- 1. Let K be a number field and  $\mathcal{O}_K \subseteq K$  the maximal order. Show that  $\mathcal{O}_K = \mathcal{O}_K(\mathbb{Z})$ .
- 2. Suppose that A is Dedekind. Show that ideals  $\mathfrak{a}$ ,  $\mathfrak{b} \triangleleft A$  are coprime, i.e.,  $A = \mathfrak{a} + \mathfrak{b}$ , if and only if  $\mathfrak{a}$  and  $\mathfrak{b}$  don't have any common prime divisors.
- 3. Let A a Dedekind domain with field of fractions Q, K/Q a finite separable extension, and let  $\mathfrak{p} \triangleleft A$  a non-zero prime ideal. Let  $\mathfrak{P} \triangleleft \mathfrak{O}_K(A)$  a prime ideal dividing  $\mathfrak{p}.\mathfrak{O}_K(A)$ . Show that

$$\forall 0 < e \leqslant v_{\mathfrak{P}}(\mathfrak{p}.\mathcal{O}_K(A)) \qquad \mathfrak{p} = \mathfrak{P}^e \cap A.$$

4. Let  $K/\mathbb{Q}$  be a number field of degree d, let  $\theta$  be an algebraic integer of degree d, and let

$$P(X) = X^d + a_{d-1}X^{d-1} + \ldots + a_1X + a_0$$

be its minimal polynomial. Furthermore, suppose that P is Eisenstein with respect to the prime p, that is

$$p \mid a_j$$
 for  $0 \leqslant j \leqslant d-1$  and  $p^2 \nmid a_0$ .

The goal of this exercise is to show that then  $p \nmid |\mathcal{O}_K/\mathbb{Z}[\theta]|$ .

- a) Assume to the contrary that p divides  $|\mathcal{O}_K/\mathbb{Z}[\theta]|$ . Show that in this case we can find  $\xi \in \mathcal{O}_K$ , such that  $p\xi \in \mathbb{Z}[\theta]$  and  $\xi \notin \mathbb{Z}[\theta]$ .

  Hint: Every finite abelian group of order divisible by p contains an element of order p.
- b) Write

$$p\xi = b_0 + b_1\theta + \ldots + b_{d-1}\theta^{d-1}$$
 with  $b_i \in \mathbb{Z}$ ,

and let j be the smallest index such that  $p \nmid b_j$ . Prove that  $b_j \theta^{d-1} \in p\mathcal{O}_K$ .

Hint: Since P is Eisenstein at p, we know that  $\theta^d \in p\mathcal{O}_K$ .

- c) Show that  $N_{K/\mathbb{Q}}(b_j\theta^{d-1}/p) \notin \mathbb{Z}$ .
- d) Conclude by finding a contradiction.
- 5. Let p be a prime, let  $\ell \geqslant 1$ , let  $\zeta$  be a primitive  $p^{\ell}$ -th root of unity, and let K be the cyclotomic field  $K := \mathbb{Q}(\zeta)$ . In this exercise we want to determine the ring of integers of K.
  - a) Show that

$$\Phi(X):=\frac{X^{p^\ell}-1}{X^{p^{\ell-1}}-1}\in\mathbb{Z}[X]$$

is the minimal polynomial of  $\zeta$ .

*Hint:* Use the Eisenstein criterion at p for  $\Phi(X+1)$ . To this end, show that for the reduction  $\overline{\Phi}(X+1) \in \mathbb{F}_p[X]$  of  $\Phi(X+1)$  we have

$$\overline{\Phi}(X+1)X^{p^{\ell-1}} = X^{p^{\ell}}.$$

b) Let  $\xi := \zeta^{p^{\ell-1}}$ . Prove that

$$\left|\mathcal{N}_{\mathbb{Q}(\xi)/\mathbb{Q}}(\xi-1)\right| = p$$
 and  $\left|\mathcal{N}_{K/\mathbb{Q}}(\xi-1)\right| = p^{p^{\ell-1}}$ .

c) Verify that

$$(\xi - 1)\Phi'(\zeta) = p^{\ell}\zeta^{-1}.$$

d) Prove that

$$\left|\operatorname{disc}_{K/\mathbb{Q}}\left(1,\zeta,\zeta^2,\ldots,\zeta^{\phi(p^\ell)-1}\right)\right|=p^s\quad\text{with}\quad s:=p^{\ell-1}(\ell p-\ell-1).$$

Hint: Look at Sheet 6.

e) Let  $q \in \mathbb{N}$  prime coprime to p. Show that q doesn't divide  $|\mathcal{O}_K/\mathbb{Z}[\zeta]|$ .

*Hint*: Use Sheet 2. f) Conclude that  $\mathcal{O}_K = \mathbb{Z}[\zeta]$ .

*Hint*: You may want to consider  $\mathbb{Z}[\zeta] = \mathbb{Z}[\zeta - 1]$  and use the conclusion of the previous exercise.