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CHAPTER 1

Fermat’s equation

“J’ai trouvé une merveilleuse démonstration de cette proposition,
mais la marge est trop étroite pour la contenir.”

I.1. Introduction

Diophantine equations are equations of the shape
P(:Ch"'?IT) = 05

where P(X,...,X,) is a polynomial in a number of variables with integral coefficients and where one
looks for solutions in integers (x1,...,x,) € Z". Fermat’s equations are the diophantine equations
in three unknowns given by
"y = 2", (z,y,2) €Z3 (I.1)
for n € N3 an integer. Observe that, since the polynomial X" 4+Y"™ — Z" is homogeneous, whenever
(70, Y0, 20) € Z3 is a solution, then for any a € Z the triple (axq, ayo,azo) is also a solution. So it
is natural to search for the primitive solutions (z,y, z), i.e., solutions for which z,y, z are coprime
(i.e., ged(z,y,2) = 1).
The case n = 2,
22 +y? =22 (2,y,2) € Z°, ged(z,y,2) =1, (1.2)

is known since antiquity and there is a simple procedure to find all its solutions.

THEOREM. All primitive solution to the equation (1.2) are obtained as follows.

(1) Take t = u/v a rational number (written as an @rreducible fraction, ged(u,v) = 1), and
let Dy the line with slope t and passing through the point (1,0), i.e., the line given by the

equation
V=tU-1).
(2) The line Dy intersect the unit circle
U?+Vv?=1

in two distinct points: (1,0) and

P t?—1 2t _ u? —v? 2uv
e 2r1) w202 w2 a2
and P, has rational coordinates.
(3) The triple (u? — v?, —2uv,u? + v?) is a primitive solution to (1.2).

In particular the equation (1.2) admits infinitely many solutions.

Fermat was the first to realize that for n > 3 the situation is very different and he claimed his
famous Fermat’s Last Theorem (FLT).

— “Un cube n'est jamais la somme de deuz cubes,
une puissance quatrieme n’est jamais la somme de deux puissances quatriemes
et plus généralement aucune puissance supérieure a 2 n’est la somme de deux puissances
analogues.”
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He then established the FLT for n = 4 and for the other n’s wrote his famous sentence.
In modern terms Fermat’s claim is rewritten as follows.

THEOREM. For n > 3 the only primitive solutions (x,y,z) to Fermat’s equation (I1.1) are con-
tained in the set

{(e1,€2,0), (£1,0,e2), (0,e1,62): €1,62 € {£1}}.

Since their introduction Fermat’s equations and the search for their solutions have captured
the minds of many mathematicians and have indeed been largely responsible for the development
of algebraic number theory. It is only in 1995 that Andrew Wiles proved Fermat’s claim, the
culmination of a serie of tremendous developments that have taken place during the 19th and 20th
century.

In this chapter, as a warm-up, we will discuss the very first cases of Fermat’s equation and will
start with a variant of the case n = 2 due to Fermat.

I.2. Sums of two squares
THEOREM 1.1 (Fermat). An integer n € Z — {0} is a sum of two squares, i.e.,
n=a’+b a,be,
if and only if the following are true.

-n>0.
— n is the product of a square and a (possibly empty) product of prime numbers = 1,2 (mod 4).

In particular a prime p > 2 is a sum of two squares if and only if p = 1,2 (mod 4).
Given a complex number z = a + ib, then
27 = |z|? = a® + 17,

Thus, given n € N, the question whether n is a sum of two squares is equivalent to the question
whether there exists z = a + ib € Z + iZ such that

Z.Z =n.

I1.2.1. The ring of Gaussian integers.
ProrosiTiON 1.2.1. The additive subgroup of C
Z+iZ ={a+1ib:abeZ}
is a subring of C, called the ring of Gaussian integers. We also have the equality
Z4iZ = Z[i] = {P(i): P(X) = ag X%+ aq 1 X' 4+ ap € Z[X]}.
Moreover the field of fractions of Z[i] is
Qi) = Qli] = Q +iQ.

This field is called the field of Gaussian numbers.

ProOF. Clearly Z + iZ is an additive subgroup containing Z, hence 0, 1.
Given a + ib, c + id € Z + iZ, we have

(a+1b).(c+id) = (ac — bd) + i(bc + ad) € Z +iZ,

hence Z +iZ is a ring. Note that Z44Z is the image of the evaluation at i restricted to the subspace
of polynomials of degree at most one inside Z[X]. Therefore Z + iZ C Z]i].
We have in fact
Z +1i7 = 7Ji
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as Z[i] is the smallest subring of C containing both Z and i. Alternatively, one uses that i> = —1
which implies that for any
P(X) = azaX** + aga 1 X*7 + -+ ag € Z[X]
we have
P(i) = azq(—1)? + agg_1 (1) Vi 4 -+ ap € Z +iZ.
Clearly
Q+iQ c Q] ¢ Qi) = Frac(Z[i])

and the ring Q +¢Q is a a field since it is stable under addition and multiplication and for non-zero

a+ib € Q+ iQ we have

L1 a—1b ,
Therefore, Q(i) being the smallest subfield of C containing Q and i, we have Q(i) C Q + ¢Q and
hence equality. O

DEFINITION 1.1. The norm on Q(%) is the map
Nr(z) = 2.2 = a® + b*.
PROPOSITION 1.2.2. The norm is Q-valued, multiplicative, definite (i.e., z=0 <= Nr(z) =0),
and Nr(Z[i]) C Zxo.
ProprosITION 1.2.3. We have
Z[i)* = {£1,+i} = {z € Z[i], Nr(z) = 1}.

PROOF. If z € Z[i]* is a unit, by multiplicativity of the norm, we have Nr(z) € Z* = {£1},
hence Nr(z) = a? + b? = 1 which implies that z € {£1, 44} and these are obviously units. Alterna-
tively if Nr(z) = 1 then 2.z = 1 s0 2~ = z € Z[i]*. O

Another consequence of the multiplicativity of the norm is the following:

COROLLARY 1.2.4. If m,n are sums of two squares then so is m.n.

The converse is not true: 9 = 3.3 is a sum of two squares but 3 is not. Nevertheless there is a
partial converse which we will prove later.

ProposITION 1.2.5. If (m,n) =1, then
mn=0+0 «<— m=0+0andn=0+010.
To prove this we will need the following fundamental result.

PROPOSITION 1.2.6. The ring Z[i] is a Principal Ideal Domain (PID): Z[i] is a domain (i.e.,
zw=0 = zorw =0) and every ideal q C Z[i] is generated by one element, i.e., there erists
q € Z[i] such that

q= (q) = ¢Z[i].
PRrROOF. This follows from a stronger property, namely Z[i] is a euclidean ring:
Vz,q € Z[i], q # 0, 3k,r € Z[i] such that Nr(r) < Nr(q), z =gk +r.
There exists k € Z[i] such that
|z/q — k| < 1.
Indeed any point—and thus also z/g—in C is at distance < v/2/2 < 1 from an element k of Z[i].
We choose
r=z—kq € Zi.
Then
[r| = |z — gk| < |q| <= Nr(z — ¢k) < Nr(q).

This proves that Z[i] is euclidean.
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Let q C Z[i] be a non-zero ideal. Let 0 # ¢ € q such that Nr(g) is minimal among the norms of
elements in q (such ¢ exists since Nr takes values in N). Let 0 # b € q, then there exists r € Z[i]
such that b = ¢k + r with Nr(r) < Nr(¢q) and r = b — gk € q; therefore r = 0 and b = gr € ¢Z[i]. As
b was arbitrary, we obtain that

qZ[i] C q C qZ[i].
O

PROPOSITION 1.2.7. Let q = (¢q) be a non zero ideal generated by ¢ = a + ib € Zli], then Z[i]/q
is finite and
|Z[i]/q| = Nx(q) = a® + b*.
PROOF. One has
q=(a+ib)(Z+1iZ) = Z(a + ib) + Z(—b + ia)
and the index of q in Z[i] is the index of Z(a,b) + Z(—b,a) in Z*> = Z(1,0) + Z(0,1). As of the
discussion in Section A.2.1, this index is equal to

det (a _b)‘ =a? + V2.
b a

O

1.2.2. Prime factorisation in a PID. Let us recall that for a general ring O we have the
following basic operations/definitions regarding the set of ideals:

— Given two ideals m,n C O, we say that m divides n if n C m. This relation is denoted by
m|n.
— Given a subset M C O, we denote by (M) or (m: m € M) the ideal generated by M, i.e.,
the smallest ideal in O containing M.
— Given two ideals m,n C O we define the following ideals:
m+n:=(m+n:memnéecn)=(mn),
mn:=(mn:memmnen) CmNn,

— A proper ideal p C O is prime if O/p is a domain, i.e., for any a,b € O, if a.b € p, then
either a € p or b € p. The set of prime ideals is denoted by

Spec(0)

(for “spectrum”) and a typical non-zero prime will be denoted p.

— A proper ideal m C O is maximal if it is maximal, relative to inclusion, amongst all proper
ideals (i.e., it is not contained in any distinct proper ideal). Equivalently, an ideal m is
maximal if O/m is a field (in particular a maximal ideal is a prime ideal). The set of
maximal ideals is denoted by

Specmax(o)'
We recall that the ring O is a domain if for all a,b € O we have
ab=0p = a=0p orb=00.

DEFINITION 1.2. A Principal Ideal Domain (PID) O is a ring which is a domain and for which
every ideal m C O is principal, i.e., of the form

m=(m)=m.0 = {m.a, a € O}

for some m € O.
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THEOREM 1.2 (Factorisation in PIDs). In a PID O, every non-zero prime ideal is maximal.
Moreover, for every ideal m, there exists a unique tuple of natural integers (vy(m))y prime tndexed
by Spec(O) such that vy(m) = 0 for all but finitely many p and such that m can be written as the

following (finite) product:
m= H p’uﬂ (m)’
p

where p° := O and the product runs over the non-zero prime ideals.

Alternatively, call a non-zero element p € O “prime” if it is the generator of a prime ideal
p = pO and for every non-zero prime ideal p C O choose an associated prime p (i.e., p = (p) = pO).
By considering the prime factorisation of the principal ideal p = (m) generated by m € O, i.e.,

(m) = [T pr® = [,
P P
we obtain that any m € O can be written as a product of prime powers:

m = u. l_Ipvp(’n)7
p

where u € O and v,(m) = vp(m). Moreover, for non-zero m € O, this factorisation is unique
(given the choice of a generator p for each prime ideal p).

REMARK L.1. The integer vy(m) is called the valuation of m at the prime ideal p (or the p-adic
valuation of m) and likewise for v,(m).

Because of this the standard factorisation properties of Z extend to a general PID O. Let
m,n C O non-zero ideals. Then

min <= Vp, vy(m) < v,(n),
m.n—= Hpvp (m)+vp (t‘l)’
p

[m, n] := largest ideal contained in m and n =mnNn= Hpmax(”“(m)’vp(“)),
p
(m,n) := smallest ideal containing both m and n =m+n = Hpmi”(”“(m)’”"(“)).
p
In particular, we obtain the following equivalent characterization of coprimality of ideals:
(m,n) =0 <= ¥p, vy(m).v,(n) =0.

1.2.3. Proof of Proposition 1.2.5. Consider two integers m,n € N such that (m,n) =1 (in

the usual sense) and suppose that m.n = O+ O or in other terms
m.n = (a + ib)(a —ib), a + ib € Z[i].
Let
a = (a+ ib)Z][i].
Applying complex conjugation we have
a=(a+ib)Z[i] = (a — ib)Z[i] = (a — ib)Z]i].
Observe that the ideals (m) and (n) are coprime in Z[i]:
1 € mZ+nZ =1 € mZ[i| + nZ[i] = (m) + (n).

In other terms their decompositions into prime factors are disjoint.

Since a|(mn) = (m).(n) we have

a = (a,(m)).(a, (n))
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and likewise

and
(m).(n) = (a, (m))(@, (m))(a, (n))(@, (n)).
Again, since (m) and (n) are coprime we conclude that
(m) = (a, (m))(@, (m)), (n) = (a,(n))(@, (n)).

Since T = m we have

so if we write
(a,(m)) = (a' +b")Z][i]
we have
(@, (m)) = (a,(m)) = (a’ —ib")Zld].
Since
(m) = (a, (m))(@, (m)) = (¢’ +ib)(a’ —b)Z[i) = (a" +b")Zi],
there is some v’ € Z[i] such that
m=1u'.(d +it).(d —ib) = (a> + V).
Since m > 1 we have v/ > 1 so v’ = 1 and m = O+ 0. Exchanging the roles of m and n we
conclude. |

1.2.4. Gaussian primes. Proposition 1.2.5 reduces the proof of Fermat’s theorem to the case
where m = p is a prime and we have to show that

p=0+0 < p=1,2(mod4).
Such prime are called Gaussian primes.
Observe that
2=12412 =27, 2 =1+1.

It is therefore sufficient to show that

THEOREM 1.3. Let p be an odd prime. The following are equivalent.
(1) p=0+0.
(2) p=1(mod4).
(8) —1 is a square modulo p.

PROOF. If p = a? + b2, then (p,ab) = 1 (for example, if p|a, then p = a? + b? implies p|b and
it follows that p?la® + b®> = p, which is absurd). Let a{~") € Z be such that a(~ (mod p) is the
multiplicative inverse of @ mod p (i.e., a.a(~") =1 (modp)); we have

1+ (a"")2%? =1+ (a"Yb)% = 0 (mod p)
and hence —1 is a square in F\ = (Z/pZ)*.
Hence
o = (al"Yb)? (mod p) € F
has exactly order 4 (o® = —1 € F) and therefore 4|[F)| = p — 1.
Alternatively (that was proposed by someone in the audience), for any a € Z one has a? =
0 (mod4) if a is even and a? = 1 (mod 4) if a is odd therefore if p is odd a and b must have distinct
parities and
p=a’+b>=140(mod4).
Now suppose that 4[p — 1. Since F; is cyclic, it admits a cyclic subgroup of order 4. If o € F;
is a generator of that subgroup, then a2 has order 2 exactly so equals —1 and —1 = a? is a square
in .
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Let us show now that if —1 is a square modulo p, then p =+ .
Suppose again that —1 = o € F, and let m € Z such that m = a (mod p). Then

m? + 1= (m+1i).(m—1) € pZ[i].
Let us consider the ideal
p = (m +14)Z[i] + pZ[i]
generated by m + i and p. Write this ideal
p = (a+ib)Z[3].
ince p € Z[i] we have a surjective map
Z[il/pZ]i] — Zi]/p

SO

|Z[i]/p| = a® +b” divides |Z[i]/(p)| = p*
therefore we have either

a® 4+ b* = (a +ib)(a —ib) = 1, p or p*.

The first case cannot occur: this would imply that 1 € p but for any z € p we have
z=u(m+1) +v.p, u,v € L]
and
Nr(z) = (u(m + 4) + v.p)(u(m + i) + v.p)
= Nr(u)(m? + 1) + Nr(v)p? + p(u(m + )7 + u(m + i)v) = 0 (mod p).

There third case cannot occur either since m + ¢ ¢ pZ[i] (the elements of pZ[i] are the Gaussian
integers whose real and imaginary parts are divisible by p) so we have

|Z[i)/p| = a® + b* = p.
O
REMARK 1.2. In addition we see that p = (m+1)Z[i]+pZ[i] is a prime ideal: the quotient Z[i]/m
is a ring of order p and since the map
x € Z/pZ ~F, — x (modp) = Z[i]/p

induced by the inclusion Z C Z[i] is non-trivial it is injective and an isomorphism.

