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1.
2. a) The fact that N(z) is multiplicative follows immediately from the fact that

Zi23 = 21 - 25 forall 2,29 € A.
)

b) We note that we have
N(z)=a>—db* €Z for z=a+0bVde A4,
so what we want to prove is
A ={z€ A:N(z) = £1}.

If N(z) = £1, we have 2z = +1. Since Z € A, we thus find that z € A*. For
the opposite inclusion, note first that we have seen above that |[N(z)| € NU{0}
for all z € A. Hence it suffices to show that for all z € A* we have |[N(2)| # 0
and |[N(z)| < 1.1If N(z) =0 then

(a+0vd) (a—vvad) =0

and since d is squarefree, we have v/d ¢ Q and, thus, the only possibility is
a = b = 0, which means that z = 0 ¢ A*. If [N(z)| > 1, we have z ¢ A~
because otherwise there would exist some 2z’ € A* with 2z’ =1 but
|N(22")] = [N(z) N(z')| > [N(2)[ > 1.
In order to see that Ay forms a subgroup of A*, we see that A can be
characterised as the set
A ={z€ A:N(z) =1}.

By multiplicativity of z — N(z), we know that N|4x is a homomorphism and
A{ is its kernel. By the first isomorphsim theorem, the induced map

A — R 041}
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A* AT

is injective and, therefore, [A*: Ay = |[A*/AY| < [{£1}| = 2.

¢) We skip the verification that ¢ is a group homomorphism; this is purely formal.
If 2 =a+b/d € A is such that ¢(z) = 0, then a + bv/d = £1. Since Vd
is irrational, this is only possible if a € {1} and b = 0, or in other words,
if 2 e {£1}.

d) Our aim is to show that ¢(A;) is a discrete subgroup of R (and thus cyclic).
Let B C (0,00) be compact. We will prove that the set of z € A]* satisfying z €
¢~!(B) is finite. Indeed, note that there exists C' > 1 such that

Cl<|zl<C foral ze€o¢ YB).
Thus, for z = a + byv/d, we have
C' < la+bVd| < C.
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Furthermore, by multipliying both sides by the conjugate Z = a — bv/d, we
obtain

CYa—bVd <1< Cla—bVd| = Cl<la—bVd < C.
We skip the explicit proof that the resulting inequality
C™?% < |a* — db*| < C?

can only have a finite number of solutions (with a,b € Z).

e) The existence of a non-trivial solution means simply that the group ¢(A;) is
non-trivial. Since it is cyclic, is is generated by an element ¢(zy) for some z, €
AT . Recalling that ker ¢ = {£1}, we thus get

AT ={£2%" :n e Z}.
f) Given a number = € R let
[z] =sup{n € Z: n < z}

denote the integral part of x and define the fractional part of x by
{z} =2 —[z] €]0,1).

Consider the n + 2 real numbers [, given by

Be:={la} for (=0,...,n, and Bri1 = 1.
We set

mo = min _ '
0 01 ,42€{0,...,n+1} |B€1 5@2|

By the pigeonhole principle, we have that

1
my <
0 n+1
Note that the case
1
m =
0 n+1

can only happen if

{607-”7ﬂn+1}:{0 ! 2 ..,1}.

"n+1'n+1""
Let 0 </ < n such that 3, = - and note that ¢ # 0. Then

n+1
[l 1
= + e Q,
= Ty €Y
which is absurd. Hence we even have the strict inequality
- 1
my < ——.
"> +1

Choose {1 > {5 such that mo = |5, — Be,|, and set
a:=[la| — [lra]l and b:={l; —ls.
Then

o 8| = ot =) = (0] = a0 _ {0} = (o}l _mo 1
b b b b b(n+1)

which is what we wanted to show.




g)

By setting ag = [a] and by = 1, we get the first requested pair (ag, by). Now,
given a coprime pair (ag,by), we will construct a new coprime pair (a1, bpr1)
satisfying
a
’a e
beia

‘ b

We start by choosing an integer N such that

b

1 < Ay
— a__
N+1 by

which is always possible as « is irrational. Then we choose integers aj, , b, , €
{1,..., N} such that

/

‘ An! 1
/ / ’
bpiq (N + 1)y,

and set
! /
a
L 041 L 011
Qg1 = ———— and by =

(a2+1, 624-1) (a2+17 bfe+1) .

