Algebraic Number Theory Exercise Sheet 2 (Solutions)
Manuel Luethi Spring 2024
Federico Viola

1.
2. We will prove a more general version of this statement. Recall that a lattice A C R"”
is a discrete subgroup containing a basis of R"™; cf. §A.2.1 in the lecture notes.
If A CR"” is a lattice, then A = Z"g for some g € GL,(R); cf. Lem. 3 in §A.2.1
of the lecture notes. Throughout this exercise, A C R™ is a lattice and A’ < A is a
subgroup.
a) Let A’ < R™ be a lattice. Let F' be a fundamental domain for the translation
action of A on R™. Let S C A be a set of representatives in A for the elements
of A/A’. Note that S is countable since it is a subset of A.

Note that
|_| F+1¢
ces

is a fundamental domain of A’; we skip the verification which is purely formal.
Since F' is a fundamental domain of A, the union is indeed disjoint. So we have

covol(A') = Vol(|_| F+1)
tes
This formula shows that S is finite and
covol(A') = v01(|_| F+7)
tes
= vol(F +1)
tes
= |S|.vol(F)
= [A : A'].covol(A)

b)
3. a) As m+i & (p), we know that 7w # (p). In particular, the map Z[i]/(p) — Z]i]/7
is not injective and therefore the latter quotient has cardinality 1 or p.
Note that the cardinality is 1 if and only if 7 = (1). However, we note that for
any element z € m we have p|Nr(x). To this end let «, 3,7, € Z and note
that

Nr((o + Bi)(m + i) + (v + 6i)p) = (am — B)* + (a+ fm)? = 0 mod p.

But p{ Nr(1) and therefore 7 # (1). In particular, we have |Z[i]/7| = p.
Let r be a generator of 7. Then

Nr(r) =p

and therefore r is irreducible as any non-trivial factorization of r into irre-
ducibles implies that Nr(r) is composite by multiplicativity of the norm. As
the proper prime ideals in Z[i| are exactly the ideals generated by irreducibles,
it follows that 7 is a prime ideal.

b) Let ¢ = a + bi. As Nr(q) = p, it follows from the multiplicativity of the
norm that ¢ is irreducible in Z[i]. Hence it generates a prime ideal containing
p = Nr(q). If p|g, then

p’ = Nr(p)l\Nr(Q) =p



c)

in Z. This is absurd. Thus either p{ a or p1b. After multiplying by a unit, we
can assume without loss of generality that p1b.
Let s,t € Z such that sb+tp =1. Then

(sa)® + 1 = Nr(sq + tpi) = s’p + (q — q)stpi + t*p
= s%p + 2Im(q)stp + t*p* = 0 mod p.

Hence, letting m = sa, we have that m? = —1 mod p. Clearly m-+i = sq+tpi €
7 and thus (m+i,p) C 7. It remains to show that ¢ is a Z[i]-linear combination
of m+14 and p. Indeed,

b(m+ 1) + tap = q.

We assume without loss of generality that m € N is chosen so that 1 < m < p.
In particular, we have that

Nr(m+i)=m?+1< (p—1)?+1=p*-2(p—1) <p* — 2 < Nr(p).
We claim that for any non-zero ¢ € 7 satisfying Nr(q) < p* we have that

glp = 7= (q).
Indeed, as we have already argued, we know that Nr(q) € pZ. On the other
hand, ¢|p implies Nr(q)|p? by the multiplicativity of the norm and therefore
Nr(q) = p as ¢ was assumed to have norm strictly less than the norm of p.
Therefore, we obtain Algorithm (1| which determines a generator of w. Indeed,
by the above reasoning, at each step the norm of the remainder is a (strictly
decreasing) non-zero multiple of p unless ¢ has norm p.
By the preceding discussion, we know that any representative p = Nr(q) is
associated to either r or 7, where r € Z[i] is a generator of 7.
The pseudocode of a solution can be found in Algorithm . We have implemented
two versions of the code. The first (FindReps) solves the polynomial equation
X?2+1 = 0 over the field F,, via the general implemented root finding algorithms.
The second algorithm (FindRepsRoot) employs a square root implemented for
finite fields. Finally, we have implemented a brute force algorithm which for

1 < a < p calculates B = p — a® and then checks whether B is a square. All
the three codes can be found in Listing

Algorithm 1 Compute a generator of 7.

function GENERATOR(p, m)
q+—m-+1
Z4Dp
while Nr(¢) #p do

z = kq +r with Nr(r) < Nr(q)
Z4—q
g

end while
return q
end function

# import the time module to compare running times for the
# different algorithms
import time

# PRE: Tuples z = [a,b] and q = [c,d] of integers

j|# POST: Return value is a remainder r = [x,y] such that z = kq + r




Algorithm 2 Write p as a sum of two squares.

function FINDREPS(p)
if p # 1 mod 4 then

m <+ any root of X?+1 over F,
q < GENERATOR(p,m)
return a = Re(q),b = Im(q)

end if
end function
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# for some Gaussian integer k and such that Nr(r) < Nr(q).
def Remainder(z,q):
if (q[0] != 0 or q[1] !=
n=qf0]"2 + q[1]"2
# We define s = z/q = [u, V]
u = (z[0]xq[0] + z[1]xq[1])/n
v = (z[1]xq[0] — z[0]xq[1])/n

0):

