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1. In this exercise we recall the notion of Noetherian rings.
a) Let A be aring and M an A-module. Prove that the following are equivalent.
e Every submodule of M is of finite type.
e Every increasing sequence of submodules of M eventually stabilizes.
e Every non-empty collection of submodules of M has a maximal element.
An A-module is called noetherian if it has any of these three properties. A ring
A is noetherian if it is noetherian as an A-module.
b) Suppose that A is a noetherian ring and M is an A-module of finite type. Show
that M is noetherian.
2. In this exercise, we will recall localization of rings. Let A be aring and S C A be a
multiplicative subset i.e. a subset closed under multiplication. We define a relation

on A xS, ~ by
(a,s) ~ (b,t) <= 3Jue Ss.t. ulat —bs)=0.
a) Show that ~ defines an equivalence relation on A x S.
We call AxS/ ~ the localization of A by S and denote it by S~'A. The equivalence
class of (a,s) in S™'A is often denoted 2.
b) Equip S7!'A with a ring structure s.t. the map
wg A — S_lA
defined by
a
H J—
“T
is a ring homomorphism.
c) Prove the universal property of localisation: Given a morphism of rings

¢p:A— B
s.t. ¢(S) € B* there is a unique morphism of rings
$:S'A—> B
s.t. ~
¢=¢ous

d) Let I be an ideal in A and S’ be the image of S in A/I. Prove that
(S)VTA/T ~STTA /ST

S~ is defined subsequently.

e) Show that the map q — qN A defines a map between prime ideals in S™'A and
prime ideals of A which have empty intersection with S. Show that the inverse
map is given by p — pSTLA.

We can also localise modules: Let M be an A-module. We define a relation on
M xS, ~ by

(m,s) ~ (n,t) <= FJue S st ultm—sn)=0.
This is also an equivalence relation. We call M x S/ ~ the localization of M by S

and denote it by S™'M. The equivalence class of (m,s) in S™'M is denoted .

f) Equip S™'M with a S~'A module structure which extends the A-module struc-

ture on M.
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g) Prove that given A-modules N C M. S~Y(M/N) ~ (S~'M)/(S7'N).

h) Prove that any submodule N’ C S~!'M is of the form S ~I N for some submodule
N QAM . Conclude that all ideals of S™'A are of the form S™'I for some ideal
I<A.

i) Let p <1 A be a prime ideal. For the multiplicative subset S = A\ p we denote
ST A by Ay, called the localisation of A at p. Show that A, is a local ring
with maximal ideal pA, and

Ap/pAy = Frac (A/p),

i.e., the fraction field of A at p.

j) Let M be a finitely generated A module s.t. M, = 0 for all maximal ideals
m in A. Show that M = 0. Conclude that if N C M are finitely generated A
modules s.t. My, = N, for all maximal ideals m in A, M = N.

Hint: Let M be a finitely generated A module s.t. M, = 0, show that Ann(M)N
A~ m# () where Aun(M) :={a € A:aM =0} ]

3. The aim of this exercise is to investigate localisation at primes of Dedekind domains.
To us, the crucial insight from this exercise is that the localisation of a Dedekind
ring at a non-zero prime is a principal ideal domain.

Let us start by proving that integrality is a local property:

a) Let A C B be rings. Prove that B is integral over A iff B, is integral over A,
for all p << A prime ideal.

Now let us assume A is a Dedekind domain and p <t A is a non-zero prime ideal.

b) Prove that A, is a Dedekind domain.

c) Prove that the maximal ideal pA, is a principal ideal. Conclude that A, is a
P.I.D. Also check that the residue field of A,,

Ap/pAy = Alp.
d) Let pA, = A, for m € A,. Show that every ideal in A, satisfies

for a unique integer v,(I) € Z. Check that this integer is independent of the
choice of a generator m of pA,.
e) For an ideal I < A, show that

U;/J(IAp) = vp(1)

where the right hand side is the valuation of I at p defined in the lecture.
f) Let A be a noetherian integral domain s.t. for every non-zero prime ideal p<1 A,
A, is a principal ideal domain. Prove that A is a Dedekind domain.

4. Let A be a Dedekind ring and @@ = Frac(A). Let B a domain and Q < B an
embedding. Let A C B be a non-zero A-module of finite type and = € B such that
x.A C A. Show that x € Og(A).

Deduce that for any fractional ideal § C () we have

{reQ: zfCf}=A.



