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1.
2. We will prove a more general version of this statement. Recall that a lattice Λ ⊆ Rn

is a discrete subgroup containing a basis of Rn ; cf. §A.2.1 in the lecture notes.
If Λ ⊆ Rn is a lattice, then Λ = Zng for some g ∈ GLn(R); cf. Lem. 3 in §A.2.1

of the lecture notes. Throughout this exercise, Λ ⊆ Rn is a lattice and Λ′ ⩽ Λ is a
subgroup.
a) Let Λ′ < Rn be a lattice. Let F be a fundamental domain for the translation

action of Λ on Rn . Let S ⊆ Λ be a set of representatives in Λ for the elements
of Λ/Λ′ . Note that S is countable since it is a subset of Λ.
Note that ⊔

ℓ∈S

F + ℓ

is a fundamental domain of Λ′ ; we skip the verification which is purely formal.
Since F is a fundamental domain of Λ, the union is indeed disjoint. So we have

covol(Λ′) = vol(
⊔
ℓ∈S

F + ℓ)

This formula shows that S is finite and

covol(Λ′) = vol(
⊔
ℓ∈S

F + ℓ)

=
∑
ℓ∈S

vol(F + ℓ)

= |S|.vol(F )

= [Λ : Λ′].covol(Λ)

b)
3. a) As m+i ̸∈ (p), we know that π ̸= (p). In particular, the map Z[i]/(p)→ Z[i]/π

is not injective and therefore the latter quotient has cardinality 1 or p .
Note that the cardinality is 1 if and only if π = (1). However, we note that for
any element x ∈ π we have p|Nr(x). To this end let α, β, γ, δ ∈ Z and note
that

Nr
(
(α + βi)(m+ i) + (γ + δi)p

)
≡ (αm− β)2 + (α + βm)2 ≡ 0 mod p.

But p ∤ Nr(1) and therefore π ̸= (1). In particular, we have |Z[i]/π| = p .
Let r be a generator of π . Then

Nr(r) = p

and therefore r is irreducible as any non-trivial factorization of r into irre-
ducibles implies that Nr(r) is composite by multiplicativity of the norm. As
the proper prime ideals in Z[i] are exactly the ideals generated by irreducibles,
it follows that π is a prime ideal.

b) Let q = a + bi . As Nr(q) = p , it follows from the multiplicativity of the
norm that q is irreducible in Z[i] . Hence it generates a prime ideal containing
p = Nr(q). If p|q , then

p2 = Nr(p)|Nr(q) = p
1



in Z . This is absurd. Thus either p ∤ a or p ∤ b . After multiplying by a unit, we
can assume without loss of generality that p ∤ b .
Let s, t ∈ Z such that sb+ tp = 1. Then

(sa)2 + 1 = Nr
(
sq + tpi

)
= s2p+ (q − q)stpi+ t2p2

= s2p+ 2 Im(q)stp+ t2p2 ≡ 0 mod p.

Hence, letting m = sa , we have that m2 ≡ −1 mod p . Clearly m+i = sq+tpi ∈
π and thus (m+i, p) ⊂ π . It remains to show that q is a Z[i]-linear combination
of m+ i and p . Indeed,

b(m+ i) + tap = q.

c) We assume without loss of generality that m ∈ N is chosen so that 1 ⩽ m < p .
In particular, we have that

Nr(m+ i) = m2 + 1 ⩽ (p− 1)2 + 1 = p2 − 2(p− 1) ⩽ p2 − 2 < Nr(p).

We claim that for any non-zero q ∈ π satisfying Nr(q) < p2 we have that

q|p =⇒ π = (q).

Indeed, as we have already argued, we know that Nr(q) ∈ pZ . On the other

hand, q|p implies Nr(q)|p2 by the multiplicativity of the norm and therefore
Nr(q) = p as q was assumed to have norm strictly less than the norm of p .
Therefore, we obtain Algorithm 1 which determines a generator of π . Indeed,
by the above reasoning, at each step the norm of the remainder is a (strictly
decreasing) non-zero multiple of p unless q has norm p .

d) By the preceding discussion, we know that any representative p = Nr(q) is
associated to either r or r , where r ∈ Z[i] is a generator of π .
The pseudocode of a solution can be found in Algorithm . We have implemented
two versions of the code. The first (FindReps) solves the polynomial equation

X2+1 = 0 over the field Fp via the general implemented root finding algorithms.

The second algorithm (FindRepsRoot) employs a square root implemented for
finite fields. Finally, we have implemented a brute force algorithm which for
1 ⩽ a < p calculates B = p − a2 and then checks whether B is a square. All
the three codes can be found in Listing 1.

