- 1. Let $d \in \mathbb{Z}$ a square-free integer and let $K = \mathbb{Q}(\sqrt{d})$.
 - a) Show that $d \equiv 1, 2, 3 \mod 4$.
 - b) Show that

$$\mathcal{O}_K = \begin{cases} \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] & \text{if } d \equiv 1 \mod 4, \\ \mathbb{Z}\left[\sqrt{d}\right] & \text{otherwise.} \end{cases}$$

- 2. Let m, n > 1 be distinct, squarefree integers. Let $K = \mathbb{Q}(\sqrt{-m}, \sqrt{-n})$ and denote by μ_K the roots of unity in K.
 - a) Show that K/\mathbb{Q} is a Galois extension of degree 4 and show that

$$Gal(K/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$$

- b) Show that K contains exactly three pairwise non-isomorphic proper subfields. List all of them and deduce that K contains a unique real quadratic subfield $L_{\mathbb{R}}$.
- c) Let $L \subseteq K$ be a subfield. Show that $\mathcal{O}_L^{\times} = L \cap \mathcal{O}_K^{\times}$.
- d) Let $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$ be the unique non-trivial element fixing $L_{\mathbb{R}} \subseteq K$. Show that the map

$$\phi \colon \mathcal{O}_K^{\times} \to \mu_K, \quad \varepsilon \longmapsto \frac{\varepsilon}{\sigma(\varepsilon)}$$

is a well-defined group homomorphism.

Hint: Show that an element of \mathcal{O}_K^{\times} is a root of unity if and only if the absolute values of all conjugates equal 1. Then apply an explicit description of σ in terms of the elements of $\operatorname{Gal}(\mathbb{Q}(\sqrt{-m})/\mathbb{Q})$ and $\operatorname{Gal}(\mathbb{Q}(\sqrt{-n})/\mathbb{Q})$.

- e) Show that $[\mathcal{O}_K^{\times}: \mu_K \mathcal{O}_L^{\times}] \leq 2$.
- 3. Let K/\mathbb{Q} a totally real number field. Let $d=[K\colon\mathbb{Q}]$. We call an element $x\in K$ totally positive if

$$\forall \sigma \in \operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{R}) \quad \sigma x > 0.$$

a) Let \mathcal{F}_K denote the group of fractional ideals in K and let \mathcal{P}_K^+ be the principal fractional ideals generated by totally positive elements. Prove that $\mathcal{P}_K^+ < \mathcal{F}_K$ is a subgroup and show that

$$\mathrm{Cl}^+(K) = \mathfrak{F}_K/\mathfrak{P}_K^+$$

is a finite group.

b) Let

$$\mathcal{O}_{K_+}^{\times} = \{ z \in \mathcal{O}_K^{\times} \colon z \text{ is totally positive} \}.$$

Prove that $\mathcal{O}_{K_+}^{\times} \cong \mathbb{Z}^{d-1}$.

c) Suppose that $\Sigma \subseteq \operatorname{Hom}_{\mathbb{Q}}(K,\mathbb{R})$ is a proper, non-empty subset. Show that there exists $\varepsilon \in \mathcal{O}_K^{\times}$ totally positive such that for all $\sigma \in \operatorname{Hom}_{\mathbb{Q}}(K,\mathbb{R})$ we have

$$\sigma \varepsilon \in]0,1[\iff \sigma \in \Sigma.$$

4. a) (Abel's summation formula) Prove the following statement. Given a sequence $(a_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$, for $\xi>0$ we set $A(\xi)=\sum_{n\leqslant\xi}a_n$. Let $0< y< x<\infty$ and

 $\psi \in C^1([y,x])$. Then

$$\sum_{y < n < x} a_n \psi(n) = A(x)\psi(x) - A(y)\psi(y) - \int_y^x A(\xi)\psi'(\xi)d\xi.$$

b) Prove that Riemann's ζ -function

$$\zeta(s) = \sum_{n \in \mathbb{N}} \frac{1}{n^s} \quad (\text{Re}(s) > 1)$$

admits a meromorphic continuation to $\{s\colon \operatorname{Re}(s)>0\}$ with unique simple pole at s=1 and residue

$$\operatorname{Res}_{s=1}\zeta = 1.$$

c) Let K/\mathbb{Q} be a number field of degree d. For all $n \in \mathbb{N}$, let

$$r_K(n) = |\{\mathfrak{a} \lhd \mathfrak{O}_K \colon \operatorname{Nr}(\mathfrak{a}) = n\}|.$$

Show that the Dedekind ζ -function ζ_K has a meromorphic continuation to $\{s\colon \operatorname{Re}(s)>1-\frac{1}{d}\}$ with unique simple pole at s=1 and residue

$$\operatorname{Res}_{s=1}\zeta_K = \frac{2^{r_1}(2\pi)^{r_2}h(\mathcal{O}_K)\operatorname{reg}(\mathcal{O}_K)}{\omega_K\sqrt{\operatorname{disc}(\mathcal{O}_K)}},$$

where ω_K is the number of roots of unity in K.