- 1. Let A be a domain, K a field, and suppose that $A \subseteq K$. Show that the integral closure $\mathcal{O}_K(A)$ of A in K is integrally closed.
- 2. Let $K = \mathbb{Q}(\sqrt{-5})$. Show that \mathcal{O}_K is not a P.I.D. *Hint:* Is the ideal $(2, 1 + \sqrt{-5})$ principal?
- 3. Let K be a number field and L/K a separable field extension of degree n. By the primitive element theorem, we know that $L = K(\alpha)$ for some $\alpha \in L$ with minimal polynomial $f \in K[X]$ of degree n. Let \overline{K} be an algebraic closure of K. Denote by $\sigma_1, \ldots, \sigma_n$ an enumeration of $\operatorname{Hom}_K(L, \overline{K})$, and set

$$\alpha_1 = \sigma_1(\alpha), \ldots, \alpha_n = \sigma_n(\alpha).$$

Note that $\alpha_1, \ldots, \alpha_n$ are exactly the roots of f (which we know to be pairwise distinct since L/K is separable).

Given $a \in L$, let $[\times a]_{L/K} : L \to L$ be the K-linear map given by $[\times a]_{L/K}(b) = ab$ for all $b \in L$. Define $B : L \times L \to K$ by

$$\forall a, b \in L \quad B(a, b) = \operatorname{tr} ([\times ab]_{L/K}).$$

We call B the trace-pairing form on L/K.

- a) Show that B is K-bilinear.
- b) Show that

$$\det (B(\alpha_i, \alpha_j)) = \prod_{i < j} (\alpha_i - \alpha_j)^2.$$

Conclude that the trace pairing form on L/K is non-degenerate.

c) Prove that

$$\det (B(\alpha_i, \alpha_j)) = (-1)^{\frac{n(n-1)}{2}} \operatorname{Nr}_{L/K}(f'(\alpha))$$
$$= (-1)^{\frac{n(n-1)}{2}} \prod_{i=1}^{n} \sigma_i(f'(\alpha)).$$

4. Let K be a number field and \mathcal{B} be a \mathbb{Q} -basis of K contained in \mathcal{O}_K . Prove that if $\Delta(\mathcal{B})$ is square free, then \mathcal{B} is a \mathbb{Z} -basis of \mathcal{O}_K .