- 1. Let K/Q be an extension of the number field Q, L/K a finite extension, and $\mathfrak{p} \triangleleft \mathfrak{O}_Q$ a non-zero prime ideal, $\mathfrak{P} \in \operatorname{Spec}_{\mathfrak{p}}(\mathfrak{O}_K)$, and $\mathfrak{Q} \in \operatorname{Spec}(\mathfrak{O}_L)$.
 - a) Show that $\mathfrak{Q} \in \operatorname{Spec}_{\mathfrak{p}}(\mathcal{O}_L)$ if and only if $\mathfrak{Q} \cap \mathcal{O}_K \in \operatorname{Spec}_{\mathfrak{p}}(\mathcal{O}_K)$.
 - b) Show that

$$e_{\mathfrak{Q}|\mathfrak{p}} = e_{\mathfrak{Q}|\mathfrak{P}} \cdot e_{\mathfrak{P}|\mathfrak{p}} \quad \text{and} \quad f_{\mathfrak{Q}|\mathfrak{p}} = f_{\mathfrak{Q}|\mathfrak{P}} \cdot f_{\mathfrak{P}|\mathfrak{p}}.$$

- 2. Let K/Q be an extension of number fields and let $\mathfrak{p} \in \operatorname{Spec}(\mathfrak{O}_Q)$ a non-zero prime unramified in K. Let $\mathfrak{P} \in \operatorname{Spec}_{\mathfrak{p}}(\mathfrak{O}_K)$. Recall that the Frobenius element $\left(\frac{K/Q}{\mathfrak{N}}\right) \in$ $D_{\mathfrak{P}}$ denotes the preimage of the Forbenius frob_{$|k_{\mathfrak{p}}|$} $\in \operatorname{Gal}(k_{\mathfrak{P}}/k_{\mathfrak{p}})$.
 - a) Show that $\binom{K/Q}{\mathfrak{P}}$ is the unique element $\sigma \in D_{\mathfrak{P}}$ such that

$$\forall z \in \mathcal{O}_K \quad \sigma(z) = z^{|k_{\mathfrak{p}}|} \mod \mathfrak{P}.$$

b) Let $\sigma \in \operatorname{Gal}(K/Q)$, show that

$$\sigma \circ \left(\frac{K/Q}{\mathfrak{P}}\right) \circ \sigma^{-1} = \left(\frac{K/Q}{\sigma(\mathfrak{P})}\right).$$

- c) Show that the set of Frobenius elements at primes above p is a single conjugacy class in Gal(K/Q).
- 3. The following exercise is an exercise in Galois Theory. If time is scarce, we encourage you to just use the results and focus on the other exercises instead.

Let K be a field, let $L_1, L_2 \subset \overline{K}$ be finite Galois extensions of K. Let L_1L_2 denote their composite field, i.e., L_1L_2 is the smallest subfield of \overline{K} containing the union $L_1 \cup L_2$.

- a) Show that L_1L_2/K is Galois.
- b) Consider the map given by

$$\Psi \colon \operatorname{Gal}(L_1 L_2/K) \longrightarrow \operatorname{Gal}(L_1/K) \times \operatorname{Gal}(L_2/K),$$

$$\sigma \longmapsto (\sigma|_{L_1}, \sigma|_{L_2}),$$

where $\sigma|_{L_i}$ denotes the restriction of σ to L_i . Show that Ψ is an injective group homomorphism.

c) Show that the group homomorphism

$$\Phi \colon \operatorname{Gal}(L_1 L_2 / L_1) \longrightarrow \operatorname{Gal}(L_2 / L_1 \cap L_2),$$

$$\sigma \longmapsto \sigma|_{L_2},$$

is a well defined isomorphism of groups.

Hint: For surjectivity, show that the fixed field of $\operatorname{im}(\Phi)$ equals $L_1 \cap L_2$, i.e.,

$$\{x \in L_2 \colon \forall \sigma \in \operatorname{im}(\Phi) \ \sigma(x) = x\} = L_1 \cap L_2.$$

d) Prove that if $L_1 \cap L_2 = K$, then Ψ is an isomorphism and hence

$$\operatorname{Gal}(L_1L_2/K) \cong \operatorname{Gal}(L_1/K) \times \operatorname{Gal}(L_2/K).$$

4. Let $L_1, L_2 \subset \overline{\mathbb{Q}}$ be finite Galois extensions of \mathbb{Q} such that $L_1 \cap L_2 = \mathbb{Q}$. We denote $n_1 = [L_1 : \mathbb{Q}]$ and $n_2 = [L_2 : \mathbb{Q}]$. Furthermore, for i = 1, 2, let \mathbb{O}_i be the ring of integers in L_i and

$$\left(z_1^{(i)},\dots,z_{n_i}^{(i)}\right)\in\mathcal{O}_i^{n_i}$$

be \mathbb{Z} -bases of \mathcal{O}_i . Finally, set

$$d_i = \operatorname{disc}_{L_i/\mathbb{Q}} \left(z_1^{(i)}, \dots, z_{n_i}^{(i)} \right) \in \mathbb{Z},$$

and assume that d_1 and d_2 are relatively prime, i.e., $(d_1, d_2) = (1)$ as ideals in \mathbb{Z} .

