1. Let A be a Dedekind domain with field of fractions Q and let $\mathfrak{p} \triangleleft A$ be a prime ideal. Define the localization at \mathfrak{p} by

$$A_{\mathfrak{p}} = \left\{ \frac{a}{q} : a \in A, q \in A \setminus \mathfrak{p} \right\}.$$

- a) Show that $A_{\mathfrak{p}}$ is a subring of Q.
- b) Let $\mathfrak{a}_{\mathfrak{p}} \triangleleft A_{\mathfrak{p}}$ an ideal. Show that $\mathfrak{a} = \mathfrak{a}_{\mathfrak{p}} \cap A$ is an ideal in A satisfying $\mathfrak{a}_{\mathfrak{p}} = \mathfrak{a}.A_{\mathfrak{p}}$.
- c) Let $\mathfrak{q} \triangleleft A$ coprime to \mathfrak{p} . Show that $\mathfrak{q}.A_{\mathfrak{p}} = A_{\mathfrak{p}}$.
- d) Let $\mathfrak{m}_{\mathfrak{p}} = \mathfrak{p}.A_{\mathfrak{p}}$ and let $\mathfrak{a}_{\mathfrak{p}} \lhd A_{\mathfrak{p}}$ be a non-zero proper ideal. Show that there exists $v \in \mathbb{N}$ such that $\mathfrak{a}_{\mathfrak{p}} = \mathfrak{m}_{\mathfrak{p}}^{v}$. In particular, $\mathfrak{m}_{\mathfrak{p}}$ is the unique maximal ideal in $A_{\mathfrak{p}}$.
- e) Show that $\mathfrak{m}_{\mathfrak{p}}$ is principal. *Hint:* Let $x \in \mathfrak{p} \setminus \mathfrak{p}^2$ and show that $\mathfrak{m}_{\mathfrak{p}} = x.A_{\mathfrak{p}}$.
- f) Show that $A/\mathfrak{p} \cong A_{\mathfrak{p}}/\mathfrak{m}_{\mathfrak{p}}$.
- 2. Let K/\mathbb{Q} be a number field and let Δ_K be the discriminant of the maximal order in K. Prove that $\Delta_K \equiv 0, 1 \mod 4$.

Hint: Let $\mathcal{B} = (\omega_1, \ldots, \omega_d)$ be a \mathbb{Z} -basis of \mathcal{O}_K and let $(\sigma_1, \ldots, \sigma_d)$ be an enumeration of $\text{Hom}_{\mathbb{Q}}(K, \mathbb{C})$. Write $\det(\sigma_j \omega_i) = P - N$, where P is the sum running over even and N is the sum running over odd permutations. Then

$$\Delta_K = (P - N)^2 = (P + N)^2 - 4PN.$$

Show that P+N and PN are contained in \mathbb{Z} by showing that they are algebraic integers contained in \mathbb{Q} . For the latter, you might want to consider the Galois closure L/K of K.

3. The goal of this exercice is to state and to give a proof of the Quadratic reciprocity law. For this we will need to first define the Legendre symbol.

$$\left(\frac{\cdot}{p}\right): (\mathbb{Z}/p\mathbb{Z})^{\times} \longrightarrow \mathbb{C}$$

is defined by $\left(\frac{a}{p}\right) = 1$ if $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ is a square and $\left(\frac{a}{p}\right) = -1$ if $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ is a nonsquare.

- a) Prove that the Legendre symbol is the unique non-trivial real character on $(\mathbb{Z}/p\mathbb{Z})^{\times}$.
- b) Prove that

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \mod p \text{ for } a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$$

Conclude that -1 is a square mod p if and only if $p \equiv 1 \mod 4$. Now we wish to prove the Quadratic reciprocity law which states that for distinct odd primes p, q we have

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$$

We will work through the sixth published proof of Gauss of this result. For this we define the quadratic Gauss sum. Let ζ_p be a primitive p-th root of unity. We define

$$\tau = \sum_{a \in (\mathbb{Z}/p\mathbb{Z})^{\times}} \left(\frac{a}{p}\right) \zeta_p^a$$

c) Prove that $\tau^2 = (-1)^{\frac{p-1}{2}} p$ *Hint:*

$$\tau^2 = \sum_{a,b \in (\mathbb{Z}/p\mathbb{Z})^{\times}} \left(\frac{ab}{p}\right) \zeta_p^{a+b}$$

and change variables b = ac.

- d) Prove that the ideal $(q, \tau) \triangleleft \mathbb{Z}[\zeta_p]$ equals $\mathbb{Z}[\zeta_p]$. Hint: $\tau^2 \in (q, \tau)$.
- e) Prove that

$$\tau^{q-1} \equiv \left(\frac{q}{p}\right) \mod q\mathbb{Z}[\zeta_p].$$

Hint: Expand τ^q and note that for $0 \leq k_1, \ldots, k_r \leq q$ we have that

$$q|\frac{q!}{k_1!\cdots k_r!}$$

unless there is $1 \leq i \leq r$ such that $k_i = q$.

f) Use (c) and (e) to conclude the proof of the Quadratic reciprocity law.