- 1. The aim of this exercise is to classify which prime ideals are inert, split and ramified in a quadratic extension. Let $K = \mathbb{Q}(\sqrt{D})$ be a quadratic extension and let \mathcal{O}_K be the maximal order in K and let $p \in \mathbb{Z} \{0\}$ prime. You can assume throughout that every ideal in \mathcal{O}_K admits a unique factorization into prime ideals. Moreover, letting $\operatorname{Nr}(I) = [\mathcal{O}_K \colon I]$ for any ideal $\{0\} \neq I \lhd \mathcal{O}_K$, we have that $\operatorname{Nr}(I.J) = \operatorname{Nr}(I)\operatorname{Nr}(J)$.
 - a) Show that $\mathcal{O}_K = \mathbb{Z}[\alpha]$ for some $\alpha \in K$. Deduce that the minimal polynomial $\mu_{\alpha}(X)$ of α is a monic polynomial in $\mathbb{Z}[X]$.
 - b) Prove that

$$\mathcal{O}_K/p\mathcal{O}_K \simeq \mathbb{F}_p[X]/(\mu_\alpha(X))$$

- c) Show that one of the following is true:
 - (i) The ideal (p) is prime in \mathcal{O}_K . (In this case we say (p) is *inert*.)
 - (ii) The ideal (p) splits into two distinct prime ideals in \mathcal{O}_K . (In this case we say (p) is totally split.)
 - (iii) The ideal (p) is a square of a prime ideal in \mathcal{O}_K . (In this case we say (p) is ramified.)
- d) Use the above statement to first find the inert primes in terms of D.
- e) Prove that p is a ramified prime if and only if $\mathcal{O}_K/p\mathcal{O}_K$ has nilpotents. Find the ramified and split primes in terms of $\Delta(\mathcal{O}_K)$.
- 2. Let K be a number field and let $f: K \to \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$ denote the geometric embedding of K.
 - a) Show that for any two lattices $M, N \subseteq K$, the product

$$M.N = \left\{ \sum_{i=1}^{r} m_i n_i : r \in \mathbb{N} \cup \{0\}, m_i \in M, n_i \in N \right\}$$

is a lattice in K.

b) Given a lattice $\Lambda \subseteq K$ and a \mathbb{Z} -basis $\mathcal{B} = (\omega_1, \dots, \omega_d)$ of Λ , we defined the discriminant of \mathcal{B} by

$$\Delta(\mathcal{B}) = \left(\det(\sigma_i \omega_j)\right)^2$$

Show that $\Delta(\mathcal{B})$ only depends on Λ , i.e., is independent of the choice of \mathcal{B} and the choice of the type $(\sigma_1, \ldots, \sigma_{r_1+r_2})$.

c) Show that

$$\Delta(\mathcal{B}) = (-4)^{r_2} \operatorname{covol}(f(\Lambda))^2.$$

d) Let $P(X) = X^2 + bX + c \in \mathbb{Q}[X]$ irreducible and let $\alpha \in \mathbb{C}$ be a solution to P, i.e., $P(\alpha) = 0$. Show that $(1, \alpha)$ is a basis of $\mathbb{Q}(\alpha)$ and

$$\Delta(1,\alpha) = b^2 - 4c.$$

3. Given a lattice $L \leq K$, define

$$\mathfrak{O}_L := \{x \in K \colon xL \subseteq L\}.$$

Show that \mathcal{O}_L is an order.

4. Using SageMATH, write a function that takes as input a non-square $D \in \mathbb{Z}$ and a natural number N and returns the proportion of primes up to N which are ramified, inert, and split in $K = \mathbb{Q}(\sqrt{D})$ respectively.

Make a conjecture about the asymptotic proportions as $N \to \infty$.

Hint: Choose $N > |\Delta(1,\alpha)|^2$ for large $|\Delta(1,\alpha)|$, where $\alpha \in K$ is chosen such that $\mathcal{O}_K = \mathbb{Z}[\alpha]$. Note that $\Delta(1,\alpha)$ is the discriminant of the maximal order in K, which is called the discriminant of K. In SageMATH, the discriminant of the number field K can be obtained by invoking K.discriminant(). For example, in case of the Gaussian integers (D = -1), running

```
K.<i> = NumberField(x^2 + 1)
Delta = K.discriminant()
```

will assign the value $-4 = \Delta(1,i)$ to Δ . Other commands you might find useful are

```
# construct the maximal order in the number field K
0 = K.ring_of_integers()
# construct the ideal (n) in 0
I = 0.ideal(n)
# return the prime factorization of I in 0
I.factor()
```