1.3. Fermat’s equation for n =3

As pointed out before, Fermat established his FLT when n = 4 (we leave it as a non-trivial
exercise; cf. [1, §1.1.2]). This enabled him to make the following reduction.

ProrosITION 1.3.1. To prove FLT completely, it is sufficient to prove it when n = p is an odd
prime.

PROOF. Suppose we know FLT for all odd primes and for n = 4. Let n > 6 which is neither 4
or an odd prime, then n can be factored as n = k.£ where k is either 4 or an odd prime p. Suppose
we have a primitive solution

" +y" = z2"
this can be written as
(@) + (y)F = (29"
and (2f,y%, 2%) is primitive and thus belongs to
{(e1,€2,0), (£1,0,€2), (0,€1,€2): €1, € {£1}}.

Therefore (z,y, z) belongs to that set. O
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It “remains” to establish FLT for n = p > 3 an odd prime. Notice that since p is odd, Fermat’s
equation can be written
B4y + (<) = g+ () =,
so that, replacing z by —z, it takes the more symmetric form
P +yP + 2P =0.
Historically, one considers two cases: Given a primitive solution (z,y, z) (such that zyz # 0 and
ged(z,y, z) = 1), we consider the alternatives

Case 1: ptayz
Case 2: plzyz.

The second case is the hard one.
In this section we discuss the case n = p = 3 which is due to Euler but we follow a method of
Eisenstein.

1.3.1. The first case. Suppose that 3t zyz then
x = g1 (mod 3),y = 2 (mod 3), z = €3 (mod 3)
where ¢; = +£1.

LeEMMA 1.3.2. We have
23 = ¢ (mod9).

PRrROOF. Write x = €1 + 3k, then
2% = 9 + 3.61.3k + 321.(3k)* + (3k)* = &} (mod 9) = &1 (mod 9).

This finishes the proof in this, since the equation
€1+ &2 = €3 (mod 9)

has no solutions satisfying e; = +1.

1.3.2. The second case. Suppose that 3|zyz. We may assume without loss of generality that
3|z (and 3 t xy). Substituting z by —3Yz’ for v > 1 and such that 3 { 2/, the equation can be
rewritten as

o3+ 3 =333, 3fayz.

We will show that, if such a solution exists (with xyz # 0 and z,y, z pairwise coprime), the

equation

((E/)?) + (y/)?) _ 33(1}—1)(21)37 3)(1,/1/21
also has a solution. From there we obtain a contradiction on the existence of such (x,y,z) by
induction on v (the case v = 0 is the first case and has been treated already).

This kind of argument (i.e., reducing an equation to another one which is “simpler”, because
the exponent v is reduced by 1) is called a descent.

1.3.3. The ring of Eisenstein integers. We will use a cubic analog of the ring of Gaussian
integers.
Consider the usual cubic root of unity

. —1+i\/§ 274
j:#:eB

so that

u3 = {Z € C, 2% = 1} = {Lj,j}-
Fermat’s equation becomes

(z +y)(x + jy) (= + j2y) = 3%2°.
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We are therefore studying a polynomial equation whose variables belong to the so called ring of
FEisenstein integers

Z[j) ={P(j): P € Z[X]}.

THEOREM 1.4. The ring of Eisenstein integers enjoys the following properties.

(1) One has
Zjl=Z+ jZ. (L3)
(2) Z[j] is invariant under complex conjugation:
Z[5) = Z[j]. (L4)

(3) The group of units is
Z[j)* = {z € Z]j]: 22 = 1} = £{1,5,5°}.
(4) For any 0 # z € Z[j], let (z) = z.Z[j] the corresponding principal ideal. Then
21/ ()| = 2z, (L5)
(5) The ring Z[j)] is a PID.
In what follows, as was the case for the Gaussian numbers, we define the norm Nr on Q(j) (and

on Z[j]) by .
Nr(z) = z.Z.

PROOF. We start with (I.3). We first note that
PF+i+1=0:

Indeed j3 —1=0and X3 —1= (X —1)(X? + X + 1). Therefore j2 = —j — 1 and any polynomial
P(j) with integral coefficients evaluated at j can be written as an integral combination of 1 and j.
Alternatively, one can do Euclidean division of P(X) with respect to X2 + X + 1: one has

P(X)=(X’+X+1)S(X)+ R(X), degR < 2
and writing R(X) = a + bX, a,b € Z we see that
P(j) = (72 +j+1)S(j) + R(j) = R(j) = a +bj € Z+ jZ.
Property (I.4) follows from the identity
j=i=-1-j
To compute the group of units, we first show that
z € Z[j)* <= Nr(z) = 1.
Note for z = a + bj € Z[j] we have
Nr(z) =2Z=a®>—ab+b* €N
since Nr(z) > 0.
Given z € Z[j]*, we have 2! € Z[j]. Therefore
Nr(z) Nr(z7!) = Nr(z.27!) = Nr(1) = 1
and
Nr(z),Nr(z™1) € Nug.
Therefore Nr(z) = 1. Conversely, if Nr(z) = z 1

hence is a unit.
To compute Z[j]*, we observe (by completing the square) that

b\* | 3
Nr(z)=a2—ab+b2:<a—2> —|—Zb2
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and it remains to solve the equation

b 2
<a2> +Zb2:1, a,beZ

by inspection of the various cases.
For (1.5), we have for z = a + jb

(2) = 2.Z[j] = Z(a + jb) + Z(aj + bj*) = Z(a + jb) + Z(—b + (a — b)j)

|Z[5]/(2)| = |det (—ab (a E b))

The proof that Z[j] is a PID is left as an exercise. It follows using the same argument as for the
Gaussian integers: The complex plane C is tiled by the translates of parallelotope

Pj = [Oa 1] +][07 1]

C=Ja+bj+P;
a,beZ

and thus
= |a® — ab + b?| = Nr(2).

and the diameter of P; is the length of the diagonal [0, j — 1] equals
9 3
|j*1|:(1+1)1/2:\/§<2,

so any element of C is at distance < 1 of an element of Z + Z.j. ]
Already in the proof of Theorem 1.3, we encountered the problem of “factoring primes” in Z
when viewed as elements in Z[i]. We encountered three classes, namely

(1) the odd primes for which p = 1 (mod4)—i.e., the case where Z[i]/(p) was not a domain
and therefore p factors as a product of two distinct primes—,

(2) the prime 2 which is associated to a square in Z[i]—i.e., 2 = (1+4)(1 —i) = (—i)(1+4)%>—,

(3) and the odd primes p = 3 (mod4), which can be shown to be prime in Z[i]. Indeed,
assume that p = 3 (mod 4) is not prime in Z[¢] and, in particular, (p) is not a prime ideal.
Then p = z1.25 for non-units 21, 20 € Z[i] and therefore p = z;.Z;, which contradicts the
conclusion of Theorem I.3.

In this section, as mentioned already, we will rely on the factorization of the prime 3 inside Z[j],
which happens to behave as for the prime 2 in Z[i].
PROPOSITION 1.3.3. Let m3 =1 — j. The ideal p3 = (m3) is a prime ideal in Z[j] and
Z[j]/p3 ~= Fs.
Moreover, we have
p3 = (T3) = (73) = p3
and the decomposition
(3) = (m3).(m3) = p3.
PRrROOF. We have
|Z[j]/psl = Nr(1 —j) = (1 —=j)(1—-j) =3
therefore 3 € ps and Z[j]/ps is a ring with three elements. Moreover the map induced by the
inclusion 3Z C p3
T € Z/3Z ~F3 —»x (mOdﬂ'g) S Z[]]/pz;
is non trivial (hence injective) since 1 & ps: for any z € p3 we have z = (1 — j)2/, 2’ € Z[j] and
Nr(z) = 3Nr(2') € 3Z.

We have therefore an isomorphism
Fs ~ Z[j]/ps
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SO p3 is prime.
We have
1=j=1-j"=0+5)1-j)=-5(1~j)
Since —j? is a unit in Z[j], we have
Py = (1—7) = —3>(1 = 5)Z[H) = (1 = HZ[j] = ps
and
(3) = (1 —j)-(1 =) = p3.
O
1.3.4. Starting the descent. Recall that we are given a non-trivial solution (z, y, z) satisfying
23 4y = 3303,
where x,y, z are pairwise coprime and by the first case v € N5 . Set
A=z+y B=x+jy, C=z+j°y=B
We have therefore
AB.C =32 v>1
LEMMA 1.3.4. We have
A=3%"%"1z B=rm3z, C =732 = m329
where zy, 21, 22 € Z[j] are pairwise coprime and coprime with ps.

ProOOF. By assumption we have 3| A.B.C and therefore m3|A.B.C. By Gauss’s lemma, 73 divides
at least one of A, B or C. Also observe that

A-B=(1-jly=my, A-C=(1-j*)y="sy=—j"my.
It follows that m3|A, B and C: suppose for instance that ms|A, then m3|B and m3|C' and the other
cases are similar.

In addition, since B and C are complex conjugates, the order of divisibility of B by 73 is the
same as the order of divisibility of C' by T3 = —j2.m3; therefore 73 divides B and C to the same
order.

Note that none of z,y, z are divisible by 73, otherwise either 22 = 2%, y? = y¥, or 22 = 2z would
be divisible by 7373 = 3, which is in contradiction to the assumption that 3 1 zyz.

Now, since

B —C = jmsy
and since w3 does not divide y, w3 divides B and C at order exactly 1. Therefore
B = 321, C = fg.zl = 7]'271'321 = T3Z9
with 21,29 € Z[j] coprime with 5. Since 73 divides B and C at order 1 exactly and divides 3 at
order 2 exactly, and as z is coprime to 73, we see that 73 divides (3V2)? at order 6v exactly, and
therefore divides A at order 6v — 2 exactly. Moreover 33V~ = (—52)3*=175""2 and therefore

A =31z, 20 € Z[j], ged(zo,73) = 1.

Let us show that zp,z; are coprime: let p = (7) be a prime ideal dividing (zg) (in particular
p # p3) and suppose that 7|z;. Then 7 divides A and B and, since

A— B=m3y, jA— B=—m3x,

it follows that 7 divides 2 and y. But then Nr(r) = 77 divides Nr(z) = 22 and Nr(y) = »? which is
excluded. One shows in the same way that 2, z; and 25 are pairwise coprime. O

LEMMA 1.3.5. There exists ug,u1,us € {1,4,52} and po, p1, p2 € Z[j] such that

3 3 3
20 = UpPg, 21 = U1P7, 22 = U205
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PROOF. We have the identity of ideals

(%) = (20)-(21) (22)-

Consider the prime decomposition of (z),
(2) = HPU"v vp = vp(2);
P

we have

(%) = HPSvp = (20-21.22) = (20)-(21)-(22).
P

Therefore, if p divides z at order vy, it divides zp.z1.22 at order 3v, and, since the z; are pairwise
coprime, p divides exactly one of z;, ¢ =0,1,2 at order 3v,. Therefore

= (T

plzi
Let p; € Z[j] be a generator of the ideal ], .. p*:

11# = pizl).

plz;
We have
(p7) = (2i), 1=0,1,2
and therefore there exist units u; € Z[j]*, i = 0, 1, 2, such that
Observe that, since 3 is odd,
%= uip} = (—w)(=pj) = —ui(—pi)°®
so we may assume without loss of generality that u; € {1, 4,52} O

LEMMA 1.3.6. Under the above assumptions we have ug = 1 and, moreover, we can choose
po € Z.

PRrOOF. We have 29 = (z +y)/3% "1 € Q, so that z9/Zo = 1, and therefore
U _ (Poys
Uo Po
is a cube in the fraction field Q(j) = Frac(Z[j]). The next lemma shows that in fact

o e 7[5
Po

and therefore Y
0 -1x\3
— € (Z .
¢ ()
For ug € {1, 7,52}, the only possibility is uy = 1, and we then have
Py =20=A/3%"1 € Q.

The roots of the cubic polynomial X2 — zy are {po, jpo, i%p0} and one of them is real. We may
assume without loss of generality that pg is a real number; therefore, since

po=a+jb, a,beZ

is real, we have that b =0 and pg € RN Z[j] = Z. O
Let us now prove the claim made above:

LEMMA L1.3.7. Let u € Z[j]* be a unit and p € Q(j) be such that p*> = u then p € Z[j]*.
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PROOF. Write p = r/s with r, s € Z[j] and coprime. We have
3 = usd.

If p is a prime dividing 7, then p|s® and therefore p|s (Gauss’ lemma), which contradicts the copri-
mality of r, s. Therefore r is a unit. We show in the same way that s is a unit. ]

LEMMA 1.3.8. Under the above assumption (py € Z) we have u; = 1.
PROOF. We have A = 2 +y = 0 (mod 9) and since (9) = p3 we have
73y = A — B=—B = —ujpim3 (mod p3).
Therefore

y = —u1p} (modpj).
Since 3 1y, we have y = £1 (mod 3) which implies that

ur! = +p% (mod 3).
Since Z[j]/ps = F3 = Z/3Z one has (since p; # 0 (mod p3))
p1 = 1 (mod p3).

hence
p1 = x1+ mar, r € Z[j]
and
p3 = (£1)® + 3(£1)*m3r + 3(£1)73r% + (£1)*73r® = £1 (mod 3).
Therefore

u; = £1 (mod 3).
This last congruence excludes u; = j and u; = j2 since j + 1 # 0(mod3) (j +1 = —j2 is a unit
j — 1 = —m3 is divisible by 73 to order 1 and not by 73 = —;2.3). Since u; € {1,7,5?} we have
necessarily u; = 1. O

1.3.5. Conclusion. We have proven that
w4y =3""1p a+jy=(1-j)p, v+ Py =z +jy=(1- ;)7
with
po € Z— {0}, pr =a+jbeZ[j].
Moreover we know that 3 fpo

Expanding (a + jb)? and plugging into the second equation and identifying the real and j parts,
we find that

z = a®+b> — 6ab® + 3a*b, y = —a® — b* + 6a%b — 3ab?, x +y = Yab(a — b).

Observe that a,b,a — b are pairwise coprime (in Z) since x and y are coprime: if p|(a,b) then p|z
and ply since  and y are polynomials in a and b with no constant term. If p|(a,a —b) or p|(b,a —b),
then also p|(a,b). So these two cases reduce to the first case.

Moreover by the last equation we have

ab(a — b) = a®b — ab® = (30" "V ).

Since a, b and a — b are pairwise coprime and (3(”*1)/)0)3 is the cube of an integer, a,b and a — b are
cubes of integers and therefore a?b and —ab? are also cubes (—1 = (—1)? is a cube): write

a*b = (25)%, —ab® = (y5)*, po = 2.
We have therefore a solution of Fermat’s equation
a?b— ab® = z)° + yp® = (30 p)3.
We have produced an integral solution (z{, = a?b,y, = —ab?, z{, = py) to the equation

X3 4+Y3 = (30V7)3, (1.6)
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In order to complete the descent step, we need a solution with x{, y(, po pairwise coprime and
the product z{.y;.po not divisible by 3. We know already that 3 Jz{. If 3 fab then 3 fz(y,po. Given
p # 3, if p divide two of (x{, ¥, 2}) it will divide the third and we will obtain another smaller solution
to the above equation, namely (x(/p, y,/p, z,/p) those product is not divisible by 3. Continuing the
process we may assume that x{, y(, po are pairwise coprime.

