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1.
2. a) The fact that N(z) is multiplicative follows immediately from the fact that

z1z2 = z1 · z2 for all z1, z2 ∈ A.

b) We note that we have

N(z) = a2 − db2 ∈ Z for z = a+ b
√
d ∈ A,

so what we want to prove is

A× = {z ∈ A : N(z) = ±1}.
If N(z) = ±1, we have zz = ±1. Since z ∈ A , we thus find that z ∈ A× . For
the opposite inclusion, note first that we have seen above that |N(z)| ∈ N∪{0}
for all z ∈ A . Hence it suffices to show that for all z ∈ A× we have |N(z)| ̸= 0
and |N(z)| ⩽ 1. If N(z) = 0 then(

a+ b
√
d
)(

a− b
√
d
)
= 0

and since d is squarefree, we have
√
d ̸∈ Q and, thus, the only possibility is

a = b = 0, which means that z = 0 ̸∈ A× . If |N(z)| > 1, we have z ̸∈ A×

because otherwise there would exist some z′ ∈ A× with zz′ = 1 but

|N(zz′)| = |N(z)N(z′)| ⩾ |N(z)| > 1.

In order to see that A×
1 forms a subgroup of A× , we see that A×

1 can be
characterised as the set

A×
1 = {z ∈ A : N(z) = 1}.

By multiplicativity of z 7→ N(z), we know that N |A× is a homomorphism and

A×
1 is its kernel. By the first isomorphsim theorem, the induced map

A× N
//

����

{±1}

A×/A×
1

::

is injective and, therefore, [A× : A×
1 ] = |A×/A×

1 | ⩽ |{±1}| = 2.
c) We skip the verification that ϕ is a group homomorphism; this is purely formal.

If z = a + b
√
d ∈ A is such that ϕ(z) = 0, then a + b

√
d = ±1. Since

√
d

is irrational, this is only possible if a ∈ {±1} and b = 0, or in other words,
if z ∈ {±1} .

d) Our aim is to show that ϕ(A×
1 ) is a discrete subgroup of R (and thus cyclic).

Let B ⊂ (0,∞) be compact. We will prove that the set of z ∈ A×
1 satisfying z ∈

ϕ−1(B) is finite. Indeed, note that there exists C > 1 such that

C−1 < |z| < C for all z ∈ ϕ−1(B).

Thus, for z = a+ b
√
d , we have

C−1 < |a+ b
√
d| < C.
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Furthermore, by multipliying both sides by the conjugate z = a − b
√
d , we

obtain

C−1|a− b
√
d| < 1 < C|a− b

√
d| ⇐⇒ C−1 < |a− b

√
d| < C.

We skip the explicit proof that the resulting inequality

C−2 < |a2 − db2| < C2

can only have a finite number of solutions (with a, b ∈ Z).
e) The existence of a non-trivial solution means simply that the group ϕ(A×

1 ) is
non-trivial. Since it is cyclic, is is generated by an element ϕ(z0) for some z0 ∈
A×

1 . Recalling that kerϕ = {±1} , we thus get

A×
1 = {±z0

n : n ∈ Z}.

f) Given a number x ∈ R , let

[x] = sup{n ∈ Z : n ⩽ x}
denote the integral part of x and define the fractional part of x by

{x} = x− [x] ∈ [0, 1).

Consider the n+ 2 real numbers βℓ given by

βℓ := {ℓα} for ℓ = 0, . . . , n, and βn+1 := 1.

We set

m0 := min
ℓ1,ℓ2∈{0,...,n+1}

|βℓ1 − βℓ2|.

By the pigeonhole principle, we have that

m0 ⩽
1

n+ 1
.

Note that the case

m0 =
1

n+ 1

can only happen if

{β0, . . . , βn+1} =

{
0,

1

n+ 1
,

2

n+ 1
, . . . , 1

}
.

Let 0 ⩽ ℓ ⩽ n such that βℓ =
1

n+1
and note that ℓ ̸= 0. Then

α =
[ℓα]

ℓ
+

1

ℓ(n+ 1)
∈ Q,

which is absurd. Hence we even have the strict inequality

m0 <
1

n+ 1
.

Choose ℓ1 > ℓ2 such that m0 = |βℓ1 − βℓ2| , and set

a := [ℓ1α]− [ℓ2α] and b := ℓ1 − ℓ2.

Then∣∣∣α− a

b

∣∣∣ = |α(ℓ1 − ℓ2)− ([ℓ1α]− [ℓ2α])|
b

=
|{ℓ1α} − {ℓ2α}|

b
=

m0

b
<

1

b(n+ 1)
,

which is what we wanted to show.



g) By setting a0 = [α] and b0 = 1, we get the first requested pair (a0, b0). Now,
given a coprime pair (aℓ, bℓ), we will construct a new coprime pair (aℓ+1, bℓ+1)
satisfying ∣∣∣∣α− aℓ+1

bℓ+1

∣∣∣∣ < ∣∣∣∣α− aℓ
bℓ

∣∣∣∣ .
We start by choosing an integer N such that

1

N + 1
<

∣∣∣∣α− aℓ
bℓ

∣∣∣∣ ,
which is always possible as α is irrational. Then we choose integers a′ℓ+1, b

′
ℓ+1 ∈

{1, . . . , N} such that∣∣∣∣α−
a′ℓ+1

b′ℓ+1

∣∣∣∣ < 1

(N + 1)b′ℓ+1

,

and set

aℓ+1 :=
a′ℓ+1

(a′ℓ+1, b
′
ℓ+1)

and bℓ+1 :=
b′ℓ+1

(a′ℓ+1, b
′
ℓ+1)

.

