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1. In this exercise we recall the notion of Noetherian rings.
a) Let A be a ring and M an A-module. Prove that the following are equivalent.

• Every submodule of M is of finite type.
• Every increasing sequence of submodules of M eventually stabilizes.
• Every non-empty collection of submodules of M has a maximal element.

An A-module is called noetherian if it has any of these three properties. A ring
A is noetherian if it is noetherian as an A-module.

b) Suppose that A is a noetherian ring and M is an A-module of finite type. Show
that M is noetherian.

2. In this exercise, we will recall localization of rings. Let A be a ring and S ⊆ A be a
multiplicative subset i.e. a subset closed under multiplication. We define a relation
on A× S , ∼ by

(a, s) ∼ (b, t) ⇐⇒ ∃u ∈ S s.t. u(at− bs) = 0.

a) Show that ∼ defines an equivalence relation on A× S .

We call A×S/ ∼ the localization of A by S and denote it by S−1A . The equivalence

class of (a, s) in S−1A is often denoted a
s
.

b) Equip S−1A with a ring structure s.t. the map

ψS : A −→ S−1A

defined by

a 7→ a

1
is a ring homomorphism.

c) Prove the universal property of localisation: Given a morphism of rings

ϕ : A −→ B

s.t. ϕ(S) ⊆ B× there is a unique morphism of rings

ϕ̃ : S−1A −→ B

s.t.
ϕ = ϕ̃ ◦ ψS

d) Let I be an ideal in A and S ′ be the image of S in A/I . Prove that

(S ′)−1A/I ≃ S−1A/S−1I.

S−1I is defined subsequently.
e) Show that the map q 7→ q∩A defines a map between prime ideals in S−1A and

prime ideals of A which have empty intersection with S . Show that the inverse
map is given by p 7→ pS−1A .

We can also localise modules: Let M be an A-module. We define a relation on
M × S , ∼ by

(m, s) ∼ (n, t) ⇐⇒ ∃u ∈ S s.t. u(tm− sn) = 0.

This is also an equivalence relation. We call M × S/ ∼ the localization of M by S

and denote it by S−1M . The equivalence class of (m, s) in S−1M is denoted m
s
.

f) Equip S−1M with a S−1A module structure which extends the A-module struc-
ture on M .
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g) Prove that given A-modules N ⊆M . S−1(M/N) ≃ (S−1M)/(S−1N).

h) Prove that any submodule N ′ ⊆ S−1M is of the form S−1N for some submodule

N ⊆M . Conclude that all ideals of S−1A are of the form S−1I for some ideal
I ◁ A .

i) Let p◁A be a prime ideal. For the multiplicative subset S = A∖ p we denote

S−1A by Ap , called the localisation of A at p . Show that Ap is a local ring
with maximal ideal pAp and

Ap/pAp ≃ Frac (A/p),

i.e., the fraction field of A at p .
j) Let M be a finitely generated A module s.t. Mm = 0 for all maximal ideals

m in A . Show that M = 0. Conclude that if N ⊆ M are finitely generated A
modules s.t. Mm = Nm for all maximal ideals m in A , M = N .
Hint: Let M be a finitely generated A module s.t. Mm = 0, show that Ann(M)∩
A∖m ̸= ∅ where Ann(M) := {a ∈ A : aM = 0} .]

3. The aim of this exercise is to investigate localisation at primes of Dedekind domains.
To us, the crucial insight from this exercise is that the localisation of a Dedekind
ring at a non-zero prime is a principal ideal domain.

Let us start by proving that integrality is a local property:
a) Let A ⊆ B be rings. Prove that B is integral over A iff Bp is integral over Ap

for all p◁ A prime ideal.
Now let us assume A is a Dedekind domain and p◁ A is a non-zero prime ideal.
b) Prove that Ap is a Dedekind domain.

c) Prove that the maximal ideal pAp is a principal ideal. Conclude that Ap is a
P.I.D. Also check that the residue field of Ap ,

Ap/pAp ≃ A/p.

d) Let pAp = πAp for π ∈ Ap . Show that every ideal in Ap satisfies

I = πv′p(I)Ap

for a unique integer v′p(I) ∈ Z . Check that this integer is independent of the

choice of a generator π of pAp .

e) For an ideal I ◁ A , show that

v′p(IAp) = vp(I)

where the right hand side is the valuation of I at p defined in the lecture.
f) Let A be a noetherian integral domain s.t. for every non-zero prime ideal p◁A ,
Ap is a principal ideal domain. Prove that A is a Dedekind domain.

4. Let A be a Dedekind ring and Q = Frac(A). Let B a domain and Q ↪→ B an
embedding. Let Λ ⊆ B be a non-zero A-module of finite type and x ∈ B such that
x.Λ ⊆ Λ. Show that x ∈ OB(A).
Deduce that for any fractional ideal f ⊆ Q we have

{x ∈ Q : x.f ⊆ f} = A.