Algorithm 1 Compute a generator of π .

function Generator(p,m)
q ← m+ i
z ← p
while Nr(q) ̸= p do

z = kq + r with Nr(r) < Nr(q)
z ← q
q ← r

end while
return q

end function

1 # import the time module to compare running t imes f o r the
2 # d i f f e r e n t a lgor i thms
3 import time
4

5 # PRE: Tuples z = [ a , b ] and q = [ c , d ] o f i n t e g e r s
6 # POST: Return value i s a remainder r = [ x , y ] such that z = kq + r



Algorithm 2 Write p as a sum of two squares.

function FindReps(p)
if p ̸≡ 1 mod 4 then

m← any root of X2 + 1 over Fp

q ← Generator(p,m)
return a = Re(q), b = Im(q)

end if
end function

7 # fo r some Gaussian i n t e g e r k and such that Nr( r ) < Nr(q ) .
8 de f Remainder ( z , q ) :
9 i f ( q [ 0 ] != 0 or q [ 1 ] != 0) :

10 n = q [ 0 ] ˆ 2 + q [ 1 ] ˆ 2
11 # We de f i n e s = z/q = [ u , v ]
12 u = ( z [ 0 ] ∗ q [ 0 ] + z [ 1 ] ∗ q [ 1 ] ) /n
13 v = ( z [ 1 ] ∗ q [ 0 ] − z [ 0 ] ∗ q [ 1 ] ) /n
14 # We f ind the Gaussian i n t e g e r c l o s e s t to s
15 # This i s one o f the co rne r s o f the square conta in ing s
16 r e a l s = [ f l o o r (u) , c e i l (u ) ]
17 ims = [ f l o o r ( v ) , c e i l ( v ) ]
18 # We use a loop to f i nd out which corner i s c l o s e s t to s
19 # We save the candidate f o r the remainder
20 remainder = [ 0 , 0 ]
21 # We i n i t i a l i z e the ( squared ) d i s t anc e to the corner to
22 # be 1 ; note that the c l o s e s t corner i s at ( squared )
23 # di s t anc e at most 1/2
24 d i s t anc e = 1
25 f o r i in range (2 ) :
26 f o r j in range (2 ) :
27 corner = [ r e a l s [ i ] , ims [ j ] ]
28 a = u − corner [ 0 ]
29 b = v − corner [ 1 ]
30 d = aˆ2 + bˆ2
31 i f d < d i s t anc e :
32 d i s t anc e = d
33 # I f k i s the c l o s e s t corner , then r = z − k∗q
34 # i s a remainder f o r d i v i s i o n o f z with r e sp e c t
35 # to q s a t i s f y i n g Nr( r ) < Nr(q ) .
36 remainder = [ a∗q [ 0 ] − b∗q [ 1 ] , a∗q [ 1 ] + b∗q [ 0 ] ]
37 re turn remainder
38 e l s e :
39 pr in t ( ’ D iv i s i on by 0 ’ )
40

41 # PRE: In t e g e r s m, p
42 # POST: Return value i s a generato r o f the p r i n c i p a l i d e a l
43 # generated by m+i and p i n s i d e the r ing o f Gaussian
44 # in t e g e r s . The genera tor i s determined us ing part
45 # ( c ) o f the e x e r c i s e
46 de f Generator (m, p) :
47 q = [m, 1 ]
48 z = [ p , 0 ]
49 whi le q [ 0 ] ˆ 2 + q [ 1 ] ˆ 2 != p :
50 r = Remainder ( z , q )
51 z = q
52 q = r
53 re turn q
54

55 # PRE: Odd prime p equ iva l en t to 1 mod 4



56 # POST: Return value i s the , up to permutation , unique
57 # pa i r ( a , b ) o f natura l numbers a and b such that
58 # p = aˆ2 + bˆ2
59 # REMARK: This v e r s i on uses the polynomial r i ng over a
60 # f i n i t e f i e l d and the implemented root f i nd i n g
61 # algor i thms to f i nd a s o l u t i o n to Xˆ2+1=0
62 de f FindReps (p) :
63 i f (p in Primes ( ) ) and (p == mod(1 , 4 ) ) :
64 # Used f o r t iming the a lgor i thm .
65 # Set s t a r t i n g time here
66 t i c = time . p e r f c oun t e r ( )
67 # Def ine the f i e l d with p elements
68 k = GF(p)
69 # Def ine the polynomial r i ng over k in one va r i ab l e t
70 R.<t> = PolynomialRing (k , ’ t ’ )
71 P = tˆ2+1
72 # I f x i s an element in k , then x . l i f t ( ) i s a
73 # rep r e s e n t a t i v e o f x in ZZ
74 m = P. roo t s ( ) [ 0 ] [ 0 ] . l i f t ( )
75 # Find z = a+bi in the Gaussian i n t e g e r s s a t i s f y i n g N( z )=p
76 # We use par t s ( a ) and (b) o f the e x e r c i s e as we l l as
77 # ex e r c i s e 2 to note that such z , up to a s s o c i a t edn e s s
78 # and complex con jugat ion i s g iven by a r ep r e s e n t a t i v e o f
79 # a prime i d e a l d i v i d i ng (p)
80 reps = Generator (m, p)
81 s = ’ ’ . j o i n ( ( ’Up to s i gn and permutation , ’ ,
82 ’ every r ep r e s en t a t i on p=aˆ2+bˆ2 ’ ,
83 ’ i s o f the form a=’ ,
84 s t r ( abs ( reps [ 0 ] ) ) ,
85 ’ and b=’ ,
86 s t r ( abs ( reps [ 1 ] ) ) ) )
87 pr in t ( s )
88 # Set end time here
89 toc = time . p e r f c oun t e r ( )
90 pr in t ( f ” code took { toc − t i c : 0 . 4 f } seconds ” )
91 re turn reps
92 e l s e :
93 pr in t ( ’ I nva l i d input . ’ +
94 ’ Input must be a prime o f r e s i due 1 mod 4 . ’ )
95