Suppose now that 3|zf, = a?b and, for instance, that 3|a. It follow that 3 { (a — b)b by pairwise
coprimality of a,b,a —b. Write ¢ = a — b, we have 3 { bc and the equation becomes

be(b + ¢) = b2+ b? = (307 )3,

with b, ¢, b + ¢ pairwise coprime. As above b, ¢,b + ¢ are also cubes of integers and so are

3 3
bl =", be® =y

and we eventually obtain a solution (z{,y(,po) to (I.6) where none of the entries are divisible by
3. By the same reduction as above we may also assume that xy, y(, po are pairwise coprime and we
conclude by induction on v that for v > 0 there exists no (z,y, 2) € Z*® such that

2+ = (3"2)°
with 3 fryz and z,y, z pairwise coprime. O

REMARK 1.3. People have subsequently tried to solve Fermat’s equation
aP 4 yP = 2P
for other values of the prime p by working with the (cyclotomic) ring Z[(,], where ¢, is a p-th root
of unity (for instance exp(%)).

In 1847, Gabriel Lamé announced the complete resolution of FLT for any n. Unfortunately (or
fortunately) Lamé’s proof was incorrect: it was based on the "fact” that Z[(,] was a UFD which is
true for some primes p (for instance p = 3) but false in general.

In 1850, Kummer realized that some portions of that argument could be repaired by replacing
factorisation of algebraic numbers by factorisation of ”ideal numbers” (which are the now called
ideals) recovered all previously known cases of the FLT (for an odd prime) and established new
cases; however this approach did not extend to all primes.

As we will see, the fundamental obstruction is a finite commutative group, called the ideal class
group of Z[(,], which is denoted Cl((,). Its order is called the class number h((,). We have the
following statement:

The ring Z[(,] is a PID if and only if the ideal class group is trivial.

One can show that as soon as p is sufficiently large h(¢,) > 1 so there is really no possibility to
completely mimick Lamé’s proof. However, Kummer was able to prove FLT for primes p such that
p does not divide the class number h((,). One calls such primes p regular.

Also Kummer provided an elementary criterion (not involving the class number) to determine
whether a prime p is regular; this criterion is formulated in terms of the p-divisibility of numerators
of Bernoulli numbers (depending on p).

It is conjectured, but not known, that there exist infinitely many regular primes.

One of the main objectives of this course will be to define the ideal class group (in greater
generality) and to establish its basic properties.

EXERCISE I.1. (1) Prove that Z[j] is a PID.
(2) Prove that for a prime p # 3, the following are equivalent:
— p is of the shape p = a? — ab+ b? a,b € Z.
— p=1(mod3).
— —3 is a square modulo p.



CHAPTER 1II

Lattices in number fields

II.1. Archimidean/geometric embeddings

Let @ C C be the subfield of algebraic numbers C. In the sequel, all the finite extensions of Q
we will consider are included in Q so are fields of complex numbers.

Let K/Q a finite extension of degree n. This is therefore a subfield of C and for any o €
Hom(K,Q), o(K) is another subfield isomorphic to K and contained in C and the set of all such
subfields is precisely

o(K), o € Homg(K, Q).

REMARK IL.1. Since K/Q is separable, | Homg(K, Q)| = n.

DEFINITION IL1. Given o € Homg(K,Q) an embedding of K in C. If o(K) C R, o is a real
embedding and complex if o(K) ¢ R.

We denote the complex conjugation
oc(e)=e:2eC—zeC.

The group {Id,oc} acts on Homg(K,Q): the real embeddings are the fixed points for this action
and the complex ones decompose into pairs of complex conjugate embeddings. In particular the
number of complex embedding is even. The number of real embeddings is denoted r; = r1(K) and
the number of complex ones is denoted 2ry = 2r2(K) so that

r1 + 219 = n.
REMARK II.2. This can be considered as an archimedean version of the degree formula.

Set
r=r7ry+7nry
and
(01, yOryy Opy 41, 5 0r) € Homg(K, Q)"
a choice of representatives of the various orbits of Homg(K, Q) under the action of {Id, oc}: such a
choice is called a type for K (there are 2" possible types up to permutation). In other terms given
a type as above
{01, ,00, } = Homg(K,R)
is the set of real embeddings and
{Ori41, s Oridrgs Ori415° -+ 5 Oy 4y } = Homg (K, C) — Homg (K, R).

is the set of complex ones.
Let Ko, be the R-algebra

ri1+r2
Koo =R"xC”? =[] K
=1
with

K; = R Zigrl
C i=r1+1,---,ro.

19
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We have
Ko ~R"
where we have identified C with R? via the usual R-linear map
z=xz+iy € C— (r,y) € R%

Given a type, let
oo K - Ko
Tz b 0x(2) = (01(2), - 00 (2))
This is an injective morphism of Q-algebra called the archimedean or geometric embedding associated
to the type. In the sequel the type is fixed once and for all.

I1.2. Lattices in number fields
We let K C Q as above, i.e., K is a number field of degree n.

ProrosiTION I1.2.1. Let B = (w1,...,w,) € K™. The following are equivalent.
(1) B is a Q-basis of K.
(2) 0oo(B) = (0oo(w1), .- -, 000(wn)) is a basis of R™.

The following is an immediate corollary of Proposition 11.2.1
COROLLARY I1.2.1. 04 (K) is dense in R™.

The proof of Proposition I1.2.1 relies on the following Lemma. For what follows, we enumerate
the elements of Homg (K, C) so that for all 1 < i < 7y we have 0,4, = 07,44

LEMMA IL.2.2. Let B = (w1, ... ,w,) € K. Then B is a Q-basis of K if and only if det (o (w;)) #

PROOF. If B is not a basis, then B satisfies a non-trivial relation over Q and, since the embed-
dings are Q-linear, therefore the columns of (o;(w;)) satisfy a linear relation, i.e., det (o;(w;)) = 0.

Now suppose that B is a basis and suppose that (¢1,...,¢,) € C™ give rise to a linear relation
among the rows, i.e.,

Vi<j<n Zai(wj) =0.
i=1

Since B is a basis, Q-linearity of the embeddings implies that

n
E C;,0; = 0
i=1

and, by Lemma A.5.5, it follows that ¢; = --- = ¢, = 0. In particular, the rows are linearly
independent and, hence, det (oi(wj)) #£0. |

PROOF OF PROPOSITION 11.2.1. Let B = (0;(w;)) € M,(C) and let A = (00 (w;)). If 1 < k <
r9, then B,y ; = By 1 ;, hence

1 1

Arpok-1)+15 = 5 (Brivkg + Briwg),  Anizeg = 5 (Brite = Browa),

thus
det(B) = (21)™ det(A)
and the equivalence follows from Lemma I1.2.2. O

DEFINITION I1.2. A subgroup A < K is a lattice if it is generated by a Q-basis of K.
DEFINITION IL1.3. A subgroup I' < R™ is a (geometric) lattice if it is generated by a basis of R™.

The following is an immediate corollary of Proposition I1.2.1.
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COROLLARY 11.2.2. A subgroup A < K is a lattice if and only if 0o (A) is a geometric lattice.
Recall that a subgroup of R” is a lattice if and only if it is discrete and cocompact; cf. A.2.4.

LEMMA 11.2.3. Let A < K be a subgroup. Then A is a lattice if and only if A is finitely generated
and contains a Q-basis of K.

PROOF. If A is a lattice, then A is generated by a basis, in particular finitely generated and
contains a basis.

Now suppose that A is generated by the finite set S C A and suppose that B € A" is a Q-basis
of K. In what follows, we denote by Ag < K the lattice generated by B. Note that Ag C A.

Since B is a basis, every element in S is a Q-linear combination in B and, clearing denominators,
there exists N € N such that NA C Ag.

Since 000 (AB) C 0oo(A), Corollary I1.2.2 and Lemma A.2.4 imply that oo (A) is cocompact. On
the other hand, 0o (A) € +000(Ag) implies that oo (A) is discrete. Hence oo (A) is discrete and
cocompact, therefore a lattice. In particular, A is a lattice by Corollary 11.2.2. ([l

EXERCISE II.1. Let A1,As < K be lattices and let A;.As be the subgroup generated by all
products of elements in A; and Ay, i.e.,

4
Al.AQ = {Zazbi IAS NU{O},QZ € Al,bi € Ag} .

i=1
Show that A;.As is a lattice.

Recycling the argument used in the proof, one obtains a proof of the following.

ProroOSITION I1.2.4. Let A, Ay < K lattices. There exists N € N such that
1
NA; C Ay C NAL

The proof is left as an exercise.

I1.3. The discriminant of a basis and the discriminant of a lattice
DEFINITION I1.4. Let B = (wy,...,w,) € K™. We define the discriminant of B by
diSCK/Q(B) = det (O’Z'(wj))2.

EXERCISE 11.2. Let By, By € K™ such that the subgroups of K generated by B; and Bs respec-
tively are equal. Then

discg/g(B1) = disck /q(B2).
DEFINITION IL.5. Let A < K be a lattice. The discriminant of A is defined as
discg /q(A) = discg /g(B),
where B € A™ is any Z-basis of A.
EXERCISE 11.3. Let B € K™ be a Q-basis of K. Then
discr /g(B) = (21)%"2 covol (00 (As))”.
LEMMA I1.3.1. Let B = (w1,...,wy) € K™ be a Q-basis of K. Then
disck /g(B) = det (tr/g(wiw;))-
In particular, disci,o(B) € Q\ {0}.
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PROOF. Recall that for any » € K, the expression trg,g(x) denotes the trace of the Q-linear
endomorphism [xz]x/q of K given by multiplication by x.

Using the primitive element theorem, we can assume that K = Q(«a) for some a € Q with
minimal polynomial f € Q[X]. Let A € M, (Q) denote the companion matrix corresponding to f.
Using the basis € = (1,q,...,a"!) of K, one checks that the extension of the map ¢: a + A to a
homomorphism Q(a) — M,(Q) of unital Q-algebras gives a matrix representation of [xe]x /g, i.e.,
for every x € K, the matrix ¢(x) is the representation matrix of [xz]x/q with respect to &.

Since f is separable, the matrix A is diagonalizable with eigenvalues o1 (a),...,0,(a). Since ¢
is a homomorphism of Q-algebras, it follows that for every x € K the matrix «(z) is diagonalizable
with eigenvalues o1 (z),...,0,(x) (which might not be pairwise distinct, e.g., consider x = 0). It
follows that

tr g(wiw;) = Zak(wiwj) = Zak(wi)ak(wj).
k=1 k=1

This proves the lemma. O
LEMMA 11.3.2. Let Ay C Ay < K be lattices. Then
di A
Ao Ay]2 = %Q(l)
dlSCK/Q(Ag)
Proor. Note that ( A ))
covol (o4
[Azi Al] = T Ve ) .
covol (aoo (Ag))

Indeed, if v1,...,v¢ € 0 (Ag) are representatives of 0o (A2)/000(A1), and if F5 C R™ is a funda-
mental domain for oo (A2) ~ R™, one easily checks that
¢

F| = I_l (’Uk —+ FQ)
k=1
is a fundamental domain for As and, by translation invariance of the Lebesgue measure, we have
covol (00 (A1)) = vol(Fy) = £vol(Fz) = [Ag: A] covol (056 (A2)).

Hence, the Lemma follows from Exercise II.3. ]

I1.4. Orders in number fields and the ring of integers
DEFINITION I1.6. An order O C K is a lattice which is also a unital subring.
LEMMA I1.4.1. There exists an order O C K.

PROOF. Let a € K such that K = Q(«) and let f = a, X" +--- 4+ ag € Z[X] be the polynomial
obtained by multiplying the minimal polynomial of f by a common denominator of the coefficients.
Let 8 = ana. Then K = Q(B) and, therefore, (1,...,3" 1) is a Q-basis of K. Moreover, letting

g=X+ana, 1 X"+ +a" tay € Z[X],
we have
9(B) =ap ' fla)=0
and, hence,
ZIB)=Z+ - +Zp"L.
Hence Z[f] is a lattice and, therefore, an order. O

LEMMA I1.4.2. Let O C K be an order. Then disck/q(O) € Z\ {0}.

PROOF. Let B = (wi1,...,w,) € O™ be a Z-basis of O. Since [xw;w;]wy € O for all w;,w;,wy, and
since B is a Z-basis of O, we have that trg g (wsw;) € Z for all w;,w;. In particular, the discriminant
of O is an integer by Lemma I1.3.1. The discriminant of any lattice is non-zero, hence also of [
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COROLLARY I1.4.1. Ewvery increasing sequence of orders in K stabilizes. In particular, K has a
mazimal order.

PROOF. Let O; C Oy C --- be an increasing sequence of orders. As of Lemma I1.3.2, we know
that
Vi e N diSCK/Q(O,’J’_l)|diSCK/Q(Oi).
Since any non-empty subset of N has a minimum, Lemma I1.3.2 implies that there exists a maximal
order in K. 0

THEOREM II.1. There exists a unique maximal order O C K, called the ring of integers in K.

ProOOF. Let O; and O3 orders in K. Let O C K be the subgroup generated by products of
elements of O; and Os; cf. Exercise II.1. Then O is a lattice as of Exercise II.1. Moreover, since
O and O, are unital, we know that O and O, are contained in . Since O and O, are unital
subrings, O is a unital subring. In particular, O is an order.

This shows that any two orders are contained in a common order. Therefore there exists a
unique maximal order. O






CHAPTER III

Dedekind rings

IT1.1. Integral Extensions
For what follows, by a ring we generally mean a commutative unital ring.

THEOREM III.1. Let R be a ring and A C R a subring. Given z € R, the following are equivalent.

(1) z is the root of a monic polynomial with coefficients in A.
(2) The ring
Alz) ={P(2): P(X) € A[X]} CR
is a A-module of finite type (f.t).
(8) There exists a subring B C R containing A and z which is an f.t A-module.

We then say that z is integral over A.

REMARK III.1. If A is a field, this is the definition of an algebraic element.

PrROOF. (1) = (2): Let P € A[X] a monic polynomial such that P(z) = 0. By euclidean
division, for any @ € A[X] there exist K, R € A[X] such that

Q=KP+R, with deg R < deg P.
Writing R(X) = ag X%+ -+ + ag with a; € A, we find that
Q(z) = R(2) =ag2? - tag € A+ A

with d < deg(P) and therefore A[z] C R is f.t.
(2) = (3): Choose B = A[z].
(3) = (1): Given B as in (3), let 21, ..., 24 be a finite set of generators:

B=Az +---+ Az,

Let
B —~ B

[xz] :
T oz

be the A-module endomorphism of B given by multiplication by z. We have
Vi z.z; = Z aij.%;.
J
Let
M, = (aij)i’jgd € Md(A) and z = (Zz)z S Bd.
The above system of equalities can be writen
(z21dg — M,)z=C(2)z=0
where 0 € B? denotes the zero vector and C/(z) is the matrix
C(Z) =zId— M, = ((Sij.Z — aij)lgid‘gd € Md(B)
Fix ¢ < d and define the vectors v; € B?, j < d as follows: if j # i, we set
vj=C(2)¥

25
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and if 7 =i we set
By multilinearity of the determinant, we have
det(vy,...,vq) = z;det C(2).
Set
d d
Wi 1= sz.C’(z)(k) =v,+ sz.vk, W, =Vj, jF#IL.
k=1

k=1
ki

Since the determinant is alternating we have
det(wy,...,wq) = det(vy,...,vq) = z;det C(2).
Since
w;=C(2)z=0
we have
det(wy,...,wq) =0 =z det C(2).
We have shown that
Vi detC(z).z; =0
and therefore
det C(z).1p =det C(z) = 0.
Since det C(z) is a monic polynomial in z with coefficients in A, we are done.
O

LEMMA III.1.1. Suppose A C B C R and assume that B is an f.t. A-module and R an f.t. B-
module. Then R is an f.t. A-module.
PROOF. Let y1,...,yq4 € B, z1,..., 2 € R such that
B = Ay + - + Aya,
R=Bz;+---+ Bz..
Then

d e

i=1 j=1

O

PrOPOSITION 1I1.1.2. The set Or(A) C R of A-integral elements in R is a subring of R con-
taining A.

