Algebraic Number Theory Exercise Sheet 2 (Solutions)
Manuel Luethi Spring 2024
Federico Viola

1.
2. We will prove a more general version of this statement. Recall that a lattice A C R"”
is a discrete subgroup containing a basis of R"™; cf. §A.2.1 in the lecture notes.
If A CR"” is a lattice, then A = Z"g for some g € GL,(R); cf. Lem. 3 in §A.2.1
of the lecture notes. Throughout this exercise, A C R™ is a lattice and A’ < A is a
subgroup.
a) Let A’ < R™ be a lattice. Let F' be a fundamental domain for the translation
action of A on R™. Let S C A be a set of representatives in A for the elements
of A/A’. Note that S is countable since it is a subset of A.

Note that
|_| F+1¢
ces

is a fundamental domain of A’; we skip the verification which is purely formal.
Since F' is a fundamental domain of A, the union is indeed disjoint. So we have

covol(A') = Vol(|_| F+1)
tes
This formula shows that S is finite and
covol(A') = v01(|_| F+7)
tes
= vol(F +1)
tes
= |S|.vol(F)
= [A : A'].covol(A)

b)
3. a) As m+i & (p), we know that 7w # (p). In particular, the map Z[i]/(p) — Z]i]/7
is not injective and therefore the latter quotient has cardinality 1 or p.
Note that the cardinality is 1 if and only if 7 = (1). However, we note that for
any element z € m we have p|Nr(x). To this end let «, 3,7, € Z and note
that

Nr((o + Bi)(m + i) + (v + 6i)p) = (am — B)* + (a+ fm)? = 0 mod p.

But p{ Nr(1) and therefore 7 # (1). In particular, we have |Z[i]/7| = p.
Let r be a generator of 7. Then

Nr(r) =p

and therefore r is irreducible as any non-trivial factorization of r into irre-
ducibles implies that Nr(r) is composite by multiplicativity of the norm. As
the proper prime ideals in Z[i| are exactly the ideals generated by irreducibles,
it follows that 7 is a prime ideal.

b) Let ¢ = a + bi. As Nr(q) = p, it follows from the multiplicativity of the
norm that ¢ is irreducible in Z[i]. Hence it generates a prime ideal containing
p = Nr(q). If p|g, then

p’ = Nr(p)l\Nr(Q) =p

c)

in Z. This is absurd. Thus either p{ a or p1b. After multiplying by a unit, we
can assume without loss of generality that p1b.
Let s,t € Z such that sb+tp =1. Then

(sa)® + 1 = Nr(sq + tpi) = s’p + (q — q)stpi + t*p
= s%p + 2Im(q)stp + t*p* = 0 mod p.

Hence, letting m = sa, we have that m? = —1 mod p. Clearly m-+i = sq+tpi €
7 and thus (m+i,p) C 7. It remains to show that ¢ is a Z[i]-linear combination
of m+14 and p. Indeed,

b(m+ 1) + tap = q.

We assume without loss of generality that m € N is chosen so that 1 < m < p.
In particular, we have that

Nr(m+i)=m?+1< (p—1)?+1=p*-2(p—1) <p* — 2 < Nr(p).
We claim that for any non-zero ¢ € 7 satisfying Nr(q) < p* we have that

glp = 7= (q).
Indeed, as we have already argued, we know that Nr(q) € pZ. On the other
hand, ¢|p implies Nr(q)|p? by the multiplicativity of the norm and therefore
Nr(q) = p as ¢ was assumed to have norm strictly less than the norm of p.
Therefore, we obtain Algorithm (1| which determines a generator of w. Indeed,
by the above reasoning, at each step the norm of the remainder is a (strictly
decreasing) non-zero multiple of p unless ¢ has norm p.
By the preceding discussion, we know that any representative p = Nr(q) is
associated to either r or 7, where r € Z[i] is a generator of 7.
The pseudocode of a solution can be found in Algorithm . We have implemented
two versions of the code. The first (FindReps) solves the polynomial equation
X?2+1 = 0 over the field F,, via the general implemented root finding algorithms.
The second algorithm (FindRepsRoot) employs a square root implemented for
finite fields. Finally, we have implemented a brute force algorithm which for

1 < a < p calculates B = p — a® and then checks whether B is a square. All
the three codes can be found in Listing

Algorithm 1 Compute a generator of 7.

function GENERATOR(p, m)
q+—m-+1
Z4Dp
while Nr(¢) #p do

z = kq +r with Nr(r) < Nr(q)
Z4—q
g

end while
return q
end function

import the time module to compare running times for the
different algorithms
import time

PRE: Tuples z = [a,b] and q = [c,d] of integers

j|# POST: Return value is a remainder r = [x,y] such that z = kq + r

Algorithm 2 Write p as a sum of two squares.

function FINDREPS(p)
if p # 1 mod 4 then

m <+ any root of X?+1 over F,
q < GENERATOR(p,m)
return a = Re(q),b = Im(q)

end if
end function

©

16

VIR NGRS

S

[S1 SN, BN, BNG) BN, e |
w

Ut

for some Gaussian integer k and such that Nr(r) < Nr(q).
def Remainder(z,q):
if (q[0] != 0 or q[1] !=
n=qf0]"2 + q[1]"2
We define s = z/q = [u, V]
u = (z[0]xq[0] + z[1]xq[1])/n
v = (z[1]xq[0] — z[0]xq[1])/n

0):