96 # PRE: odd prime p equ iva l en t to 1 mod 4
97 # POST: return value i s the , up to permutation , unique
98 # pa i r ( a , b ) o f natura l numbers a and b such that
99 # p = aˆ2 + bˆ2

100 # REMARK: This v e r s i on uses the squa r e roo t func t i on to
101 # f ind a root o f p−1 in the f i n i t e f i e l d with p
102 # elements .
103 de f FindRepsRoot (p) :
104 i f (p in Primes ( ) ) and (p == mod(1 , 4 ) ) :
105 # Used f o r t iming the a lgor i thm .
106 # Set s t a r t i n g time here
107 t i c = time . p e r f c oun t e r ( )
108 # Def ine the f i e l d with p elements
109 k = GF(p)
110 # Find a square root o f p−1 in k
111 root = k(p−1) . s qua r e roo t ( )
112 # i f x i s an element in k , then x . l i f t ( ) i s a

r e p r e s e n t a t i v e
113 # of x in ZZ
114 m = root . l i f t ( )



115 # Find z = a+bi in the Gaussian i n t e g e r s s a t i s f y i n g N( z )=p
116 # We use par t s ( a ) and (b) o f the e x e r c i s e as we l l as
117 # ex e r c i s e 2 to note that such z , up to a s s o c i a t edn e s s and
118 # complex con jugat ion i s g iven by a r ep r e s e n t a t i v e o f a
119 # prime i d e a l d i v i d i ng (p)
120 reps = Generator (m, p)
121 s = ’ ’ . j o i n ( ( ’Up to s i gn and permutation , ’ ,
122 ’ every r ep r e s en t a t i on p=aˆ2+bˆ2 ’ ,
123 ’ i s o f the form a=’ ,
124 s t r ( abs ( reps [ 0 ] ) ) ,
125 ’ and b=’ , s t r ( abs ( reps [ 1 ] ) ) ) )
126 pr in t ( s )
127 # Set end time here
128 toc = time . p e r f c oun t e r ( )
129 pr in t ( f ” code took { toc − t i c : 0 . 4 f } seconds ” )
130 re turn reps
131 e l s e :
132 pr in t ( ’ I nva l i d input . ’ +
133 ’ Input must be a prime o f r e s i due 1 mod 4 . ’ )
134

135 # PRE: odd prime p equ iva l en to 1 mod 4
136 # POST: return value i s the , up to permutation , unique
137 # pa i r ( a , b ) o f natura l numbers a and b such that
138 # p = aˆ2 + bˆ2
139 # REMARK: This i s a brute f o r c e a lgor i thm which sub t ra c t s
140 # a square from p and then simply checks whether
141 # the d i f f e r e n c e i s a square .
142 de f FindRepsBruteForce (p) :
143 i f (p in Primes ( ) ) and (p == mod(1 , 4 ) ) :
144 # Used f o r t iming the a lgor i thm .
145 # Set s t a r t i n g time here
146 t i c = time . p e r f c oun t e r ( )
147 a = 0
148 found = False
149 whi le not found :
150 a += 1
151 i f (p−a ˆ2) . i s s q u a r e ( ) :
152 found = True
153 b = i s q r t (p−a ˆ2)
154 s = ’ ’ . j o i n ( ( ’Up to s i gn and permutation , ’
155 ’ every r ep r e s en t a t i on p=aˆ2+bˆ2 ’ ,
156 ’ i s o f the form a=’ , s t r ( a ) ,
157 ’ and b=’ , s t r (b) ) )
158 pr in t ( s )
159 reps = [ a , b ]
160 # Set end time here
161 toc = time . p e r f c oun t e r ( )
162 pr in t ( f ” code took { toc − t i c : 0 . 4 f } seconds ” )
163 re turn reps
164 e l s e :
165 pr in t ( ’ I nva l i d input . ’ +
166 ’ Input must be a prime o f r e s i due 1 mod 4 . ’ )

Listing 1. Example SageMath code for Ex. 3