PROOF. It is clear that A C Or(A) (a is a root of X — a).

If Alz] and A[2'] are f.t. then A[z][z'] & Az, 2'] is f.t and contains z + 2’ and z.2’. Indeed 2’
is integral over A and, in particular, over A[z]. Therefore, Lemma III.1.1 implies that A[z, 2] is
f.t. over A. This implies that Or(A) is closed under multiplication and addition. d

DEeFINITION III.1. The ring Or(A) is the integral closure of A in R. If Or(A) = R, i.e., if
every element of R is integral over A, one saysthat R is integral over A or that the extension R/A
is integral.

ProposITION I11.1.3. If B/A is integral and C/B is integral, then C/A is integral.
PRrROOF. Exercise. ]

DEeFINITION IIL.2. If A is a domain and QQ = Frac(A) is the field of fractions of A, then the
integral closure of A is the integral closure of A in Q. The ring A is integrally closed if it is equal
to its integral closure.
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We have the following consequence from the previous proposition:
COROLLARY II1.1.4. The integral closure of a domain A is itself integrally closed.

REMARK I11.2. If A C B is a domain and B/A is integral, then A is a field if and only if B is a

field. Indeed, let z € B — {0},
Zd+-~-+a1z+a0:()
and assume without loss of generality that ag # 0. If A is a field, then qg is inveritble in B and thus
l=—ag' ("1 4+ +ar)2

implies that z is invertible in B.

On the other hand, if B is a field and z € A\ {0}, then the assumption that 2~! € B is integral
over A implies that we can find ag_1,...,a9 € A such that

d

B A R

— ag.
Multiplying both sides by 2%~! shows that 2! € A.
REMARK III.3. When A is a field, integrality is equivalent to algebraicity.
ProrosiTiON II1.1.5. If A is a PID, then A is integrally closed.
PROOF. Let z € Og(A), i.e., suppose that there are ag,...,a4—1 € A such that:
24 +aiz+a9=0.

We may assume without loss of generality that ag # 0. Write z = a/b with a,b € A coprime. We
have
a+ - 4 alabd_1 + aobd =0.
Therefore
a = —b(ad,md_l 4+ agab® 4 aobd_l)

so that b divides a?. As a and b are coprime, it follows that b is a unit and therefore z = a/b € A. O

IT1.2. Dedekind rings

We will be interested mostly in the integral closure of Z in a number field K|Q. As it will turn
out, the integral closure O = Ok(Z), called the ring of integers in K, will not be a PID and
not even a UFD. However, an important property of Z is preserved when passing to the integral
closure Ok, namely the unique factorization of ideals into prime ideals; cf. §A.1.2 for a recollection
of this in the case of PIDs. Because of the importance of this inheritence, we will discuss it in
somewhat greater detail. More precisely, we introduce a more general class of rings for which unique
prime factorisation of ideals is true.

DEFINITION II1.3. A ring A is Dedekind if
(1) A is a domain,
(2) A is integrally closed,
(8) A is noetherian.
(4) every mon-zero prime ideal is mazimal.

REMARK II1.4. We refer the reader to §A.1.1 for a recollection of the definition and basic
properties of noetherian rings and modules.

ExampLE III.1. A PID A is a Dedekind ring: this is a domain by definition; any prime ideal is
maximal; any ideal is generated by one element so A is noetherian and we have seen in the previous
section that A is integrally closed.

The two key results about Dedekind rings in this course are the following.
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IT1.2.1. Factorisation of ideals. The first property is a generalisation to the unique factori-
sation property of ideals in PIDs. In what follows, given a ring A, we denote by Z4 the set of
non-zero ideals in A.

THEOREM II1.2. Let A be a Dedekind ring. Every ideal a € T4 factors uniquely as a product of
non-zero prime ideals: there exists a unique function
ve(a): Spec(4) — N
p = vp(a)

such that

- v{o}(a) = 0,

~ for a.e. p, vy(a) =0, and

— one has the following factorisation

a= Hpvp(a)’
p

where p° = A for any p € Spec(A).
DEFINITION II1.4. Given an ideal a € T4 and a non-zero prime p € Spec(A), the integer
vp(a)

is called the valuation of a at the prime p or the p-adic valuation of a. This is the largest integer v
such that p¥|a. For the zero ideal we set

vp({0}) = +o0.

REMARK IIL5. Since A is a domain the zero ideal {0} = 0.4 is a prime but of course does not
contain any non-zero ideal: this is why we have set voy(a) = 0. Usually we will use p is denote a
non-zero prime ideal.

We deduce from the existence and unicity of the factorisation the following result regarding
arithmetics of ideals in Dedekind rings.

COROLLARY II1.2.1. Let A a Dedekind ring and a,b C A two ideals (possibly 0). Then
alb <= Vp, vyp(a) < vp(b).
ab= Hp“w(ﬂ)""vp(b)
p
anN b = largest ideal contained in a and b =: [a,b] = Hpma"(””(a)’”'“(b))
P
a+ b = smallest ideal containing both a and b =: (a,b) = Hpmin(”’“(a)’”‘“([’))
p
and
(a,6).[a, b] = a.b.
In other terms, for any prime ideal p one has
vp(a.b) = vp(a) + vp(b),

vp(anb) = vy ([a, b]) = max {vp(a),vp(b)},

vp(a+b) = vy ((a,b)) = min {vp(a),v,(b) }.
In particular, two ideals a,b in a Dedekind ring are coprime (that is a+b = A) if and only if their
valuation functions

ve(a): p > vp(a), ve(b): p— vy(b)

have disjoint supports:
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IT1.2.2. Stability. The second property is the stability of the class of Dedekind rings under
integral closure in a separable extension.

THEOREM II1.3. Let A be a Dedekind ring with field of fractions Q and suppose that K/Q is a
finite separable extension, then Ok (A) is an A-module of finite type and a Dedekind ring.

I11.2.3. The three key examples of Dedekind rings. The cases of main interest to us are
the following.

— Suppose A =7Z, @ = Q, and K/Q is a finite (therefore algebraic and necessarily separable)
extension of Q (contained in C). The integral closure of Z in K is called the ring of integers
of K and is denoted

Ok = {z € K: 3P € Z[X] monic such that P(z) = 0}.

— Suppose A = C[X], @ = C(X), and K/C(X) is a finite (therefore algebraic and necessarily
separable) extension of () contained in some algebraic closure C(X). For instance, suppose
that K = Q(Y) where Y is a solution in C(X) of the polynomial equation

Eq(X,Y)=0

for a polynomial Eq € C[U, V] in two variables. Then the set of solutions of the equation
C:Eq(z,y) =0, (x,y)¢€C?
defines a complex algebraic affine curve with an algebraic map to the affine line
(x,y) eC(C)—~zeC
and the field K is the field of (algebraic) functions on C. To this curve corresponds a

projective algebraic curve C(C) with an algebraic map

z: C(C) = P(C) = CU {0}
and the integral closure

Ok = {F € K: 3P € C[X][Z] monic such that P(F) =0}

corresponds to the algebraic functions on C(C) which are regular outside the preim-
age 7 1(o0).

Alternatively (and equivalently), to C is associated a Riemann surface C(C) with a map
x to the projective line (the Riemann sphere) and Ok corresponds to the meromorphic

functions on C(C) which are holomorphic outside the preimage x~!(c0).

— Suppose A =F,[X], Q =F,(X), and K/F,(X) is a finite (therefore algebraic) and separa-
ble (this is not always the case) extension of () contained in some algebraic closure F,,(X).
We denote the integral closure by Og:

Ok ={F € K: 3P € F,[X][Z] monic such that P(F) = 0}.

This situation corresponds to that of an algebraic curve C(F,) defined over the finite field F),
by some equation, for instance

Eq(z,y) =0, Eq(U,V) € F,U,V],

with a map to the projective line P'(F,). The ring Ok corresponds to those algebraic

functions on C(F,) defined over F,, which are regular outside the preimage x~1(c0).

REMARK III.6. The fact that in all three cases A is a PID provides additional structures on the
rings Ok by comparison with the general theory.
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ITI.3. Factorisation into primes
In this section we will prove Theorem II1.2. We start with some preparations.

LEMMA II1.3.1 (Gauss’ Lemma for ideals). Let A be a domain and p be a prime ideal. Let a,b
be ideals such that pla.b then either pla or p|b.

PROOF. Suppose that a ¢ p, we will prove that b C p. We fix an element a € a — p, which
exists by assumption. Let b € b; since a.b C p we have a.b € p and, as A/p is a domain, we either
have a € p or b € p. Since a ¢ p, we have b € p. As b € b was arbitrary, it follows that p|b. ]

LEMMA II1.3.2. Let A be a noetherian ring and a be a non-zero ideal, then a contains a product
of non-zero prime ideals.

PrOOF. Consider the set of all non-zero ideals a C A which do not contain any product of
non-zero prime ideals. Since A is noetherian this set contains a maximal element a which is not
prime. Therefore there exist z,y ¢ a such that z.y € a. Consider the ideals

Ax +a, Ay +a.
As they are strictly greater than a, they contain products of non-zero prime ideals
pr.--pr CAx+a, q1.---qs C Ay +a
and then
Pro-Prqi--qs C (Az 4+ a)(Az +a) C Azy +a=a.
This is a contradiction. ([l

DEFINITION IIL5. Let A a domain and @ = Frac(A). A subset f C Q is a fractional (A-)ideal
if there is b € A such that a = b.f is a non-zero ideal in A.

REMARK II1.7. Note that a fractional ideal in a Dedekind ring (more generally a noetherian
domain) is of finite type: if f C @ is a fractional ideal and b € A — {0} such that a = b.f C A is an
ideal, then a is of finite type (because A is noetherian) and therefore § = b~'.a is of finite type.

The following lemma will prove useful later on.

LEMMA I11.3.3. Let A be a Dedekind ring, a a non-zero ideal in A, and x € Frac(A). If za C a,
then r € A.

PRrROOF. If za C a, then also P(z)a C a for all P € A[X]. Thus for any b € a\ {0} we have
bA[z] C a C A.

Moreover, bA[z] is an ideal in A and, in particular, A[z] is a fractional ideal and therefore of finite
type. Thus x is integral over A. As A is integrally closed, it follows that x € A. O

PROPOSITION I11.3.4. Let A be a Dedekind ring and p C A be a mazimal/prime ideal. There
exists a fractional ideal p~* C Frac(A) such that

ppt=A
-1
Moreover, we have A g pT.

PROOF. Let
pl={reQ:zpcC A}
We will show that p.p~! = A.
By definition, p~! is an A-module containing A and p.p~! C A. Moreover for any b € p — {0},
we have p~1.b C A and therefore p~! is a fractional ideal.
We have A C p~! and hence
pCpplcA
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Since p is maximal, this implies that either

pp!
Suppose p.p~! =p. For x € p~!, we have 2.p C p and therefore x € A by Lemma II1.3.3. As = was
arbitrary, this implies that p~' C A. Therefore p~! = A. We will derive a contradiction.
Let a € p — {0}. By Lemma II1.3.2, there exists > 1 and r prime ideals p;, i = 1,--- ,r, such
that

=porpp !t =A

p1.--- pr C Aa Cpy;

let us also assume that r is minimal with this property.

Since
P1.- pr CP,
Gauss’ lemma for ideals implies that there is ¢ (say ¢ = 1) such that
p1 Cp.

Since p; is maximal, we have p; = p. Setting b = ps.- - .p,., we therefore have

p.b C Aa.
By the minimality of 7, b is not contained in A.a. Thus we fix b € b such that b ¢ A.a. We have

bpC Aa
so that (multiply both sides by a~1)

b.a"p C A,

hence b.a=! € p~! = A. Multiplying both sides by a, we obtain that b € A.a, a contradiction. O

I11.3.1. Proof of Theorem III.2. We can now prove Theorem III.2. Let a # A be a non-zero
proper ideal which is not a product of prime ideals and which is maximal for this property. Let p
be a maximal ideal containing a. We have a strict inclusion

acp

and if we multiply both sides by the fractional ideal p~! we obtain
plac A

and since A C p~! we also have a C p~'a. The inclusion
aC p_la

is strict: suppose that
a=p'a,

then for any x € p~! we have z.a C a and thus 2 € A by Lemma IIL.3.3. In particular, we find
that p~! C A, which is in contradiction to Proposition III.3.4.
By the maximality of a, the ideal p~'a which is strictly bigger than a is a product of prime ideals
and a = p.p~'a is the product of p and of this product of prime ideals, which is a contradiction.
Let us show that this decomposition is unique. Suppose that we have

a= Hpvn(u) — Hp");(a).
p p
Suppose that q € Spec(A) is such that vg(a) > vg(q). Multiplying both sides by (1)@ we

obtain
qvq(a)—v;(u) H pvp(u) — H pv;(a).
p7q p#q

Therefore g Hwéq p”*/’(“) and by Gauss’ Lemma q contains one of the p # ¢, which is not possible
since the p are maximal and distinct from q. ]
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I11.3.2. Extension to fractional ideals. Let us recall that a fractional ideal §f C @ is a subset
of the shape f = b~'a, where a is a non-zero ideal in A and b € A — {0}.

Let §,§ be two fractional ideals. We define their sum to be the A-module generated by sums of
elements from f and §/,

f+f={f+f:feff ef}
and their product §.f to be the A-module generated by their products,
B =({fffeff erl).

The A-modules f+7,§.f and fN§’ are all fractional ideals: if f = b~L.a, § = b’ '.a’ for b,b’ € A—{0}
and a,a’ € T4, then

WY (f+f)=b.a+bd, OV).1f =ad, b fOf=0b.anb.d.

Let f = b~'.a a fractional ideal and consider the factorisations

(b) =b.A= 1_‘[];.%(1?)7 a= Hpvv(u);
b p

we have therefore

bj=()f=[]p>®5=]]p>
p p
and multiplying by powers of the fractional ideals p~!, we see that

p=[po @O,
p

We can deduce the following

THEOREM II1.4. Let A be a Dedekind ring with field of fractions Q. FEvery fractional ideal
f factors as a product of primes ideals (possibly with negative exponents): there exists a unique
function

_Spec(A) — Z

AR NG

such that

- v{o}(f) =0
— for a.e. p, vy(f) =0, and
— (setting p° = A) one has the following factorisation

f= H pUp(f).
p
- For
f= Hpvp(f)’ f = Hpvp(f')
p P
two fractional ideals, we have

i = [To 0+
p

— If we define the fractional ideal
fﬁl = prvp(f)
p

we have
ffl = A
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— In addition we have
ffCf <= ilff <= Y uv(f) <up(f)

P17 = (.f) = [[pmn e O 0,
p
faf = [f.§] = o= Dre 0
b
(7 7). 71 =17

DEFINITION IIL.6. Given § a non-zero fractional ideal, the exponent vy (f) is called the p-adic
valuation of f. This is the largest integer v such that pU|f (i.e. f C p¥). For f = (0) we set
op({0}) = 0.