# We find the Gaussian integer closest to s

# This is one of the cormners of the square containing s
reals = [floor (u),ceil (u)]

ims = [floor(v),ceil (v)]

# We use a loop to find out which corner is closest to s
# We save the candidate for the remainder

remainder = [0,0]

# We initialize the (squared) distance to the corner to
# be 1; note that the closest corner is at (squared)

# distance at most 1/2

distance = 1

for 1 in range(2):

for j in range(2):
corner = [reals[i],ims[j]]
a = u — corner [0]

b = v — corner [1]
d=2a"2+b"2
if d < distance:
distance = d
# If k is the closest corner, then r = z — kxq
# is a remainder for division of z with respect
# to q satisfying Nr(r) < Nr(q).
remainder = [a*xq[0] — bxq[1] , axq[l] + bxq[0]]
return remainder
else:
print (’Division by 0)

# PRE: Integers m, p

2|# POST: Return value is a generator of the principal ideal

+# generated by mti and p inside the ring of Gaussian
# integers. The generator is determined using part
# (¢) of the exercise
def Generator (m,p):

q = [m71]

Z = [p70]

while q[0]"2 + q[1]"2 != p:
r = Remainder(z,q)
5 = G
q=r

return q

# PRE: Odd prime p equivalent to 1 mod 4




56|# POST: Return value is the, up to permutation, unique

57| # pair (a,b) of natural numbers a and b such that

58| # p=a2+4+b"2

59| # REMARK This version uses the polynomial ring over a

60| # finite field and the implemented root finding

61| algorithms to find a solution to X"2+1=0

62| def FindReps(p):

63 if (p in Primes()) and (p = mod(1,4)):

64 # Used for timing the algorithm.

65 # Set starting time here

66 tic = time.perf_counter ()

67 # Define the field with p elements

68 k = GF(p)

69 # Define the polynomial ring over k in one variable ¢t

70 R.<t> = PolynomialRing(k, 't’)

71 P=t"2+1

72 # If x is an element in k, then x.lift () is a

73 # representative of x in ZZ

74 m = P.roots () [0][0].1ift ()

75 # Find z = a+bi in the Gaussian integers satisfying N(z)=p

76 # We use parts (a) and (b) of the exercise as well as

77 # exercise 2 to note that such z, up to associatedness

78 # and complex conjugation is given by a representative of

79 # a prime ideal dividing (p)

80 reps = Generator (m,p)

81 s = ’7.join ((’Up to sign and permutation, ’,

82 ’every representation p=a"2+b"2 |

83 ’is of the form a=’,

84 str (abs(reps[0])),

85 > and b=’

86 str(abs(reps[1]))))

87 print (s)

88 # Set end time here

89 toc = time.perf_counter ()

90 print (f”code took {toc — tic:0.4f} seconds”)

91 return reps

92 else:

93 print (’Invalid input. ’ +

94 "Input must be a prime of residue 1 mod 4.7)

95

96|# PRE: odd prime p equivalent to 1 mod 4

97|# POST: return value is the, up to permutation, unique

08| # pair (a,b) of natural numbers a and b such that

99| # p=a2+4+ b2

100|# REMARK This version uses the square_root function to

101|# find a root of p—1 in the finite field with p

102|# elements .

103| def FindRepsRoot(p):

104 if (p in Primes()) and (p == mod(1,4)):

105 # Used for timing the algorithm.

106 # Set starting time here

107 tic = time.perf_counter ()

108 # Define the field with p elements

109 k = GF(p)

110 # Find a square root of p—1 in k

111 root = k(p—1).square_root ()

112 # if x is an element in k, then x.lift () is a
representative

113 # of x in ZZ

114 m = root.lift ()
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# Find z a+bi in the Gaussian integers satisfying N(z)=p
# We use parts (a) and (b) of the exercise as well as
# exercise 2 to note that such z, up to associatedness and
# complex conjugation is given by a representative of a
# prime ideal dividing (p)
reps = Generator (m,p)
s = ’’.join ((’'Up to sign and permutation, ’,
’every representation p=a'2+b 2 7,
’is of the form a=’,
str (abs(reps[0])),
»and b=",str(abs(reps[1]))))
print(s)
# Set end time here
toc = time.perf_counter ()
print (f”code took {toc — tic:0.4f} seconds”)
return reps
else:
print (’Invalid input. ’ +
"Input must be a prime of residue 1 mod 4.)
# PRE: odd prime p equivalen to 1 mod 4
# POST: return value is the, up to permutation, unique
# pair (a,b) of natural numbers a and b such that
# Pp=2a2+ b"2
# REMARK: This is a brute force algorithm which subtracts
# a square from p and then simply checks whether
St the difference is a square.
def FindRepsBruteForce(p):
if (p in Primes()) and (p = mod(1,4)):
# Used for timing the algorithm.
# Set starting time here
tic = time.perf_counter ()
a =20
found = False
while not found:
a4+=1
if (p—a"2).is_square():
found = True
= isqrt (p—a”2)
s = 77.join((’Up to sign and permutation, ’
’every representation p=a’2+b 2 7|
“is of the form a=’,str(a),
> and b=",str(b)))
print (s)
reps = [a,b]
# Set end time here
toc = time.perf_counter ()
print (f”code took {toc — tic:0.4f} seconds”)
return reps
else:
print (’Invalid input. ’ +
"Input must be a prime of residue 1 mod 4.)

LisTiNG 1. Example SageMath code for Ex. 3




