- 1. a) Recall that \mathcal{O}_K is the maximal order in K. In particular, it is a lattice in K. Suppose that $\frac{1}{n} \in \mathcal{O}_K$, where $n \in \mathbb{Z} \{0\}$. Then $\frac{1}{n} \in \mathcal{O}_K$ and, thus, $\frac{1}{n}\mathcal{O}_K \subseteq \mathcal{O}_K$. In particular, letting $x \in \mathcal{O}_K$ be a primitive vector in the lattice \mathcal{O}_K , we find that $\frac{x}{n} \in \mathcal{O}_K$, i.e., $n \in \{\pm 1\}$. In particular, 1 is primitive in \mathcal{O}_K . Therefore, \mathcal{O}_K admits a \mathbb{Z} -basis of the form $(1,\alpha)$ for some $\alpha \in \mathcal{O}_K$. Since $\alpha^k \in \mathcal{O}_K$ for all $k \in \mathbb{N}$, it follows that $\mathcal{O}_K \subseteq \mathbb{Z}[\alpha] \subseteq \mathcal{O}_K$ as desired.
 - b) Similar to exercise 1c in Exercise Sheet 3. Consider the composition

$$\mathbb{Z}[X] \to \mathbb{F}_p[X] \to \mathbb{F}_p[X]/(\mu_{\alpha}(X)),$$

where the first map is the reduction of the coefficients modulo p and the second is the quotient map. The kernel of this map is $(p, \mu_{\alpha}(X))$, so have

$$\mathbb{Z}[X]/(p,\mu_{\alpha}(X)) \cong \mathbb{F}_p[X]/(\mu_{\alpha}(X)).$$

On the other hand, we have another surjective morphism

$$\mathbb{Z}[X] \stackrel{\operatorname{ev}_{\alpha}}{\twoheadrightarrow} \mathbb{Z}[\alpha] \twoheadrightarrow \mathbb{Z}[\alpha]/p\mathbb{Z}[\alpha],$$

where the first map is given by the evaluation of a polynomial at α . The kernel of the evaluation is $(\mu_{\alpha}(X))$: it is clear that $(\mu_{\alpha}(X)) \subset \ker \operatorname{ev}_{\alpha}$ and, on the other hand, if $P(\alpha) = 0$ then $\mu_{\alpha}(X)|P$ in $\mathbb{Q}[X]$ and by Gauss's Lemma $\mu_{\alpha}(X)|P$ in $\mathbb{Z}[X]$. Therefore the kernel of the composition is $(p, X^2 + X + 1)$ and this gives the desired isomorphism.

c) Let

$$(p) = \pi_1^{\alpha_1} \pi_2^{\alpha_2} \cdots \pi_k^{\alpha_k}$$

be the factorization of (p) as product of prime ideals. Since the norm of the ideal (p) is p^2 , we get

$$p^2 = \operatorname{Nr}(\pi_1)^{\alpha_1} \operatorname{Nr}(\pi_2)^{\alpha_2} \cdots \operatorname{Nr}(\pi_k)^{\alpha_k}$$

and therefore $\sum_{i=1}^k \alpha_i \leq 2$. We have three cases: either $(p) = \pi_1$ is prime with $Nr(\pi_1) = p^2$ (inert case), or $(p) = \pi_1 \pi_2$ with π_1, π_2 distinct prime ideals of norm p (totally split case), or $(p) = \pi_1^2$ with π_1 prime ideal of norm p (ramified case).

- d) By definition p is inert if and only if the ideal (p) is prime, which is true if and only if $\mathcal{O}_K/p\mathcal{O}_K \simeq \mathbb{F}_p[X]/(\mu_\alpha(X))$ is a domain. This is true if and only if the polynomial $\mu_\alpha(X)$ is irreducible in $\mathbb{F}_p[X]$, so if and only if the discriminant is not a square modulo p.
- e) If $(p) = \pi_1^2$ then for all $x \in \pi_1$ we have $p|x^2$ in \mathcal{O}_K . The projection of x in $\mathcal{O}_K/p\mathcal{O}_K$ is nilpotent, since its square is zero in $\mathcal{O}_K/p\mathcal{O}_K$. Conversely, if $z \in \mathcal{O}_K/p\mathcal{O}_K$ is nilpotent and x is a preimage of z in \mathcal{O}_K , we have $(x,p)^n \subseteq (p)$ for some $n \in \mathbb{N}$. It holds $(1) \subset (x,p) \subset (p)$ with strict inclusions. Therefore (p) cannot be prime. If $(p) = \pi_1\pi_2$ is totally split it must be either $(x,p) = \pi_1$ or $(x,p) = \pi_2$, but (p) does not contain π_1^n or π_2^n for any n. Therefore p must be ramified.

Now recall that $\mathcal{O}_K/p\mathcal{O}_K \simeq \mathbb{F}_p[X]/(\mu_{\alpha}(X))$ and assume that p is not inert, so $\mu_{\alpha}(X)$ is not irreducible in $\mathbb{F}_p[X]$. Since its degree is two it must be $\mu_{\alpha}(X) = (X - a_1)(X - a_2)$ for some $a_1, a_2 \in \mathbb{F}_p$. If $a_1 = a_2$ then $X - a_1$ is nilpotent

in $\mathbb{F}_p[X]/(\mu_{\alpha}(X))$, while if $a_1 \neq a_2$ there are no nilpotents in $\mathbb{F}_p[X]/(\mu_{\alpha}(X))$. Therefore p is ramified if and only if $\mu_{\alpha}(X)$ has two coincident roots in \mathbb{F}_p , so if and only if the discriminant is zero modulo p.