I11.3.3. The ideal class group. From the above discussion we have the following

COROLLARY III1.3.1. Let A be a Dedekind domain with field of fractions Q. The set Fa of
fractional ideals in Q) equipped with the multiplication of fractional ideals forms a commutative group
whose identity element is the ideal A. Moreover (Fa,.) is isomorphic to the free commutative group
(of formal finite integral linear combinations) generated by the non-zero prime ideals

(Fa,.) ~ Div(Spec(A)) = {Z vpp: vy €Z, vy, =0 for a.e. p}
P

via the map

F=T1pD > vp()p.
p p

DEFINITION ITI1.7. A fractional ideal is principal if it is of the form (f) = f.A for f € Q*. We
denote by
PFaC Fa
the set of principal fractional ideals.

Observe that the product of two principal ideals is principal. One has

LEMMA II1.3.5. The set of principal fractional ideals PF4 forms a subgroup of Fa under mul-
tiplication and the map
(.) . QX — PFa
o ()=rA
is a group morphism whose kernel is the group of units
ker((e)) = A*.
DEFINITION II1.8. The ideal class group of A is the quotient
Cl(A) :=Fa/PFa.
Observe that Cl(A) is trivial if and only if A is a PID and that, in general, Cl1(A) is generated
by the classes of prime ideals in Fjy.
II1.4. Stability of the Dedekind property
In this section we prove Theorem II1.3 which we recall is the following.

THEOREM. Let A be a Dedekind ring with field of fractions Q and suppose that K/Q is a finite
separable extension, then Ok (A) is an A-module of finite type and a Dedekind ring.
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For what follows, we will assume that we are given a fixed algebraic closure Q of @ and an
extension Q C K C @ as in Theorem IIL.3. It is clear that O (A) is a domain and integrally closed.
We thus have to show that every ideal of Ok (A) is of finite type and that every prime ideal is
maximal. For this we will need the separability hypothesis.

Let us recall the following characterization of separability for finite extensions.

THEOREM. A finite field extension K/Q is separable if and only if one of the following equivalent
conditions is satisfied.

— For any z € K, the linear map [xz]: K v K is diagonalisable (over Q).
— For any z € K, its minimal polynomial Pg win .(X) has simple roots.
— The trace bilinear form

KxK — Q
SRETE (z,2) = trgso(z.?) =tr([x2.2]k/q)
18 non-degenerate.
- Let Q be an algebraic closure of Q. Then |Homg (K, Q)| = [K: Q].

Let us also recall that if [K: Q)] is coprime to car(Q) or if @ is a finite field then K/Q is always
separable.
Let d = [K: Q)] be the degree of the field extension.

LEMMA II1.4.1. One has
Ok (A) ={z € K: Pg/q char,-(X) € A[X]}.
PROOF. As Pg/q char,- is monic, it suffices to show that Pg /g char,- € A[X] for any z € Ok (A).
As of Proposition A.3.3 and Theorem A.5, we have
PK/Q,Char,z(X) = PQ,mimz(X)[K: Q[Z]]
Thus it suffices to show that for z € Ox(A) we have Pgmin. € A[Z]. Let 2, € Q, i = 1,...,r
denote the pairwise distinct roots of Pg min,.. Suppose that P € A[X] is a monic polynomial such

that P(z) = 0. Then Pg min,.|P and hence P(z;) = 0 for all the roots z;. In particular, all the z;
are integral over A. Moreover, the coefficients of

Poaninx(X) = [J(X ~ 2)

i

are sums of products of the z; and therefore contained in A[z,..., 2] N Q. Note that Alzq,..., 2]
is of finite type over A by integrality of the z; and thus all the coeflicients of Pg min,» are integral
over A. As A is integrally closed, it follows that Pg min,. € A[X]. O

LEMMA I11.4.2. For any z € K, there exists b € A such that b.z € Ok (A).

ProoF. Let
P(X)=X%"+ag 1 X"+ +ag, a; €K, ag#0
be an annihilating polynomial of z and let b € A — {0} be such that ba; € A. We have
VIP(2) =0 = (b2)? +ag_1b(b2)*"' + -+ blag
and therefore bz € Og (A). O

PROPOSITION I11.4.3. The ring Ok (A) is an A-module of finite type. If A is a PID, then B is
free of rank d = [K : Q].

PROOF. Let z1,---z4 be a Q-basis of K. There is b € A — {0} such that bzy,--- ,bzq € Og(A).
Then bz, - -+ , bzg is a Q-basis, so we may assume without loss of generality that 21, -+, 24 € Ok (A)
to begin with. In particular, Ok (A) contains the A-module Az; + - - - + Azy, which is of finite type.
Since trgq is non-degenerate, there is a dual basis (27,---,2)) € K?: the unique basis such that

tI‘K/Q(ZiZ;> = 62]
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We claim that
Ok(A) C Azf + -+ Az].
Indeed for any z € Ok (A) we have
z = Z ;%]

and trg,o(zz;) = a; € A. For the latter inclusion, note that zz; € Ok (A) and hence its trace
belongs to A. In particular, Ok (A) is a sub-module of an f.t. A-module, so it is f.t. Moreover, if A
is a PID, Ok (A) contains a free submodule of rank d and is contained in such a free rank d module,
so it is free of rank d. O

COROLLARY II1.4.1. The ring Ok (A) is noetherian. If A is a PID, every non-zero ideal in
Ok (A) is a free A-module of rank d = [K : Q).

PRrROOF. Since Ok (A) is an A-module of f.t. and A is noetherian, the same holds for any O (A)-
ideal and, in particular, any O (A)-ideal is of f.t. over O (A). Moreover, if A is a PID, any non-zero
ideal b of Ok (A) satisfies for any b € b — {0} that

b.Ok(A) CbC Ok(A),
so b is free of rank d. O

COROLLARY II1.4.2. Suppose that K/Q is a number field and let Ok be the mazimal order in
K; ¢f. Theorem II.1. Then Og = Ok (Z).

Proor. Exercise.
LEMMA I11.4.4. Every non-zero prime ideal of O (A) is mazimal.

PROOF. Let B C Ok (A) be a non-zero prime ideal, then

kg = Ok (A)/B

is a domain. Let p = ANP, and let
ky == A/p.

We have the canonical injection

Alp = Ok (A)/PB
which implies that &, is a domain (since O (A)/P is a domain).

In order to see that p # 0, let z € B non-zero. As z is integral over A, there is P(X) =
X"+ a, 1 X"+ +ag € A[X] satisfying ag # 0 and P(z) = 0. Then
0#ap=—2"—ar_12" —---—a1z €p.

As A is Dedekind, it follows that k, = A/p is a field.

We can now show that P8 C Ox(A) is a maximal ideal, i.e., O (A)/P is a field. As of Proposi-
tion IT1.4.3, we know that O (A) is of finite type over A and, in particular, O (A)/B is ky-algebra
of finite dimension which is also a domain. We claim that any such algebra is a field. To this end,
let z € Ok (A)/B non-zero. Then ky[z] C Ok (A) is a subspace and, hence, of finite dimension. In
particular, there exist ag,...,aq € ky not all zero such that

d
_ . od
0= E a;jz’.
j=0

Let j, minimal such that a;, # 0, then

d d
0= E a;z) = 27> g a2l

J=Jx J=J=



36 III. DEDEKIND RINGS

and, since Ok (A)/P is a domain, we have

d
= I
0= E ajz? I,
J=7x

In particular, we obtain

d
— | 471 L J—gx—1
1= a;. g a;z z.
j=jet1

Thus z is a unit and it follows that Ok (A)/P is a field.

IT1.5. Dedekind rings: relative theory

For what follows, we let A be a Dedekind ring, @ = Frac(A) its field of fractions. Let K/Q a
finite separable extension and we denote by B = Ok (A) the integral closure of A in K. We have
seen that B is a Dedekind ring.

We denote by Spec(A) and Spec(B) the set of prime ideals of A and B respectively.

In what follows, given any subset S C B, we denote by S.B C B the ideal generated by S.
Using this notation, the set of ideals of A and B are related by the following maps:

eNA:b—bNA, eB:a— a.B.

The ideal b N A is sometimes called the contraction of b and the ideal a.B is called the extension
of a. The maps are correspondingly called the contraction and the extension map.

We will examine these two maps and for by factorisation of ideals it is sufficient to focus on the
sets of (non-zero) prime ideals in Spec(A4) and Spec(B).

We have more or less already seen the following

LEMMA IIL5.1. Given non-zero 3 € Spec(B), the intersection p = PN A is a non-zero prime
ideal in A.

PROOF. We have an injective map
A/p — B/B

and therefore A/p is a domain so p is prime. In order to see that p is non-zero, note that for any

z € P — {0}, the constant term of the minimal polynomial of z (which is non-zero) is contained in

p. ]
We have therefore a canonical projection (or contraction) map

Spec(B) +— Spec(4)
Pt = PNA-
PROPOSITION II1.5.2. The map eNA is surjective and for any non-zero p € Spec(A) the preimage

of p, i.e. the set of P € Spec(B) such that p = PN A, is exactly the set of prime ideals appearing in
the prime decomposition of the B-ideal p.B:

PNA=p < P|p.B < vyp(p.B) > 0.

eNA:

PROOF. If p is the zero-ideal, then p is the image of the zero ideal under the projection map.
Let now p € Spec(A) non-zero. By maximality of non-zero prime ideals in A, we know that for
any P € Spec(B) we have
p=PNA <= pCP.
Now we note that by definition of divisibility
pCP <= p.BCP <= P|p.B < vg(p.B) > 0.

This completes the description of the preimage of p. It remains to prove surjectivity.
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As B is a Dedekind domain, the unique factorization of ideals implies that it suffices to show
that p.B is proper (p.B # B): any prime 3 dividing p.B will contain p.
By uniqueness of prime factorization in A there is some z € p — p? and A.z = pa for some ideal
a C A coprime to p. Let a € a — p.
If p.B = B, then a.B = ap.B C A.z.B = B.z and, thus, there is b € B such that a = b.z.
As a,z € A— {0}, it follows that b € BN Q = A and thus a € A.z C p, which is absurd.
|

REMARK II1.8. The main step in the proof of surjectivity was to show that p.B # B. A
more general argument, which does not rely on A being integrally closed, follows the proof of the
Nakayama lemma; cf. the proof of Proposition III.1. Assuming for the sake of contradiction that

B = p.B, we fix a set of generators z1,...,24 of B as an A-module and find (a,'j)f’j:l € p?*4 such
that
d
Vi 2(6” - aij).zj =0.
j=1

Therefore there is a matrix M € A9*? such that det(M).b = 0 for all b € B and det(M) = 1 (mod p),
which is absurd since B is a domain.

DEFINITION II1.9. Given a non-zero p € Spec(A) , we denote by

Spec,,(B) = {*¥ € Spec(B): Blp.B} = {P: vp(p.B) > 0}

the fiber of the projection map.
A prime ideal B € Spec,(B) is said to “lie above” p or to “divide” p and we write simply Blp.

We have (by definition) for ‘P € Spec, (B)
p="PnNA

We will need the following generalisation later

LeEmMA II1.5.3. Let p € Spec(A) be a non-zero prime ideal and B € Spec,(B). For any 1 < e <
vp(p.B), we have

p=PNA.

PRrROOF. Exercise.

Notice that Spec,(B) is finite since this is the set of primes dividing p.B. We will see that the
cardinality is at most [K : Q)].

Let us first introduce some further terminology.

Ramification index.

DEFINITION II1.10. Given a non-zero p € Spec(A), the exponent vy (p.B) in the decomposition
p.B = Hqg"m(P-B)
Blp
is called the ramification index of P (at p). It is denoted
vp(p.B) =: e /p
so that

p.B = Hspem/p,
PBlp
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Residue fields and inertia degree.

DEFINITION IIT.11. Given a non-zero p € Spec(A),the quotient A/p is a field called the residue
field of A at p; it is denoted ky.

Given P € Spec,(B) non-zero, let ky be the residue field of B at P. Since PN A = p we have

an injective map
kp = Afp < ky = B/P

which makes kg an extension of k,. Moreover, since B is an A-module of f.t., this extension is finite.

DEFINITION IIL12. The degree of the extension k, — kg is denoted

[k = o] = fopp-

It is called the inertia degree of P (at p).

NoTaTION. If the base ring A C @ is understood (so that p = A NP) we will simply write

Tre = fas myp = e
II1.5.1. The degree formula. Given p € Spec(A) a non-zero prime ideal, the quotient
K, :=B/p.B

is a ky-algebra of finite dimension. We will study the structure of this algebra in greater detail.

THEOREM IIL.5. We have
dimy, (Ky) = [K : Q] = Ze‘n/pfm/nr
Blp
In particular,
Spec, (B)] < [K : Q)
LEMMA II1.5.4. If A is a PID, then B is a free A-module of rank d = [K : Q] and
[K:Q] = dimy, (Kp).

PROOF. Indeed, let a € A such that p = (a) and let (z1,...,24) € B? be an A-basis of B. We
claim that the images of z1,...,2q mod p.B are linearly independent over k,. Note that p.B is a
free A-module with A-basis (az1,...,azq) € B%

Suppose that aq,...,aq € A are such that

a1z1+ -+ aqzq € 9.8,
i.e., there are r1,...,ry € A such that
(a1 —ar1)z + -+ (aqg — arqg)zq = 0.

As by assumption (21, ..., 24) is linearly independent over A, it follows that a; € p for all 1 <i < d
and thus the images of the z; mod p.B are linearly independent over k. O
We will establish the formula

[K : Q] = dimy, (K;)
in full generality later (as we have already seen, this is true if A is a PID; we will reduce to that

case). For now we focus on the right hand side of the equality. We start with the following Lemma.

LEMMA II1.5.5. For any e > 0, the A-module structure on the quotient B¢/PH admits a
compatible ky-module structure and as such, it has ky-dimension fy/p-
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REMARK II1.9. Let M be an abelian group, let 7: R — @ be a ring homomorphism, and suppose
that there we are given homomorphisms gr: R — End(M) and gg: @ — End(Q). The induced
module structures are compatible (with ) if the diagram

R il Q

N A

End(M)

commutes. Recall that for a ring R and an R-module M, the set
Anmn(M) ={re€ R:Vm € M rm = 0}
is an ideal, called the annihilator. Moreover, for any ideal I <t R the module M admits a compatible

(for the canonical projection) R/I-module structure if and only if 7 C Ann(M).

PROOF OF LEMMA II1.5.5. Since Pt C P¢ is a B-submodule, the quotient is a B-module
and, in particular, an A-module. Clearly, we have that 8 C Ann(B¢/P*!) and, therefore, both
the A- and B-module structures admit compatible k,- and kgp-structures.

