1.

2. Let $z \in K$ and $n \in \mathbb{N}$ such that $z^n = 0$, i.e., z is a nilpotent element in K. Note that for any $\xi \in K$ we have $(z\xi)^n = 0$ since K is commutative. Since $[\times (z\xi)^n] = [\times z\xi]^n$, we know that 0 is the only eigenvalue of $[\times z\xi]$. In particular, for all $\xi \in K$, we have

$$\langle z, \xi \rangle_{K/Q} = \operatorname{tr}[\times z \xi]_{K/Q} = 0.$$

Let $z, \xi \in K$ nilpotent and let $m, n \in \mathbb{N}$ such that $\xi^m = z^n = 0$. Let $\alpha \in k$. Then

$$(\alpha \xi + z)^{m+n} = \sum_{k=0}^{m+n} {m+n \choose k} \alpha^k \xi^k z^{m+n-k}$$

and, since $m+n-k\geqslant n$ unless k>m, it follows that $\alpha\xi+z$ is nilpotent. In particular, the set Nil_K of nilpotent elements is a subspace and by the above argument it is a subspace of $\ker\Phi$, where $\Phi\colon K\to K^*$ is the k-linear map given by

$$\forall v, z \in K \quad \Phi(z)(v) = \langle z, v \rangle_{K/k}.$$

Since K is non-reduced, $Nil_K \neq \{0\}$ and, hence, Φ has non-trivial kernel.

For what follows, let $r = \dim \ker \Phi$ and fix a decomposition $K = U \oplus \ker \Phi$ with bases $\mathfrak{B}_U = (u_1, \dots, u_{d-r})$ and $\mathfrak{B}_0 = (w_1, \dots, w_r)$ of U and $\ker \Phi$ respectively. The tuple $\mathfrak{B} = (v_1, \dots, v_d) \in K^d$ given by

$$v_i = \begin{cases} w_i & \text{if } 1 \leqslant i \leqslant r, \\ u_{i-r} & \text{otherwise,} \end{cases}$$

is a k-basis of K. In particular, for any tuple $\boldsymbol{\xi} \in K^d$ there exists a matrix $A = (a_{ij})_{1 \leq i,j \leq d} \in k^{d \times d}$ such that

$$\forall 1 \leqslant i \leqslant d \quad \xi_i = \sum_{k=1}^d a_{ik} v_k,$$

hence k-linearity of the trace implies that

$$\operatorname{disc}_{K/k}(\boldsymbol{\xi}) = \det(A)^2 \operatorname{disc}_{K/k}(\mathcal{B}) = \det(A)^2 \det\left(\langle v_i, v_j \rangle_{K/k}\right) = 0,$$

since $\langle v_i, v_j \rangle_{K/k} = 0$ whenever $\min\{i, j\} \leqslant r$.

3.