- 2. a) Let S be a finite set of generators of M and T a finite set of generators of N (over \mathbb{Z}). These exist since M and N are assumed to be lattices. Then $\{st\colon s\in S, t\in T\}$ is a set of generators of M.N, i.e., M.N is a finitely generated subgroup of K. Therefore it suffices to show that M.N contains a basis of K. Since N is a lattice, N contains a \mathbb{Q} -basis $\mathbb{B}=(n_1,\ldots,n_{[K\colon\mathbb{Q}]})\in K^{[K\colon\mathbb{Q}]}$ of K. Let $m\in M\smallsetminus 0$, which exists since M spans K over \mathbb{Q} . Then $(mn_1,\ldots,mn_{[K\colon\mathbb{Q}]})\in (M.N)^{[K\colon\mathbb{Q}]}$ is a \mathbb{Q} -basis of K and, hence, M.N is a lattice.
 - b) Since $\sigma_{r_1+i} = \overline{\sigma}_{r_1+r_2+i}$ for $1 \leq i \leq r_2$, the choice of a different type only changes the order of the elements in the d-tuple $(\sigma_1, \ldots, \sigma_{r_1+2r_2})$. Therefore it only changes the order of the rows in the matrix $(\sigma_i \omega_j)$, multiplying its determinant by ± 1 . Given another basis \mathcal{B} , every element in \mathcal{B} is a \mathbb{Z} -linear combination of the elements in $(\omega_1, \ldots, \omega_d)$ and vice versa. In particular, a change of basis corresponds to multiplying the vector $(\omega_1, \ldots, \omega_d)$ by a matrix $g \in \mathrm{GL}_n(\mathbb{Z})$. Since g has determinant ± 1 , therefore $\det(\sigma_i \omega_j)$ is again multiplied by ± 1 . The claim follows.
 - c) For $1 \le i \le r_2$ and for $1 \le j \le d$, set $\sigma_{r_1+i}\omega_j = x_{i,j} + iy_{i,j}$. We have

$$(\sigma_{r_1+i}\omega_j,\sigma_{r_1+r_2+i}\omega_j)=(x_{i,j},y_{i,j})\begin{pmatrix}1&1\\i&-i\end{pmatrix}.$$

Setting $f_{i,j} = \sigma_i \omega_j$ for $1 \le i \le r_1$, $f_{i,j} = x_{i,j}$ for $r_1 + 1 \le i \le r_1 + r_2$, and $f_{i,j} = y_{i,j}$ for $r_1 + r_2 + 1 \le i \le r_1 + 2r_2$, we have

$$\Delta(\mathcal{B}) = (\det(\sigma_i \omega_j))^2 = \left(\det(f_{i,j}) \det \begin{pmatrix} 1 & -1 \\ i & -i \end{pmatrix}^{r_2} \right)^2 = (-4)^{r_2} \operatorname{covol}(f(\Lambda))^2.$$

d) Since P(X) is irreducible 1 and α are linearly independent, and since the extension is quadratic they span all of $\mathbb{Q}(\alpha)$. Using the definition for $\Delta(\mathcal{B})$ with $\mathcal{B} = (1, \alpha)$ we get:

$$\Delta(1,\alpha) = \det \begin{pmatrix} 1 & \alpha \\ 1 & \alpha' \end{pmatrix}^2$$

where α' is the other root of P(X). Therefore

$$\Delta(1,\alpha) = (\alpha' - \alpha)^2 = (\sqrt{b^2 - 4c})^2 = b^2 - 4c.$$

3. We leave to you the formal check that \mathcal{O}_L is a subring of K and only mention that one needs to show $1 \in \mathcal{O}_L$ and for $x, y \in \mathcal{O}_L$ we have that $x + y, x.y \in \mathcal{O}_L$. As L and the maximal order \mathcal{O}_K are lattices, there is a natural number $M \in \mathbb{N}$ such that $ML \subseteq \mathcal{O}_K$. Note that $\mathcal{O}_L = \mathcal{O}_{ML}$. Hence, from now on, we will assume without loss of generality that L is contained in \mathcal{O}_K . We let $D = [\mathcal{O}_K : L]$ and note that $D\mathcal{O}_K \subseteq L$.

It follows that, for every $a \in \mathcal{O}_L$ we have $Da\mathcal{O}_K \subseteq \mathcal{O}_K$. In particular, $D\mathcal{O}_L \subseteq \mathcal{O}_K$ since $1 \in \mathcal{O}_K$. In particular, $D\mathcal{O}_L$ is a subgroup of the finitely generated \mathbb{Z} -module \mathcal{O}_K and, hence, finitely generated.

It remains to show that \mathcal{O}_L contains a \mathbb{Q} -basis of K. Let $(\lambda_1, \ldots, \lambda_n)$ be a \mathbb{Z} -basis of L and let $(\omega_1, \ldots, \omega_n)$ be a \mathbb{Z} -basis of \mathbb{O}_K . For every pair $1 \leq i, j \leq n$

there is $s_{ij} \in \mathbb{N}$ such that

$$s_{ij}\omega_i\lambda_j\in\mathbb{Z}\lambda_1+\cdots+\mathbb{Z}\lambda_n=L.$$

This is obtained by expressing $\omega_i \lambda_j$ as a \mathbb{Q} -linear combination of the λ_i and clearing denominators. Let $s = \prod_{i,j} s_{ij}$, then $s \mathcal{O}_K \subseteq \mathcal{O}_L$ and, since $s \mathcal{O}_K$ contains a \mathbb{Q} -basis of K, the claim follows.