- a) Show that L_1L_2 is a number field of degree n_1n_2 .
- b) Let $\beta_1, \ldots, \beta_{n_2} \in L_1$ be such that

$$\alpha := \beta_1 z_1^{(2)} + \dots + \beta_{n_2} z_{n_2}^{(2)} \in \mathcal{O}_{L_1 L_2}.$$

Prove that the elements $d_2\beta_1, \ldots, d_2\beta_{n_2}$ are integral.

Hint: Let $\operatorname{Gal}(L_1L_2/L_1) = \{\sigma_1^{(2)}, \dots, \sigma_{n_2}^{(2)}\}$ and $T_2 = (\sigma_j^{(2)}(z_i)) \in \overline{\mathbb{Q}}^{n_2 \times n_2}$. Note that

$$\left(\sigma_1^{(2)}(\alpha), \dots, \sigma_{n_2}^{(2)}(\alpha)\right) = (\beta_1, \dots, \beta_{n_2})T_2.$$

c) Deduce that the tuple

$$\mathcal{B} = \left(z_{j_1}^{(1)} z_{j_2}^{(2)} : 1 \leqslant j_i \leqslant n_i\right)$$

forms a \mathbb{Z} -basis for the ring of integers in L_1L_2 .

Hint: \mathcal{B} is a \mathbb{Q} -basis of L_1L_2 .

d) Prove that

$$\operatorname{disc}_{L_1L_2/\mathbb{Q}}(\mathfrak{B}) = d_1^{n_2} d_2^{n_1}.$$

Hint: This is a rather long computation in rearranging the matrix defining the discriminant; cf. §3 of Lecture 4.

5. For each positive integer $n \ge 1$, let ζ_n be a primitive n-th root of unity. The aim of this exercise is to show that the ring of integers of the cyclotomic field $\mathbb{Q}(\zeta_n)$ is given by

$$\mathcal{O}_{\mathbb{Q}(\zeta_n)} = \mathbb{Z}[\zeta_n].$$

a) Let $[n_1, n_2]$ denote the least common multiple of n_1 and n_2 . Prove that

$$\mathbb{Q}(\zeta_{n_1}, \zeta_{n_2}) = \mathbb{Q}(\zeta_{[n_1, n_2]})$$
 and $\mathbb{Z}[\zeta_{n_1}, \zeta_{n_2}] = \mathbb{Z}[\zeta_{[n_1, n_2]}].$

Hint: You can choose the roots ζ_1 and ζ_2 such that, for example,

$$\zeta_{[n_1,n_2]}^{\frac{n_2}{(n_1,n_2)}} = \zeta_{n_1},$$

where (n_1, n_2) denotes the greatest common divisor of n_1 and n_2 respectively.

b) Prove that $\mathbb{Q}(\zeta_{n_1}) \cap \mathbb{Q}(\zeta_{n_2}) = \mathbb{Q}(\zeta_{(n_1,n_2)}).$

Hint: First, show that $\mathbb{Q}(\zeta_{(n_1,n_2)}) \subset \mathbb{Q}(\zeta_{n_1}) \cap \mathbb{Q}(\zeta_{n_2})$. Then use Exercise 3c together with $[\mathbb{Q}(\zeta_n):\mathbb{Q}] = \phi(n)$ to show that

$$[\mathbb{Q}(\zeta_{n_2})\colon \mathbb{Q}(\zeta_{n_1})\cap \mathbb{Q}(\zeta_{n_2})] = \frac{[\mathbb{Q}(\zeta_{[n_1,n_2]})\colon \mathbb{Q}]}{[\mathbb{Q}(\zeta_{n_1})\colon \mathbb{Q}]} = [\mathbb{Q}(\zeta_{n_2})\colon \mathbb{Q}(\zeta_{(n_1,n_2)})].$$

c) Conclude that $\mathcal{O}_{\mathbb{Q}(\zeta_n)} = \mathbb{Z}[\zeta_n]$ and that all the divisors of the discriminant of $\mathcal{O}_{\mathbb{Q}(\zeta_n)}$ divide n.

Hint: Use induction on the number of prime divisors of n.

d) Prove that a non-zero prime $(p) \in \operatorname{Spec}(\mathbb{Z})$ is ramified in $\mathbb{Q}(\zeta_n)$ if and only if p|n.