Since dimy, (k) = fqp. it is sufficient to show that dimy,, (P¢/PBH!) = 1. For this we observe
that there is a bijection between the kg-subspaces of P¢/P*! and the B-submodules of ¢ con-
taining P! or in other terms the B-ideals satisfying ¢ C a C P+, But the only such ideals are
either ¢ or Petl. O

PROOF OF THE SECOND EQUALITY IN THEOREM III.5. First we observe that for 8 and P’
distinct and above p the ideals 3#/» and B’“*'/* are coprime so by the Chinese reminder theorem,
we have an isomorphism of kp-algebras:

B/p.B~ ][] B/®r.

Blp

In particular we have
dimg, (B/p.B) =Y _ dimy, (B/B/7).

Blp

We now prove that
dimy, (B/B/) = ex/pfp/p
If eqp, = 1, this is clear. Suppose now that 1 < e < eq),. Then we have an exact sequence

of kp-vector spaces

0 —— /Pt —— B/PH —— B/P* —0.
so by recurrence the conclusion follows from Lemma II1.5.5 below. ]

I11.5.2. Localization. As mentioned above, if A is a PID, then
dimg, Ky = [K: Q] =d (I11.1)
and together with the previous discussion, this establishes the degree formula when A is a PID.
We will prove that (III.1) is true in general:
THEOREM 1I1.6. Under the above assumptions (A is a Dedekind ring and B is the integral
closure of a finite separable extension of Q)), we have for any non-zero p € Spec(A4),
dimg, B/p.B=[K : Q] =d

and hence

> exyplyp = 1K : QL.
Plp

For this we need the localization technique.
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I11.5.2.1. Localization. Let A be a general ring and p € Spec(A) a prime ideal. By Gauss lemma,
the set S, = A — p is multiplicative:

Vo,y € Sp, x.y € Sp.
DEFINITION II1.13. The localization of A at p is the set of equivalence classes

{(a,q) € Ax Sp}/ ~, (a,q) ~ (d,q) < Fs €S, (ag’ —a'q)s = 0.

a

The equivalence class of (a,q) is denoted as a fraction 5 The set Ay has a ring structure for the

usual addition and multiplication of fractions

a a aq +adq ad ad
a q ¢ " ad qd
REMARK III.10. The map
I A - A
Prag +— 2

1
is a ring homomorphism which, in general, need not be injective. However, if A is a domain, then
fp is injective and A, is a subring of the field of fractions Q:
a
Ay, = {q: a €A, qup} C @ = Frac(A)

(the subring formed of fractions having at least one denominator not belonging to p).

ProprosITION IIL.5.6. If A is a Dedekind ring, then A, is a PID and my, = p.A, is the unique
(proper and) mazimal ideal of A,. Moreover any ideal of Ay is of the shape m’; for some k > 0.

PRrOOF. Exercise. O

DErINITION IIL.14. A generator of the ideal p.A, is called a uniformizer at p. It is usually
denoted T or my.

We compare the residue fields
kp = A/p and ky, := Ap/m,.
ProPOSITION IIL.5.7. The injection A — A, induces an isomorphism
kp =~ K, -

ProOF. Exercise. O
Let

b
Bp:{q:beB, qu—p} C K.
The set B, = B.A, is a ring extension of A,. In particular, B, C K is a subring containing B.

ProrosITION II1.5.8. The integral closure of A, in K is By.
In particular (since A, is a PID), By is a free module Ay-module of rank [K : Q] and By /p.B,
is a km, = ky-algebra of dimension [K : Q).

ProOF. Consider b/q € B,. We have
b+ @y 1 b" Pt ag =0, a; € A
and
(b/@)" + an—1q7"(b/q)" " + -+ aog”" =0
but an—1¢*, -+ ,apg~™ belong to A,. This shows that B, is contained in the integral closure of A,.
Conversely suppose that € K is Ap-integral, i.e., there exists

a:
n}land—leAp, a; €A ¢ E€EA—p,i=1--n
q;
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such that
2t gty B0
qn—1 q0
Let ¢ := qo.- -+ .qn_1 € A — p. Clearing denominators, one obtains that b = ¢.x is A-integral and
therefore belongs to B. Thus b/q belongs to B,. O

ProrosiTioN II1.5.9. We have an isomorphism of ky-algebras
B/p.B ~ B, /p.B,.
In particular
dimg, (B/p.B) = [K : Q.
Proor. We first show that BNp.B, = p.B. The inclusion D is clear. To prove C, we note that

p.Bp:{gzrep.B, qu—p}

and therefore, for b € B, we have that b € p.B, if and only if there is ¢ € A — p such that ¢.b € p.B.
In particular, for any such b € B and for any B|p, we have ¢.b € P¥/» and since ¢ € P we have
b € Pe¥/v. Therefore

be n me‘ﬁ/p = Hmem/p =p.B.
PBlp PBlp
This proves C.
The map B/p.B — B, /p.B, is therefore injective and it is surjective by the same argument as
in the proof of Proposition I11.5.7. ]
This last proposition concludes the proof of Theorem III.6 and hence of the degree formula.

IT1.5.3. p-adic valuation. Let A C @ be a Dedekind ring and p a prime. We define the p-adic
valuation at p as the function

.Q—{0} = Z

RLE o vp(2) = vp(2.4)
and we set v, (0) = +oc0. For any p > 1 we define the p-adic absolute value (in base p) as the function

DI .
o |z =pee )
This absolute value is multiplicative
|z.w] = |z].|w]
and satisfies an enhanced version of the triangle inequality:
2+ w] < max(2], )
with equality if |z| # |w|. The p-adic distance is the function

QxQ = Ry
d(.’.)'(z,z’) — d(z,z’):>0|zfz’\'

This gives @) the structure of a metric space such that
Bg(0,1) ={2z € Q:d(2,0) =|2| <1} = A,
B,0(0,1)={z€ Q:d(z,0) = |z| <1} =p.A,.
A sequence (uy,)n>0 € QY is Cauchy iff
Up41 — Up — 0.

The completion of @ with respect to this absolute value (so that any Cauchy sequence is con-
verging) is called the p-adic completion of @. This is a complete metric field such that the closed
unit ball is Tp and the open unit ball is m and such that the converging series Zn>0 U, are the
series whose general term w,, converge to 0.



42 III. DEDEKIND RINGS

I11.6. Ramification

In this section we investigate the values of the ramification index egq/,. In particular we show
that

ep/p =1
for all but finitely many p.

DEerINITION II1.15. Let k be a field. A k-algebra By, is reduced if it does not contain any non-
trivial nilpotent element: i.e. an element x € By, — {0} such that ™ =0 for some n > 1.

DEFINITION I11.16. The prime p € Spec(A) is ramified in K if B/p.B is not reduced. Otherwise
p is unramified in B.

PROPOSITION II1.6.1. A prime p is ramified in K iff e/, > 1 for some P above p.

PRrOOF. We have an isomorphism of k, = A/p-algebras.

B/p.B~ ] B/%r.
Blp

If e/, = 1 for every B, B/p.B is a product of fields and therefore does not contain any
non-trivial nilpotent element: B/p.B is reduced and p is unramified.

On the other hand, if eg/, > 1 for some P above p, any element z € P — P2 defines a class
modulo Pe¥/r satisfying

xe¥/p L £ 0 (mod P /,) but x5, = 0 (mod Py /,,)-

The algebra B/p.B is then not reduced. The prime p is ramified in B and one says that p is ramified

at .
O

I11.6.1. The discriminant ideal. Let us recall that a field extension K/Q of degree d is
separable if and only if

— The trace linear form trg g : K — @ is non-zero (hence onto) or equivalently,
— The trace bilinear form

KxK — Q
(K0 4y o trgoey)

is non-degenerate or equivalently,
— For any Q-basis 2= (z1,--- , 2q4)

det({zi, 2j) k/Q)i,j<d) 7# 0.

DErINITION II1.17. Let A C Q C K be a Dedekind ring and B C K its integral closure in
a separable extension K/Q. The discriminant ideal is the ideal generated by the discriminants of
d-tuples in B:
QB/A = <{dlSCK/Q(Z) Z= (21, s ,Zd) € Bd}> C A.

Observe that Dp,4 C A because for 2= (21, -+ ,zq) € B9, the discriminant is a (multivariate)
polynomial evaluated at the points {trx/o(2i2;): 1 < i,j < d}, which are coefficients of characteristic
polynomials of elements in K integral over A. Moreover, Dp,4 is a non-zero ideal: we have seen
that B contains a Q-basis of K, say Z and, since K/(Q is separable, the trace is non-degenerate and
therefore discx /g (21, , za) # 0.

Our main goal in this section is the proof of the following

THEOREM IIL.7 (Discriminant criterion of ramification). If p € Spec(A) is ramified, then
pIDp/a. In particular the set of ramified primes is finite.
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I11.6.1.1. The discriminant ideal for a PID. In this section we assume that A is a PID: for
instance A = Z or Fy[T] or A is the localisation at a prime of a Dedekind ring (see above).

We recall that this implies that B (and any B-ideal) is a free A-module of rank d and the
discriminant ideal ®p,4 C A is principal.

PROPOSITION I11.6.2. For any A-basis (z1,--- ,zq4) € B of B, one has
Dpya =discg/g(z1,- -+, 24).A.
PROOF. Let (21, ,24) be an A-basis of B then
disc(z1,- -+, 24).A C Dpya.

Let (2}, ,2)) € B be any other d-tuple. We have

d
z = E aijzj, aij € A

j=1
and setting
M = (aij)ij<a € Ma(A)
we have
disc(z],- -+, 2}) = (det M)?disc(z1, - , 2q)
and since det M € A it follows that
disc(z1, -+, 24) € disc(z1, -+, 24).4
and therefore
Dp/a = disc(zy,- -+, za). A
(Il

REMARK ITL11. If (21, , 2zq), (21, , 2) € B? are A-bases of B, then the matrix M € My(A)
is invertible and its inverse M ! is also in My(A), therefore

det(M) € A
and disc(z], -+, 2}) and disc(z1, - , z4) differ by det(M)?, the square of a unit in A. In particular,
if A=27Z, (Z*)? = {1} and
disc(z], -+, 2}) = disc(z1, -+, 24),

therefore when A = 7Z the discriminant can be defined as the common value of the discriminant of
any basis.

For the proof we will need a few properties of the discriminant ideal.
I11.6.1.2. Invariance under localisation.

LeEMMA 1I1.6.3. Let p be a prime and A, and By be the localisations of A and B atp. We have
QB/AJJ = QBF/AP
where D g4, s the localization of the discriminant ideal Dp 4.

PRrROOF. Exercise. ]

The advantage of this lemma is that one can compute the discriminant ideal via localizations
at various primes and the main benefit of localizing is that A, is a PID. This leads us to the next
section.
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I11.6.1.3. Proof of Theorem II1.7. Observe that for any prime p, the residual algebra K, satisifes
K, =B/p.B~ B,/p.By.

So in order to determine whether p is ramified or not, it is sufficient to determine whether the
algebra By /p.B, is reduced or not. We will use the trace criterion. Given z € B, we denote by

Z =z (modp.B,) € By /p.By
the image under the reduction modulo p.By,-map.
Since A, is a PID, By, is free of rank d. Let (z1,--- ,24) € By be an Ap-basis. Then
(Z1, ,Z4) = (z1 (modp.Byp),- -, 24 (modp.Bp))
is a ky-basis of Ky ; cf. the proof of Lemma II1.5.4. For any z € B, we have

[XZ]K/QBp C Bp, [XZ]K/Q(p.Bp) C po
In particular the matrix of [xz]x/q in the basis (z1,---,24) has coefficients in A,. Moreover,
if z € p.By, then [xz]g;o(Bp) C p.Bp and the matrix of [xz]k,q in the basis (21,---,2z4) has
coefficients in p.A, = m,. It follows that the kp-linear map [xZ]k, /&, given by multiplication by Z
in K, is induced by the restriction to By of [xz]x/q: for T = 2 (modp.B,) € K, we have
[xZ]k, /&, (T) = 2T = ZT = zx (mod p.By) = [x2]k/q(x) (mod p.By)

and that the matrix of [xZ]g, /&, in the basis (Z1,---,Z4) is simply the reduction modulo m, of the
matrix of [Xz]x/q; in particular we have

trK, /k, (Z) = trg/o(2) (modmy)
and
discre, /k, (Z1, -+, Za) = discg/qg(21, -+, 2a) (modmy).
Suppose that K,/k, is non-reduced, then any non-zero nilpotent element in this algebra is
contained in the kernel of the dual map for the trace bilinear form (e, ), /i, if [xZ] is nilpotent
then for any z’, [xzZz'] is also nilpotent and so

(Z,7) K, /by = i, ke, (ZZ') = 0;
therefore the trace is degenerate and
discg, jk, (Z1,* , Za) = Ok, = disci/q (21, , 24) (mod my).
This implies that
p-Ap|Dp, /4, =DpBjap
(by Lemma II1.6.3) and therefore that
PIDB/a-
|
For the converse we need a further assumption.

Hyporuesis IIL.1. The residue fields ky for all p € Spec(A) are perfect: any finite extension of
ky is separable.

THEOREM II1.8. Assume that Hypothesis III.1 holds. A prime p € Spec(A) is ramified iff
pDp/a.

ProoF. We need to show that if p|Dp/4 then K,/k, is not reduced. We have p.A,|Dp, /4,
and therefore

fDKp/kp = {0} S kp,
so the trace form is degenerate on K, /k,. Since

Ky [y ~ H By /Pl
Blp
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the discriminant is the product of the discriminants of the k,-algebras By /PB°* and one of them
must be 0, say for B. If eq), = 1, then By /PB¥I» is the residue field kyp and by Hypothesis II1.1 is
a separable extension of k,. By the trace criterion for separability the discriminant is non zero; we
must therefore have eq, > 1 and By /PB°*I» is not reduced. O

IT1.7. The Dedekind recipe, 1

The Dedekind recipe is a systematic method to compute prime decompositions.

We consider the usual setting: A C @ a Dedekind ring and B C K its integral closure in a
separable extension. Let Dp/4 C A be the discriminant ideal. Let z € B be such that K = Q[z],
let P,(X) € A[X] be the minimal polynomial of z, and let

disc(z) = discg/g(1, -+ ,2%71) € A— {0}
be its discriminant. We have
Dp/al(disc(z)) # 0.

Let p be a prime ideal. In many cases one can read the prime decomposition of p from the decom-
position of P, (modp) € kyp[X] into irreducible polynomials.

THEOREM II1.9. Assume that p is such that
vy (disc(z)) = vp(Dp/a). (I11.2)
We have the equality of localized rings and ideals
(disc(z))p = @B/A,p
and
By = Aplz] >~ A, [X]/(P2), (P2) = P..Ap[X].
Set P, = P, (modp) € ky[X] for the reduction of P, modulo p and let

E=II7

be the decomposition of the latter into irreducible factors in ky[X|; for any such factor P; we choose
a lifting P; € A[X] of P, i.e., P;(modp) = P;.
The map
P;— ‘Bi,p = po + Pi(Z)Bp — (po + B(Z)Bp) NB= 6132
is a bijection
{P;, i} ~ Spec(B,) ~ Spec, (B)

between the set of irreducible factors of P, the set of prime ideals of By, and the set of prime ideals
in B above p. Moreover in this bijection we have

f%/p = deg P, Epi/p = €
REMARK III.12. Observe that for any prime p and any z € B we have
vp(disc(z)) = vp(Dpya) = 0.

