Q) N QUGna): Qemina))] = BT @C ) N QG ~

or, in other words,

Q(er) N Q(Cng) = Q(C(nl,nz))a

as we wanted to show.
¢) We use induction on the number of prime factors of n. If n has exactly one

prime factor, i.e., n = p’ for some prime p, then we know by Exercise 5 of Sheet
7 that

Oacn) = Z[Gal;

and that the discriminant Ag(,) is only divisible by p.
Now let n be an integer with exactly r + 1 different prime divisors, say

L Ly Ly
n:pll"'pr Pr+1 .
Let ny = pi“t - - p,% and ny = p,1 7+, so that

n=nny and (ng,ny) =1.



By our induction hypothesis, we know that, for i = 1,2,
Og(cn,) = Z[Gn,];

and that the discriminant Ag, ) is only divisible by the prime factors of n;.
Furthermore, as we have shown in [5a] and [5b], we have

@(Qﬂ) N @(Cm) =Q and Q(Cm)@(Cm) = Q(CnuCnQ) = Q(Cn)

Hence, we can apply the results from Exercise {4] to see that

r

1 2 j
Oaicn) = 90 )y = {Zaﬁ 'a®: r e NU{0},a) € O@«nj)}

=1

= {Zai”aﬁ”z reNU{0}.af € Z[cnj]} = ZfGuina);

i=1
and that the discriminant Ag,) = Ag(c,,)Q(¢.,) 18 only divisible by the prime
factors of n = nyny. This concludes the proof.

d) We will show that if p|n, p ramifies in Z[(,]. The other direction was already
proven in class.
Let d > 1 be such that p?||n. We have Z[(,a] C Z[(,] an extension of Dedekind
domains. It follows from Exercise 2d of Sheet 7 and the ramification criterion
discussed in class that p ramifies in Z[(,q], so it ramifies in Z[(,].



