- 1. In this exercise we recall the notion of Noetherian rings.
 - a) Let A be a ring and M an A-module. Prove that the following are equivalent.
 - \bullet Every submodule of M is of finite type.
 - \bullet Every increasing sequence of submodules of M eventually stabilizes.
 - Every non-empty collection of submodules of M has a maximal element. An A-module is called *noetherian* if it has any of these three properties. A ring A is noetherian if it is noetherian as an A-module.
 - b) Suppose that A is a noetherian ring and M is an A-module of finite type. Show that M is noetherian.
- 2. In this exercise, we will recall localization of rings. Let A be a ring and $S \subseteq A$ be a multiplicative subset i.e. a subset closed under multiplication. We define a relation on $A \times S$, \sim by

$$(a,s) \sim (b,t) \iff \exists u \in S \text{ s.t. } u(at-bs) = 0.$$

a) Show that \sim defines an equivalence relation on $A \times S$.

We call $A \times S / \sim$ the localization of A by S and denote it by $S^{-1}A$. The equivalence class of (a, s) in $S^{-1}A$ is often denoted $\frac{a}{s}$.

b) Equip $S^{-1}A$ with a ring structure s.t. the map

$$\psi_S: A \to S^{-1}A$$

defined by

$$a \mapsto \frac{a}{1}$$

is a ring homomorphism.

c) Prove the universal property of localisation: Given a morphism of rings

$$\phi: A \to B$$

s.t. $\phi(S) \subseteq B^{\times}$ there is a unique morphism of rings

$$\tilde{\phi}: S^{-1}A \to B$$

s.t.

$$\phi = \tilde{\phi} \circ \psi_S$$

d) Let I be an ideal in A and S' be the image of S in A/I. Prove that

$$(S')^{-1}A/I \simeq S^{-1}A/S^{-1}I.$$

 $S^{-1}I$ is defined subsequently.

e) Show that the map $\mathfrak{q} \mapsto \mathfrak{q} \cap A$ defines a map between prime ideals in $S^{-1}A$ and prime ideals of A which have empty intersection with S. Show that the inverse map is given by $\mathfrak{p} \mapsto \mathfrak{p} S^{-1}A$.

We can also localise modules: Let M be an A-module. We define a relation on $M \times S$, \sim by

$$(m,s) \sim (n,t) \iff \exists u \in S \text{ s.t. } u(tm-sn) = 0.$$

This is also an equivalence relation. We call $M \times S / \sim$ the localization of M by S and denote it by $S^{-1}M$. The equivalence class of (m,s) in $S^{-1}M$ is denoted $\frac{m}{s}$.

f) Equip $S^{-1}M$ with a $S^{-1}A$ module structure which extends the A-module structure on M.

- g) Prove that given A-modules $N \subseteq M$. $S^{-1}(M/N) \simeq (S^{-1}M)/(S^{-1}N)$.
- h) Prove that any submodule $N' \subseteq S^{-1}M$ is of the form $S^{-1}N$ for some submodule $N \subseteq M$. Conclude that all ideals of $S^{-1}A$ are of the form $S^{-1}I$ for some ideal $I \triangleleft A$.
- i) Let $\mathfrak{p} \triangleleft A$ be a prime ideal. For the multiplicative subset $S = A \setminus \mathfrak{p}$ we denote $S^{-1}A$ by $A_{\mathfrak{p}}$, called the localisation of A at \mathfrak{p} . Show that $A_{\mathfrak{p}}$ is a local ring with maximal ideal $\mathfrak{p}A_{\mathfrak{p}}$ and

$$A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} \simeq \operatorname{Frac}(A/\mathfrak{p}),$$

i.e., the fraction field of A at \mathfrak{p} .

j) Let M be a finitely generated A module s.t. $M_{\mathfrak{m}} = 0$ for all maximal ideals \mathfrak{m} in A. Show that M = 0. Conclude that if $N \subseteq M$ are finitely generated A modules s.t. $M_{\mathfrak{m}} = N_{\mathfrak{m}}$ for all maximal ideals \mathfrak{m} in A, M = N.

Hint: Let M be a finitely generated A module s.t. $M_{\mathfrak{m}} = 0$, show that $\mathrm{Ann}(M) \cap A \setminus \mathfrak{m} \neq \emptyset$ where $\mathrm{Ann}(M) := \{a \in A : aM = 0\}.$

3. The aim of this exercise is to investigate localisation at primes of Dedekind domains. To us, the crucial insight from this exercise is that the localisation of a Dedekind ring at a non-zero prime is a principal ideal domain.

Let us start by proving that integrality is a local property:

a) Let $A \subseteq B$ be rings. Prove that B is integral over A iff $B_{\mathfrak{p}}$ is integral over $A_{\mathfrak{p}}$ for all $\mathfrak{p} \triangleleft A$ prime ideal.

Now let us assume A is a Dedekind domain and $\mathfrak{p} \triangleleft A$ is a non-zero prime ideal.

- b) Prove that $A_{\mathfrak{p}}$ is a Dedekind domain.
- c) Prove that the maximal ideal $\mathfrak{p}A_{\mathfrak{p}}$ is a principal ideal. Conclude that $A_{\mathfrak{p}}$ is a P.I.D. Also check that the residue field of $A_{\mathfrak{p}}$,

$$A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} \simeq A/\mathfrak{p}.$$

d) Let $\mathfrak{p}A_{\mathfrak{p}} = \pi A_{\mathfrak{p}}$ for $\pi \in A_{\mathfrak{p}}$. Show that every ideal in $A_{\mathfrak{p}}$ satisfies

$$I = \pi^{v_{\mathfrak{p}}'(I)} A_{\mathfrak{p}}$$

for a unique integer $v_{\mathfrak{p}}'(I) \in \mathbb{Z}$. Check that this integer is independent of the choice of a generator π of $\mathfrak{p}A_{\mathfrak{p}}$.

e) For an ideal $I \triangleleft A$, show that

$$v_{\mathfrak{p}}'(IA_{\mathfrak{p}}) = v_{\mathfrak{p}}(I)$$

where the right hand side is the valuation of I at \mathfrak{p} defined in the lecture.

- f) Let A be a noetherian integral domain s.t. for every non-zero prime ideal $\mathfrak{p} \triangleleft A$, $A_{\mathfrak{p}}$ is a principal ideal domain. Prove that A is a Dedekind domain.
- 4. Let A be a Dedekind ring and $Q = \operatorname{Frac}(A)$. Let B a domain and $Q \hookrightarrow B$ an embedding. Let $\Lambda \subseteq B$ be a non-zero A-module of finite type and $x \in B$ such that $x.\Lambda \subseteq \Lambda$. Show that $x \in \mathcal{O}_B(A)$.

Deduce that for any fractional ideal $\mathfrak{f} \subseteq Q$ we have

$$\{x\in Q\colon x.\mathfrak{f}\subseteq\mathfrak{f}\}=A.$$