In particular, (II1.2) holds as soon as v, (disc(z)) = 0, that is p fdisc(z), which is the case for all but
finitely many p. In the exercices we will see other sufficient conditions for (II1.2) to hold.

REMARK III.13. In some cases, there exists z € B such that
B = Alz].
One says that B is a monogenic extension of A. In such a situation
Dpa = discgg(z).A
and (IT1.2) is true for every p.
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For instance, the ring of integers Ok of a quadratic field K/Q is monogenic; this is also the case
for the ring of integers of the n-th cyclotomic field

K= Q(Cn)>§n = exp (2;”) :



CHAPTER IV

Galois extensions

Let A be a Dedekind domain with field of fraction @, K a finite separable field extension of
degree d and B the integral closure of A in K. We also assume that Hypothesis III.1 holds: for
every p and % € Spec,(B), the residual extension Ky /ky is separable.

In this chapter we consider the case where K/Q is a Galois extension with Galois group denoted

G = Gal(K/Q).
The field automorphisms in the Galois group preserve algebraic and integral structures and
in particular integrality properties and prime ideals; we will investigate how these extra Galois

symmetries influence the structure of rings of integers and the prime factorisation. We refer to §A.6
for the basics of Galois theory for fields.

IV.1. The decomposition and inertia subgroups

We recall that given ¢ € G we have
vl@ =1dg
and in particular ¢ is the identity on A. Also we recall that for any z € K we have

Papar = i/0(X) = [] (X = 0(2)), trjq(z) = Y @(2), Nrgjoz) = [] #(2).
peG peG peG
We first make the following observations:
LEMMA IV.1.1. For any ¢ € G, we have
¢(B) =B
and for any prime p € Spec(A) and ‘B € Spec, (B),
©(P) € Spec, (B).

In other terms the group G acts on B and on Spec,(B).

PROOF. For any z € B, let Pear 2 k70 € K[X] be its characteristic polynomial. Since z € B,
then Pepar . x/q has coefficients in A and since A is invariant under ¢, ¢(z) is a also root of
Pehar,z,i/q hence belongs to B; we recall the argument for the claim

0=¢(P(2)) = p(P)(p(2)) = P(p(2))-

Let 3 be a prime ideal above p, since ¢ is an automorphism, we have

B/% = ¢(B)/¢(B) = B/o(P)
which is a field since B/B is a field so ¢(*P) € Spec(B). Moreover

PP)NA=p(PNA) =pp) =p
©(P) € Spec,,(B).

THEOREM IV.1. The action G ~ Spec,(B) is transitive.

47
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ProOF. Given B € Spec,(B), suppose that there exists ‘B’ € Spec,(B) such that p(P’) # B
for any ¢ € G. By the Chinese remainder theorem, there exists = € P such that for any ¢ € G we
have x & p(P’) and therefore p(x) &€ P’. We have

Nry/q(z) = H‘P(z) =z H p(z) P
® p#1d
but

NI“K/Q(Z‘) EANP=pCP
contradiction. O

COROLLARY IV.1.1. The functions B — ey, and B — fy/p are constant and noted e, and f,
and we have

d = ey.fy-|Spec, (B)].

DEFINITION IV.1. The decomposition group of B, Dy C G is the stabilizer of the ideal B. Since
the action is transitive all the decomposition subgroups Dy of the primes above p are conjugate to
one another.

Observe that by the orbit-stabilizer Theorem we have
d/|Dy| = [Spec, (B)| = d/(ep-fp)

and therefore
[ D] = ep-fp-
EXERCISE IV.1. Let P € Spec(B) non-zero, p = P N A. Prove the following equivalences.
(1) Dy = {1} <= p is totally split in B, i.e., [Spec,(B)| = [K: Q].
(2) Dy = G <= p is totally ramified in B, i.e., |Spec,(B)| = 1.

IV.1.1. The residual action of the decomposition subgroup. Since the decomposition
subgroup fixes B, it acts on ky = B/P:

Pz +P) = o(2) +¢(P) = (2) + B
This action leaves k, invariant.
We have therefore a map (of reduction modulo J3):

. Dq3 — Homkp (ksp,kgp)

(IV.1)
p = PP

op
where
e (2 (modP)) := ¢(z) (mod P).
DEFINITION IV.2. The kernel of the map ey is called the inertia subgroup at B and is denoted
Iy ={p € Dy, Vz € B, ¢(z) = z(mod*P)}.

This is a normal subgroup of Dy and all the inertia subgroups at the primes P above p are conjugate
to one another.

THEOREM IV.2. We assume that for every p € Spec(A) the residue field k, is perfect.
The extension kg /ky is Galois, i.e.
Homy,, (kq, kys) = Homy, (kqs, k) = Gal(ky /kp)
and ey induces an isomorphism
Dy /I ~ Gal(ky /kyp). (Iv.2)
In particular we have
| = ey
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Recall that p is ramified iff
IP € Spec, (B), ep > 1 <= p|Dp/a
and since
VP € Specy(B), epp = €p = [Ip]
we have

COROLLARY IV.1.2. The prime p is unramified if and only if for one (and hence any) Blp, the
inertia subgroup Iy is trivial. In that case we have an isomorphism

oy Dy ~ Gal(ky /Ky ).

Before starting the proof of Theorem IV.2 it will be convenient to introduce
IV.1.1.1. The decomposition subfield.

DEFINITION IV.3. Let B € Spec(B) non-zero. The decomposition field Zy of P is the fized
field of the decomposition group of B, i.e.,
Zyp ={z € K:Vp € Dy, p(x) = z}.
By the Galois correspondence K/Zqy is Galois with Galois group Dsy.

Let
Bz, := BN Zy;
this is the integral closure of A in Zgp and we can use the relative theory to study the prime ideals
of BZWB .
THEOREM IV.3. Let‘P € Spec(B) non-zero, p = PNA, and Bz = PNBz, € Spec(Bz,)—{(0)}.
We have therefore p|Bz'B. Let eq,|p, and fy,|p denote the ramification indexr and inertia degree

for the extention Bz, [A.
We have

(1) Specy, (B) = {B}, i.e., Bz is totally ramified in B.
(2) e, =€y and fy, = fy and e,y = fp,p = 1.
In particular we have

Proor. Exercise. ([

IV.1.1.2. Proof of Theorem IV.2. By Hypothesis III.1 kg /k, is separable. It is sufficient to show
that kg /ky is normal and that the map (IV.1) is surjective.

In what follows, we denote by A C B’ C B the integral closure of A in the decomposition
field Zg of *B. Recall that by Theorem IV.3 we have

ko, = k.

Let Z € kg be a primitive element for the separable extension kg /kq, = ky/k, and z € B a lifting
of z, i.e., z(modP) =Z. Let

Pmin,z,qu =X"+ arleT_l +---Fap € BI[X]v

be its minimal polynomial.! Its roots are the (z) as ¢ varies over Dj.
We may therefore consider its reduction modulo P z:

Pmin,z7Zq3 (mOdmZ) € k‘pz[X] = kp [X]

Its roots are the reduction modulo B, of the ¢(z) as ¢ varies over D,:
p(2) (modP) = op(2) € kp.

IThe integral closure of B’ in K is B because this is already the integral closure of A. Hence z is integral
over B’. This was proven as part of the proof of Lemma I11.4.1
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Since z is a primitive element of ky/k, whose conjugates (over ky) are all in kg, the field
extension kg /k, is normal hence Galois.

Moreover any automorphism 7 € Gal(ky/ky) is completely determined by the value n(Z) which
are roots of Ppin 2,z (modPz) and we have seen that any such root is of the shape (%) for
some ¢ € Dg; this implies that 7 = 3 and the map ey is surjective.

Since |Dyg| = eyp. f, and | Gal(ky/kp)| = f, it follows that

[ Iyp| = ex.

IV.2. The case of finite residual fields
We make the following additional assumption:

HypOTHESIS IV.1. For any prime p € Spec(A) the residual field k, = A/p is finite. In particular
for P € Spec,(B) the extension ks /ky is automatically separable (and even Galois).

ExAMPLE IV.1. This hypothesis is satisfied if A =7 (Q = Q) or A =TF,[T] (Q =TF4(T)) for F,
a finite field: in the first case k, = Z/pZ = F,, and in the second case
p = (P) = PF,[T], P(T) € F,[T] irreducible and k, = F,[T]/(P) ~ ]FZ, d = degP.
Of course other cases are given by the integral closure of either of these rings in separable extensions

of Q.

Let us recall that in this case the residual Galois group Gal(ky/k,) is cyclic and generated by
the Frobenius:

Gal(ky/kp) = frobl,
where ¢ = |k,| and
k'gp — ks;p

frob, : .
T = af

DEFINITION IV.4. Given p € Spec(A) and B € Spec, (B), the Frobenius at B, denoted

(B, K/Q) € Dy /Iy,

is the preimage in Dy /Iy of froby under the isomorphism (IV.2).
In particular, if p is unramified, Iy is trivial and the Frobenius element

(B, K/Q) € Dy C Gal(K/Q)

belongs to the Galois group.
This element (if p is unramified) is the unique element ¢ of D, such that

Vz € B, ¢(z) = 29 (modRP). (IV.3)

EXERCISE IV.2. Prove that if ¢ € Gal(K/Q) satisfies, for some P € Spec(B) — {(0)} which is
unramified

Vz € B, ¢(z) = 27 (mod ). (Iv.4)
(for ¢ = |kp| and p = AN*P) then
¢ = (P, K/Q).
The next Lemma describes the action of the Galois group on Frobenius elements.

LEMMA IV.2.1. For all ¢ € G we have
Ad(9)(B, K/Q) = o(B, K/Q)p™" = (¢(¥), K/Q)
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PRrOOF. Exercise. O

This lemma and the transitivity of the action G ~ Spec,(B) implies that the set of Frobenius
elements at the primes above p

{(B, K/Q), Blp}

form a single conjugacy class in G. This class bears a name:

DEFINITION IV.5. Let G = Gal(K/Q) and p unramified. The Frobenius at p (or the Artin
symbol at p) is the conjugacy class

by o= (K19 i aa(@) (9. 5/Q) = (. K/Q). W} < 6

REMARK IV.1. If G is abelian, all conjugacy classes are composed of a single element; in partic-
ular all the elements (B, K/Q), B|p in the Frobenius conjugacy class are equal. Abusing notations,
we will write this element

froby = (9. £/Q) = (0. K/Q) = ( *£2)).

The importance of Frobenius elements is the following Theorem. In later chapters we will discuss
more precise versions of it:

THEOREM IV.4. Suppose that A is either Z or F,[T] ( or more generally the integral closure
of either of these rings in separable extension of the field of fractions) and let B be the integral
closure of A in a finite Galois extension of @ = Frac(A). Then the Frobenius elements (B, K/Q),
for B € Spec(B) varying over the unramified prime s, generate Gal(K/Q).

The proof of this result require the introduction of further tools from analysis.

IV.2.1. The Dedekind recipe II: Structure of the Frobenius automorphism. Related
to the discussion in Section II1.7 is the following version of Dedekind’s recipe for Galois extensions.

Let A be a Dedekind domain such that its residue field are finite. Let P € A[X] (of degree
d > 1) be a polynomial with coefficients in A, monic and separable, ie. the roots of P

rOOtP(Qalg) = {217 29y 7Zd}
are distinct. In particular, its discriminant
disc(P) = (—1)P?~1/2peg(P, P') € A — {0}.
Let
K = Q(P) = Q(Z1722a T 7Zd) C Qalg

be the splitting field of P and n = [K : Q] be its degree; The extension K/Q is Galois with Galois

group noted G = Gal(K/Q). Since the roots of P generate K/Q the Galois group G acts faithfully
on rootp(K) and in that way can be identified with a subgroup of

S(rootp(K)) ~ &y.
In other words, to ¢ € G one associates the (unique) permutation o € &({1,---d}) such that
o(zi) = 253, 1 =1,--- ,d.

THEOREM IV.5. Let p € Spec(A) be a prime not dividing disc(P) € A; then p is unramified in
K (in particular p [Dp/a).
Let

ip
P (modp) = H P;
i=1
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be the decomposition of P (modp) into irreducible factors (the multiplicities e; are all 1 because p
is unramified in Q(z)). For any P above p, the Frobenius at P, (P, K/Q), when identified with an
element of &4 is a product of disjoint cycles of lengths

fi:deg?’ia Z:]-v 7ip'

REMARK IV.2. Notice that the f; are not necessarily equal; these are the inertia degrees at the
primes ideals above p in the Q-extension E = Q[z1] but we do not necessarily assume that K = E
the f; are not necessarily the inertia degrees of the ‘B € Spec,(B). On the other hand we have

Fusp = Dyl = (B, K/Q)F| = lem(fi, i=1,---ip)

REMARK IV.3. Notice that if we chose a different 3’ above 93, the two Frobeniuses are conjugate
to one another, so, as permutations, the lengths of the cycles in their cycle decompositions are the
same.

PROOF. Let B = O4(K) be the integral closure of A in K. Observe that since {21, 22, , 24} €

B. Given ‘Blp we set
Zi = z; (mod‘l?) S k‘qg.
We have the Sylvester factorisation formula for the discriminant
disc(P) = disc(1, z1, 22, - -, 2971) = H(z] - Z). (IV.5)
J>i

This is an identify between elements of B which we can reduce modulo 3.

Since p fdisc(P) we have

disc(P) (modP) = [[(Z; — Zi) # 0 (mod )
i>i
and therefore
Vi # j, z; # 2z (mod*P).
Let ¢ € Dz C G be such that op = Idg,, - This implies that
Vi < d, ¢(zi) = 25(:) = 2; (mod )

but since the Z; = z; (mod*R) are distinct this implies that p(z;) = 2; and that ¢ = Idk : the map

op ! Dgp — Galkp (P)
is injective and p is unramified (in particular p [Dpg/4).

This also implies that

k‘n = kP[Elszv' e 72(1] = k‘B(P)

is the splitting field of P. - -

Moreover the orbits of roots(ky) under the action Galy, (P) are the sets of roots of each P;
and the frobenius element frob, acts on rootp(ky) as a product of disjoint cycles of lengths f; =
deg P;, i < ip. Write op € &4 the corresponding permulation: we have

fI“Obp (zi) = Zowg (i)
Since for any ¢ we have
(B, K/Q)(zi) = froby (z;) (mod B) = 25, ;) (mod )

and the z; (mod‘P) are distinct we have

(B, K/Q)(2i) = Zogp (i)



CHAPTER V

Geometry of numbers

In the sequel we will study specifically two examples of Dedekind rings:

— Number field case: Q = Q, A =7Z, K/Q is a finite extension (automatically separable) of
degree n and B is the integral closure of Z in K. The ring B is then called the ring of
algebraic integers of K and is denoted Ok:

Ok ={z € K: 3P € Z[X], monic, P(z) = 0}.

— Function field case: Let F, be a finite field of cardinality ¢ and A = Fy[T], Q = F (7).
Let K/Fq(T) be a finite separable extension of degree n and let B = Ok be the integral
closure of F,[T] in K:

Ok ={z € K: 3P € F,[T|[X], monic, P(z) = 0}.
In these two cases the ring A is a PID and the residue fields are finite fields:

— Number field case: the prime ideals of Z are the principal ideals (p) = pZ where p is a
prime number so that &, = F, (and for ¥ € Spec,(Ok), kg /kp is a finite extension so a
finite field as well).