We find the Gaussian integer closest to s

This is one of the cormners of the square containing s
reals = [floor (u),ceil (u)]

ims = [floor(v),ceil (v)]

We use a loop to find out which corner is closest to s
We save the candidate for the remainder

remainder = [0,0]

We initialize the (squared) distance to the corner to
be 1; note that the closest corner is at (squared)

distance at most 1/2

distance = 1

for 1 in range(2):

for j in range(2):
corner = [reals[i],ims[j]]
a = u — corner [0]

b = v — corner [1]
d=2a"2+b"2
if d < distance:
distance = d
If k is the closest corner, then r = z — kxq
is a remainder for division of z with respect
to q satisfying Nr(r) < Nr(q).
remainder = [a*xq[0] — bxq[1] , axq[l] + bxq[0]]
return remainder
else:
print (’Division by 0)

PRE: Integers m, p

2|# POST: Return value is a generator of the principal ideal

+# generated by mti and p inside the ring of Gaussian
integers. The generator is determined using part
(¢) of the exercise
def Generator (m,p):

q = [m71]

Z = [p70]

while q[0]"2 + q[1]"2 != p:
r = Remainder(z,q)
5 = G
q=r

return q

PRE: Odd prime p equivalent to 1 mod 4

56|# POST: Return value is the, up to permutation, unique

57| # pair (a,b) of natural numbers a and b such that

58| # p=a2+4+b"2

59| # REMARK This version uses the polynomial ring over a

60| # finite field and the implemented root finding

61| algorithms to find a solution to X"2+1=0

62| def FindReps(p):

63 if (p in Primes()) and (p = mod(1,4)):

64 # Used for timing the algorithm.

65 # Set starting time here

66 tic = time.perf_counter ()

67 # Define the field with p elements

68 k = GF(p)

69 # Define the polynomial ring over k in one variable ¢t

70 R.<t> = PolynomialRing(k, 't’)

71 P=t"2+1

72 # If x is an element in k, then x.lift () is a

73 # representative of x in ZZ

74 m = P.roots () [0][0].1ift ()

75 # Find z = a+bi in the Gaussian integers satisfying N(z)=p

76 # We use parts (a) and (b) of the exercise as well as

77 # exercise 2 to note that such z, up to associatedness

78 # and complex conjugation is given by a representative of

79 # a prime ideal dividing (p)

80 reps = Generator (m,p)

81 s = ’7.join ((’Up to sign and permutation, ’,

82 ’every representation p=a"2+b"2 |

83 ’is of the form a=’,

84 str (abs(reps[0])),

85 > and b=’

86 str(abs(reps[1]))))

87 print (s)

88 # Set end time here

89 toc = time.perf_counter ()

90 print (f”code took {toc — tic:0.4f} seconds”)

91 return reps

92 else:

93 print (’Invalid input. ’ +

94 "Input must be a prime of residue 1 mod 4.7)

95

96|# PRE: odd prime p equivalent to 1 mod 4

97|# POST: return value is the, up to permutation, unique

08| # pair (a,b) of natural numbers a and b such that

99| # p=a2+4+ b2

100|# REMARK This version uses the square_root function to

101|# find a root of p—1 in the finite field with p

102|# elements .

103| def FindRepsRoot(p):

104 if (p in Primes()) and (p == mod(1,4)):

105 # Used for timing the algorithm.

106 # Set starting time here

107 tic = time.perf_counter ()

108 # Define the field with p elements

109 k = GF(p)

110 # Find a square root of p—1 in k

111 root = k(p—1).square_root ()

112 # if x is an element in k, then x.lift () is a
representative

113 # of x in ZZ

114 m = root.lift ()

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

= = e
o
3 Y U R W N

—
v Ov Ot Ot gt Ot Ot
(e}

©

J—
D
(=)

161
162
163
164
165
166

Find z a+bi in the Gaussian integers satisfying N(z)=p
We use parts (a) and (b) of the exercise as well as
exercise 2 to note that such z, up to associatedness and
complex conjugation is given by a representative of a
prime ideal dividing (p)
reps = Generator (m,p)
s = ’’.join ((’'Up to sign and permutation, ’,
’every representation p=a'2+b 2 7,
’is of the form a=’,
str (abs(reps[0])),
»and b=",str(abs(reps[1]))))
print(s)
Set end time here
toc = time.perf_counter ()
print (f”code took {toc — tic:0.4f} seconds”)
return reps
else:
print (’Invalid input. ’ +
"Input must be a prime of residue 1 mod 4.)
PRE: odd prime p equivalen to 1 mod 4
POST: return value is the, up to permutation, unique
pair (a,b) of natural numbers a and b such that
Pp=2a2+ b"2
REMARK: This is a brute force algorithm which subtracts
a square from p and then simply checks whether
St the difference is a square.
def FindRepsBruteForce(p):
if (p in Primes()) and (p = mod(1,4)):
Used for timing the algorithm.
Set starting time here
tic = time.perf_counter ()
a =20
found = False
while not found:
a4+=1
if (p—a"2).is_square():
found = True
= isqrt (p—a”2)
s = 77.join((’Up to sign and permutation, ’
’every representation p=a’2+b 2 7|
“is of the form a=’,str(a),
> and b=",str(b)))
print (s)
reps = [a,b]
Set end time here
toc = time.perf_counter ()
print (f”code took {toc — tic:0.4f} seconds”)
return reps
else:
print (’Invalid input. ’ +
"Input must be a prime of residue 1 mod 4.)

LisTiNG 1. Example SageMath code for Ex. 3