This is the requested new pair: By definition it is coprime, and we have

(41 Wy 1 1 1
a——| = |a— < < < ,
' bet ‘ b/€+1 (N + 1)bfe+1 b2+12 bé+12
as well as
‘ —%:' —a/”l L < L <‘o¢—%
bev1 Vol  (N+1)bp, N+1° by

By the previous exercise, we know that there exist infinitely many coprime
pairs (z,y) such that
x 1
'\/_ ——| < -
) Y

Furthermore, for these pairs we have

m_meﬂ
Yy Y

0< |x2—dy2‘ =y’

1
<¢a+§<¢a+(¢a+ﬁ) <oail

In other words, there are infinitely many pairs (z,y) such that
0< |2? —dy?| < 2Vd + 1.

In particular, there must be an integer n with |n| < 2v/d + 1 such that

2 —dy’ =n

has infinitely many solutions. Finally, since there are only finitely many residue
classes mod n, we can surely find (z1,y1) and (z2,ys) such that

r1 =rxomodn and y; =y, modn.



i)

First note that zp € A. Indeed, noting that
1179 — y1yed = 212 — dy1? = 0 mod n

and
Y1T2 — Y21 = Y171 — Y121 = 0 mod n,

we have

(w1 + yl\/a)(lb - yz\/ﬁ_l) _ Tils — dyry2 I Y1T2 — 961?42\/3 cA
n

n n

Furthermore, because of N(z;) = N(z3) = n, we have N(z5) = 1, which shows
that zp is indeed a solution to Pell’s equation.

3. Let P = X?+4bX + ¢ € Z[X], assume that b — 4c < 0. Let ¢ be a root of P and
consider the ring Z[(] C C.

a)

To show that
ZI() =7+ 7.
one can use the fact that ( satisfies a quadratic monic polynomial over Z and
the Euclid’s algorithm. In order to deduce that Z + Z( is a lattice, we note first
that 1 and ( are linearly independent over R as ( € R, so Z + Z( contains an
R-basis of C = R2. It remains to show that Z + Z( is discrete and, as Z + Z(
is a group, it suffices to show that 0 is isolated. So let (z,)nen be a sequence in
Z + Z( and assume that z, — 0 as n — co. Write
Zn = ap +b,¢  (an, b, €7Z).

Then
0= lim Im(z,) = lim b, Im(()

n—oo n—oo

and therefore b, = 0 for all but finitely many n. It follows that Re(z,) =
a, + b, Re(¢) = a,, for all but finitely many n and thus also a,, = 0 for all but
finitely many n € N.

Let s =c+d( with ¢,d € Z. If x = a + b(, we have

xs = ac + (ad + be)¢ + bd¢? = ac — bdC + (ad + be — bdB)(.

Substituting in the equation, we get
ac — bdC.ad + be — bdB) = (a.b) (W U)oz
( L

Setting a = 1,b = 0 we get
(¢, d) = (e(s)11,1(5)12)-
Setting a = 0,0 =1 we get
(—dC,c—dB) = (¢(8)21, t(8)a2)-
Therefore we have

tc+d¢) = (—EZC' c—ddB) Ve,d € 72

It is clear that this defines an injective homomorphism of Z-modules. Observe

that
=5 9) wo=(% ).



In order to check multiplicativity and conclude that ¢ is a homomorphism of
rings, it remains to check that +(¢)? = ¢(¢?). We have

wor = (% _13)2 (36 ¢ lp)—i-c-BO =

Consider the homomorphism of Z-modules obtained with the composition
z[(] S 72 T 72/ M,

where 7 is the natural projection of Z? onto its quotient Z2/M,.
This composition is clearly surjective, since € is an isomorphism. Its kernel is
the set of = € Z|[(] such that 6(x) € M. We claim that it coincides with the
ideal (s). Indeed, if x = ys for some y € Z[(] then

0(z) = 0(ys) = 0(y)u(s) € Z*(s) = M,.
Vice versa, if 0(z) = zu(s) for some z € Z?* then setting y = 071(2) € Z[(] we
get 0(z) = 0(y)i(s) = 0(ys) and hence x = ys € (s).
We can conclude that Z[(]/(s) = Z* /M.



