Algebraic Number Theory Exercise Sheet 3 (Solutions)
Manuel Luethi Spring 2024
Federico Viola

1. a) Let z,q € Z[j], then z/q € Q(j) = Q(iv/3), so we write it as z/q = 2 + iv/3y.
Let a,b € Z such that |z —a|] < 1/2 and |y — b] < 1/2. If |z — a] < 1/2
or |y — b < 1/2, then we obtain

12/q — (a+iV3b)[? = (z — a)® + 3(y — b)? < 1.

Hence we choose r = z — zq. If |x —a| = |y —b| = 1/2, then z/q € Z[j] and we
take r = 0. This proves that Z[j] is an Euclidean ring.
b) We have
(@) = (a+0j)(Z + jZ) = Z(a + bj) + Z(aj — b = bj).

The index of («) in Z[j] is the index of Z(a,b) +Z(—b,a—b) in Z* = Z(1,0) +
Z(0,1) which is equal to

det (Z a_—bb> ‘ =a?—ab+ b

c) Observe that in general, if f : A — B is a surjective ring homomorphism, J C B
an ideal and I C A an ideal is such that f(I) = J, we have f~'(J) = I +ker f.
Now consider the composition

Z[X] = Fy[X] - F,[X]/(X? + X + 1),

where the first map is the reduction of the coeficients modulo p and the second
is the quotient map. The kernel of this map is (p, X? + X + 1), so have

ZIX))(p, X2+ X +1) 2F,[X]/(X*+ X +1).

On the other hand, we have another surjective morphism

ZIX] — Zlj] — Z[j)/pZ]j),
where the first map is given by the evaluation of a polynomial at j. The kernel
of the evaluation is (X?+ X +1). Indeed, it is clear that (X?+ X +1) C kerev;.
On the other hand, if P(j) =0, then X% + X + 1|P in Q[X] and by Gauss’s
Lemma X2+ X +1|P in Z[X]. It follows that the kernel of the composition is
(p, X? + X + 1) which gives the desired isomorphism.

d) By [la] and [Ld we have that p is not prime in Z[j] if and only if (X + X + 1)
is not a maximal ideal of F,[X], which is true iff X?+ X + 1 has a root in F,,.
Since the discriminant of this polynomial is —3, this is true if and only if —3
is a square modulo p.

e) Assume that 3|p — 1 = [F|. Then there exists an element o € F)* of order 3.
Thus 0 = a® =1 = (a — 1)(a® + a + 1). Hence X? + X + 1 has a root so
—3 is a square modulo p by [Id]} If —3 is a square mod p, then the root of the
polynomial X? + X 4 1 has order 3 in the group F), so 3|[F| =p — 1.

f) Observe first that

N(Hb%\/ﬁ) — o —ab+ b

INIUEN

CUo W N

(=2}

~

oo

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

46
47
48
49
50

Now assume that p = 1 mod 3, then p is not prime in Z[j], so p = w7y with m;
non units. It follows that p? = N(p) = N(m) N(m2) which gives N(m;) = p.
Conversely, if p = N(7) for some m € Z[j], then p cannot be prime. Otherwise
p = 77 implies that p|m and thus N(7) > p?.

. The following codes provide solutions to the exercise. For part (d) of the exercise,

the (correct) conjecture is that Q.r(o, 8) = |0 — | as T — oo.

import the time module to compare running times for the
different algorithms
import time

PRE: odd prime p equivalent to 1 mod 4
POST: return value is the list of Gaussian integers (as
+# complex numbers) whose norm equals p

def FindReps(p):

if (p in Primes()) and (p = mod(1,4)):
Used for timing the algorithm .
Set starting time here
tic = time.perf_counter ()
Define the field with p elements
k = GF(p)
Find a square root of p—1 in k
root = k(p—1).square_root ()
if x is an element in k, then x.lift () is a representative
of x in ZZ
m = root.lift ()
K.<i> = NumberField (x"2+1)
OK = K.ring_of_integers ()
z = ged (OK(p) ,OK(mti))
units = [1,—1,i,—1]
reps = []
for s in units:
L = (s#*z).complex_embeddings ()
reps.append(L[0])
reps.append (L[1])

toc = time.perf_counter ()
return reps
else:
print (’Invalid input. ’ +
"Input must be a prime of residue 1 mod 4.)
PRE: List L of complex numbers, real number d != 0
POST': List L, entrywise divided by d

def DivideListOfComplex (L,d):

for i in range(len(L)):
L[i] =L[i] / d

return L

PRE: Numbers ¢ in (0,1) and T > 0
POST: A plot of the representations of admissible
primes between ¢T and T renormalized T 1/2

def DistributionAnnulus(c,T):

L =]
n = ceil (c+T)
p = next_prime(n)

while p <= T:
p = next_prime (p)

N

ot Ot Ot gt gt gt Ot Ut
~N O Ot

oo

Ut
©

60
61
62
63
64
65

66

S U

~
-3

~ =l
©

if p=— mod(1,4):
M = DivideListOfComplex (FindReps(p) ,sqrt (T))
for i in range(len(M)):
L.append (M[1i])
P = circle ((0,0),1,rgbcolor = (0,0,0))
P 4= circle ((0,0) ,sqrt(c),rgbcolor = (1,0,0))
P += point (L)

P.show ()
PRE: Numbers ¢, a<b in (0,1) and T > 0
POST: The share of the representations of admissible
primes between c¢T and T renormalized by T 1/2
which lie in the sector defined
by 2xpixa to 2xpixb
def Sampling(c,a,b,T):
i) (]
n = ceil (¢+T)
p = next_prime(n)
K=0
N=0
while p <= T:
p = next_prime(p)
if p = mod(1,4):
M = DivideListOfComplex (FindReps(p) ,sqrt (T))
for i in range(len(M)):
N+4+=1
phi = CCM[i]) .arg()
if 2xpixa <= phi and 2x%pixb >= phi:
K+=1
return RR(K/N)

LisTiING 1. Example SageMath code for Ex. 5