This is the requested new pair: By definition it is coprime, and we have∣∣∣∣α− aℓ+1

bℓ+1

∣∣∣∣ = ∣∣∣∣α−
a′ℓ+1

b′ℓ+1

∣∣∣∣ < 1

(N + 1)b′ℓ+1

⩽
1

b′ℓ+1
2 ⩽

1

bℓ+1
2 ,

as well as∣∣∣∣α− aℓ+1

bℓ+1

∣∣∣∣ = ∣∣∣∣α−
a′ℓ+1

b′ℓ+1

∣∣∣∣ < 1

(N + 1)b′ℓ+1

⩽
1

N + 1
⩽

∣∣∣∣α− aℓ
bℓ

∣∣∣∣ .
h) By the previous exercise, we know that there exist infinitely many coprime

pairs (x, y) such that ∣∣∣∣√d− x

y

∣∣∣∣ < 1

y2
.

Furthermore, for these pairs we have

0 <
∣∣x2 − dy2

∣∣ = y2
∣∣∣∣√d− x

y

∣∣∣∣ ∣∣∣∣√d+
x

y

∣∣∣∣
<

√
d+

x

y
⩽

√
d+

(√
d+

1

y2

)
⩽ 2

√
d+ 1.

In other words, there are infinitely many pairs (x, y) such that

0 <
∣∣x2 − dy2

∣∣ ⩽ 2
√
d+ 1.

In particular, there must be an integer n with |n| ⩽ 2
√
d+ 1 such that

x2 − dy2 = n

has infinitely many solutions. Finally, since there are only finitely many residue
classes mod n , we can surely find (x1, y1) and (x2, y2) such that

x1 ≡ x2 mod n and y1 ≡ y2 mod n.



i) First note that z0 ∈ A . Indeed, noting that

x1x2 − y1y2d ≡ x1
2 − dy1

2 ≡ 0 mod n

and

y1x2 − y2x1 ≡ y1x1 − y1x1 ≡ 0 mod n,

we have

z0 =
(x1 + y1

√
d)(x2 − y2

√
d)

n
=

x1x2 − dy1y2
n

+
y1x2 − x1y2

n

√
d ∈ A.

Furthermore, because of N(z1) = N(z2) = n , we have N(z0) = 1, which shows
that z0 is indeed a solution to Pell’s equation.

3. Let P = X2 + bX + c ∈ Z[X] , assume that b2 − 4c < 0. Let ζ be a root of P and
consider the ring Z[ζ] ⊂ C .
a) To show that

Z[ζ] = Z+ Zζ.
one can use the fact that ζ satisfies a quadratic monic polynomial over Z and
the Euclid’s algorithm. In order to deduce that Z+Zζ is a lattice, we note first
that 1 and ζ are linearly independent over R as ζ ̸∈ R , so Z+Zζ contains an
R-basis of C ∼= R2 . It remains to show that Z+ Zζ is discrete and, as Z+ Zζ
is a group, it suffices to show that 0 is isolated. So let (zn)n∈N be a sequence in
Z+ Zζ and assume that zn → 0 as n → ∞ . Write

zn = an + bnζ (an, bn ∈ Z).

Then

0 = lim
n→∞

Im(zn) = lim
n→∞

bn Im(ζ)

and therefore bn = 0 for all but finitely many n . It follows that Re(zn) =
an + bn Re(ζ) = an for all but finitely many n and thus also an = 0 for all but
finitely many n ∈ N .

b) Let s = c+ dζ with c, d ∈ Z . If x = a+ bζ , we have

xs = ac+ (ad+ bc)ζ + bdζ2 = ac− bdC + (ad+ bc− bdB)ζ.

Substituting in the equation, we get

(ac− bdC, ad+ bc− bdB) = (a, b)

(
ι(s)11 ι(s)12
ι(s)21 ι(s)22

)
∀a, b ∈ Z2.

Setting a = 1, b = 0 we get

(c, d) = (ι(s)11, ι(s)12).

Setting a = 0, b = 1 we get

(−dC, c− dB) = (ι(s)21, ι(s)22).

Therefore we have

ι(c+ dζ) =

(
c d

−dC c− dB

)
∀c, d ∈ Z2.

It is clear that this defines an injective homomorphism of Z-modules. Observe
that

ι(1) =

(
1 0
0 1

)
, ι(ζ) =

(
0 1

−C −B

)
.



In order to check multiplicativity and conclude that ι is a homomorphism of
rings, it remains to check that ι(ζ)2 = ι(ζ2). We have

ι(ζ)2 =

(
0 1

−C −B

)2

=

(
−C −B
BC −C +B2

)
= ι(−C −Bζ) = ι(ζ2).

c) Consider the homomorphism of Z-modules obtained with the composition

Z[ζ] θ−→ Z2 π−→ Z2/Ms

where π is the natural projection of Z2 onto its quotient Z2/Ms .
This composition is clearly surjective, since θ is an isomorphism. Its kernel is
the set of x ∈ Z[ζ] such that θ(x) ∈ Ms . We claim that it coincides with the
ideal (s). Indeed, if x = ys for some y ∈ Z[ζ] then

θ(x) = θ(ys) = θ(y)ι(s) ∈ Z2ι(s) = Ms.

Vice versa, if θ(x) = zι(s) for some z ∈ Z2 then setting y = θ−1(z) ∈ Z[ζ] we
get θ(x) = θ(y)ι(s) = θ(ys) and hence x = ys ∈ (s).

We can conclude that Z[ζ]/(s) ∼= Z2/Ms .