— Function field case: The prime ideals of F,[T] are the principal ideals (P) = PF,[T]
generated by an irreducible polynomial P € F,[T], hence

kp =TFy[T]/(P) ~Fga, d = deg(P).
(and for P € Specp (O, (1), kg /kp is a finite extension so a finite field as well).

Let us recall that given a Dedekind ring O the ideal class group Cl(O) is the quotient of the group
of fractional ideals by the principal ones. This is an abelian group which measures the obstruction
to O to be a PID. In this chapter we will study the following finiteness theorem.

THEOREM V.1. For Ok as above, the ideal class group Cl(Ok) is finite.

REMARK V.1. A general theorem of Claborn shows that given any abelian group G (possibly
infinite, even possibly uncountable) there exist a Dedekind domain O such that

Cl(0) ~G.
Moreover O can even be obtained as a quadratic extension of a PID (Leedham-Green)!
One of the distinguishing feature of the number and function field cases by comparison with the
general case is a finiteness result on ideals.
V.1. The norm of an ideal
LEMMA V.1.1. For Ok as above, any non-zero ideal a C Ok has finite index in Ok .

PRrROOF. Indeed since Z or F,[T] are PIDs, a and Ok are free A-modules of rank n = [K: Q)]
and one has

Ox/a~]][A/a:i.A
=1

53
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for a; € A—{0}. If A =Z then A/a;.A is finite of order |a;| and Ok /a is finite of order
O /a] = [ lasl.

If A=F,[T], a; = a;(T) € Fy[T] — {0} is a polynomial and F,[T]/a;(T).F,[T] is a F,-vector space
of dimension dega; and Fy[T]/a;(T).F,[T] is finite of order ¢4°®% so that
Oscfa] = imr s,
O
DEFINITION V.1. For Ok as above, the numerical norm of any non-zero ideal a C Ok is defined
as the index
Nr(a) = |(’)K/a| S N}l.
PropPOSITION V.1.2. The norm has the following properties
— Multiplicativity:
Nr(a.b) = Nr(a) Nr(b).

In particular if

a= H sB’U&p (u)’
B
then

Nr(a) = [ [ Ne()» .
B

— If B is a prime ideal of Ok above some prime ideal p (p is either pZ or PF,[T] for P an
irreducible polynomial), then we have
|Z/pZ|T%/e = plese ifA=1Z,

V.1
F,[T)/P|fs/e — qiestP)sreif A — F,[T]. VD

Nwmz{

Proor. By CRT the we have
Nr(a.b) = Nr(a) Nr(b)
whenever a and b are coprime. It is sufficient to prove that for 8 € Spec(Ok) a prime
Nr(B”) = Nr(%)”

and that Nr(3) is given by (V.1). The latter is immediate, since kp = Ox /B is a vector space of
dimension fg), over the residue field k, of the underlying base prime ideal p = pZ or PF,[T]. For
the former, let u be any integer, then B“/PB**! is a kg-vector space of dimension 1 (cf. the Proof
of Thm. II1.5). In particular, by the preceding result, [B*/B*H| = Nr().

Moreover, we have the exact sequence of Z-modules

0 — PU/Pt = Og /BT — Ok /P — 0
where the second arrow is the canonical projection; therefore
Nr(PUH) = |0k /P = |Og /B[ |B /BT = Ne(P*) Ne ().

Thus the claim follows by induction on wu. O
One reason for calling this a “norm” is the following

PROPOSITION V.1.3. For any z € Ox — {0} we have

PRroOOF. This is a direct consequence of Prop. A.2.2 and of the definitions. (Il
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EXERCISE V.1. Given a C Ok an ideal, its ideal norm Nrg, g(a) C A is the ideal generated by
the norms of the elements of a. Prove that

Nr(a) = |A/Nrg,q(a)l.
EXERCISE V.2. Let f = a.b™! be a fractional ideal. We define its norm as a rational number
Nr(f) = Nr(a)/ Nr(b) ™.
Show that this is well defined and multiplicative.
The following finiteness result will be crucial.
ProproOSITION V.1.4. For any X > 1 the number of ideals a C Ok of norm < X is finite.

Proor. If Nr(a) < X, then any prime ideal 3 dividing a has norm < X. Moreover, since any
prime ideal is proper, i.e., Nr(8) > 2, one has

”‘13(“) g IOg(X)/2a

so it is sufficient to show that the number of prime ideals of norm < X is finite. Observe that the
number of prime ideals of the base ring A of norm Nry(p) < X is finite: for A = Z this number is
bounded by the number if positive integers < X so is < X and for F,[T] this number is bounded
by the number of monic polynomials with coefficients in F, and of degree < log X/loggq so is also
bounded by X. If 8 is prime in Ok of norm Nr() < X then P is above p =P N A and we have

Nra(p) = [kp| < [kp| = Nr(P) < X
so there are only finitely many possible p and above any such p there are at most d primes B. O
EXERCISE V.3. Prove that for any m € N>; and any € > 0
rr(m) = |{a C Ok, Nr(a) = m}| < e,nm®.

For this, remark that m — rx(m) is a multiplicative function and establish that bound for prime
powers.
Show that as X — oo

[{a € Ok: Nr(a) < X}| < X1,
Theorem V.1 is therefore a consequence of the following

THEOREM V.2. For Ok as above, there is a constant C(Ok) such that any ideal class [a]
of Cl(Ok) contains an ideal a of norm < C(Ok).

ProOF. By the Proposition V.1.5 below, there exists C = C(Og) > 0 s.t. given any ideal
a C Ok, there exists 0 # a € a C Ok, s.t. Nr(a) < C'Nr(a). We have

a|a(9K < a0k = Clb, bC Ok

and
Nr(aOg) = Nr(a) Nr(b) < C' Nr(a)
therefore
Nr(b) < C
Since aOg = ab we have
[6] = [a] !

When a varies, the classes [b] cover all of Cl(Og) and we are done. O

)
PROPOSITION V.1.5. There exist C = C(Ok)
for which

> 0 s.t. for any ideal a C Ok there is a € a— {0}

|Nr(a)] < C'Nr(a).
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ProOF. We give the proof when A = Z. Without loss of generality we may assume that the
algebraic closure Q is contained in C. In particular the embeddings

HomQ(K,@) ={o1," ,0n}

take values in the complex numbers.
Let (21, ,2,) be a Z-basis of O and m € N > 1 be the unique integer s.t.

m" < Nrp, (a) < (m+1)".
Consider the (m + 1)™ elements of Ok of the shape

n
1=1

Since (m + 1)™ > Nro, (a) = |Ok /a| there exists (pigeonhole) z # 2’ in that set such that
a=z—-2 €a—{0}
We have by Prop. V.1.3

n

Nro, (aOk) = | Nrg q(a)| = H loj(a)l

j=1
<TIO S IN = Xlloj zol) < m™([ D loj(z)]) < Cm™ < CNro, (a)
i i
where

C= HZ |0 (23)].

EXERCISE V.4. Prove the above proposition for A =F,[T].

In the rest of this section we will provide a precise value for the constant C' in the number field
case (A =17).

V.2. Lattices

THEOREM V.3. Let A C R" a discrete subgroup, then A is free of rank r < n and generated by
r vectors which are R-linearly independent.
PROOF. Let us recall that A C R™ is discrete iff either of the two conditions are satisfied:

— For any x € A there exists an open set V,, C R" such that V, N A = {z}.
— For any compact K C R™, K N A is finite.

Let B = (z1, -+ ,z,) C A" a family of R-linearly independent elementis with r maximal and let

P =P = {x e R", .I:Z/\il‘i, A € [0,1[}

Since P is precompact,
PNA={z}, -2}
is finite. For any = € A we have
=Y Nz, N €R
i

and if we set
[x] := Z[Az]xz eA
we have

r—[z] e PNA
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and
v =[] + a3,
therefore A is generated by BU P N A so is of finite type hence free of rank ' > r since it contains
the free group of rank r
AB = Z in.
i

Let us prove that A is contained in a free group of rank r: for any 2’ € PN A we set for j € Z
ol = ja’ = [j2'l e PNA.
Since that later set is finite there exists i # j € Z s.t. 2 = x] and

1
(G — )2’ = [j2'] - [ia'] = 2’ = —([ja] - [iz']).
j—i
hence any element of P N A is a linear combination with rational coefficients of elements of B and
the denominators occuring belong to a finite set. Let d be a common denominator, we have

1 1
PNAC=-Ag=— AC =Agp.
d d
O
DEFINITION V.2. A lattice A C R"™ is a discrete subgroup of rank n; in particular any Z-basis
is an R-basis of R™.
V.3. Minkowski theorems
V.3.1. Volume of a lattice.

DEFINITION V.3. Let A C R™ be a lattice with basis B = {x1,--- ,z,}. The fundamental
parallelotope for B is defined as

Pg={xeR" z= Zx\ixi, i € 0,1]}.

This is a fundamental domain for the action of A ~ R™. The volume of Pg is the determinant
vol(Pg) = | det((zi ;)i j=1.-- ,n)]
where the z; ;j are the coordinates of x; in the canonical basis*
i = (Tin,  ,Tin), 1=1,--,n.
LEMMA V.3.1. Let B’ be another basis, er have
vol(Pg) = vol(Ps).

PRrROOF. If B’ is another basis the matrix of base change (from B to B’) has integral entries as
does it inverse, therefore its determinant is +1 and

| det((xi5)ij=1.- n)| = [det((2] ;)i j=1.. .n)-
(Il
DEFINITION V.4. The (co)volume of A is the volume of Pg for any choice of a Z-basis of A:
vol(A) := vol(Pg).

Lor in fact any basis
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REMARK V.2. The term “volume” for the volume of A is a bit improper: this is rather the
volume of (a fundamental domain of) the quotient space R™/A, so one should rather speak of the
“covolume” of A. We will allow ourselves to speak of the volume of A and write vol(A); notice that
this “volume” is a decreasing function of A: if A’ C A one has

vol(A") > vol(A).
PROPOSITION V.3.2. If A’ C A is a sub-lattice we have
vol(A") /vol(A) = |A/A].
PRrOOF. This is a direct application of the adapted basis Thm. (Il

V.3.2. First Theorem.
THEOREM V.4 (Minkowski). Let A C R"™ be a lattice and V C R™ a mesurable set. If
vol(V') > vol(A)
there exists v #v' € V s.t.
v—v €A

ProOOF. Consider some fundamental parallelotope P. The set {x + P, = € A} is a measurable
partition of R™ so we have a measurable partition of V'

V=|]|Vn@+P)
zEA

so that
vol(V) = Z vol(V N (z + P)).

Observe that by translation invariance we have
volVN(z+P)=(—z+V)NP.
We have
Y (~z+V)NPCP
zEA
and
Z vol((—z +V)NP) = Z vol(V N (z +P)) = vol(V) > vol(P)
€A zEA
so there exists © # 2/ € A such that

(—z+V)NPNO(=2"+V)NP #0;
This means, there exists v,v’ € V s.t.

—z+v=—-24+v<=v-1v=x—-2"€A-{0}.

V.3.3. Second Theorem.

THEOREM V.5 (Minkowski). Let A C R™ a lattice and V' C R™ a set which is compact, convex
(w,v' €V <= [v,0'] € V) symetric wrt. 0 (veV << —ve V). If

vol(V) = 2"vol(A)
then V' contains a non-zero element of A:

VNA-{0}#0.
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PROOF. Let us assume that vol(V) > 2"vol(A). By the first Theorem the set 1V contains v # v’
s.t.
r=v—v €A-{0}
We have w = —v’ € %V by symmetry and 2v,2w € V; therefore

1
x:§(2v—|—2w)€V

since V' is convex.
Suppose that vol(V) = 2"vol(A); for any 0 < € < 1 there is z. € (1 +¢)V N A — {0}; since for
all € > 0 the intersection (1 +¢)V N A — {0} is finite, there exists a subsequence € — 0 such that .
is constant.
O

V.4. Archimedean embeddings

Let Q C C be the subfield of algebraic numbers C. In the sequel, all the finite extensions of Q
we will consider are included in Q so are fields of complex numbers.

Let K/Q a finite extension of degree n. This is therefore a subfield of C and for any o €
Hom(K,Q), o(K) is another subfield isomorphic to K and contained in C and the set of all such
subfields is precisely

o(K), o € Homg(K, Q).

REMARK V.3. Since K/Q is separable, | Homg (K, Q)| = n.

DEFINITION V.5. Given o € Homg(K,Q) an embedding of K in C. If o(K) C R, o is a real
embedding and complex if o(K) ¢ R.

We denote the complex conjugation
oc(e)=e:2e¢C—zeC.

The group {Id,oc} acts on Homg(K,Q): the real embeddings are the fixed points for this action
and the complex ones decompose into pairs of complex conjugate embeddings. In particular the
number of complex embedding is even. The number of real embeddings is denoted r; = r1(K) and
the number of complex ones is denoted 2ry = 2r2(K) so that

1+ 2ry = n.
REMARK V.4. This can be considered as an archimedean version of the degree formula.

Set
r=17r1+79
and
{017' Oy Oy 41,00 70r}
a choice of representatives of the various orbits of Homg(K, Q) under the action of {Id, o¢}: such a
choice is called a type for K (there are 2™ possible types). In other terms given a type as above
{0'17 s ,0'”} = HOHIQ(K,R)
is the set of real embeddings and
{UT1+15 ) 0-7‘1+T27ET1+17 T 7ET1+T2} = HOHIQ(K, (C) - HOmQ(K, R)

is the set of complex ones.
Let K. be the R-algebra

T1+72
Koo =R" xC”? =[] Ki

i=1
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with
R i<
Ki=4 o 'S
C i=ri+1,---,ro.
We have
Ko ~R"
where we have identified C with R? via the usual R-linear map
z=x+iy € C— (z,y) € R%
Given a type, let
oo K - Koo
Tz = 0x(2) = (01(2), 0, 00(2)
This is an injective morphism of QQ-algebra called the archimedean embedding associated to the type.
In the sequel the type is fixed once and for all.

THEOREM V.6. When Ko, = R™ x C™ ~ R"™ is endowed with the usual topology, the subgroup
0oo(K) is dense and the subgroup
O’OQ(OK) C Koo
is a lattice (is discrete of rank n). Let (z1,--- , zn) be a Z-basis of Ok, then (0oo(21), -+ ,000(2n))
is an R-basis of K. More generally the image by o of any fractional ideal is a lattice in K.

PROOF. We start by showing that o, (Ok) is a lattice. For discreteness, it is sufficient to show
that 0 is isolated in 0o (O ). Let (2x)r>0 be a sequence of elements of O such that

Ooo(2k) = 0.

The sequence of characteristic polynomials converges

1 r1+7r2
Prjgears(X) = T (X—o@) =[] (X-0i(z)) [T (X-0i(a)) (X —0i(z)) = X"
oc€Homg(K,C) i=1 i=r1+1

but the coefficients of the Pk /g car,-, (X) are integers so must be 0 for & large enough (except for
the degree n coefficient).

To see that 04 (Ok) has full rank, let (z1,---,2,) be a Z-basis of Ok; we will see that
(00o(21)s+* ,000(2n)) is an R-basis of K, and compute the volume of 04, (Of). For i =1,--- ,n
we set

0j(z)="x;; € Rfor j=1---1,
oj(z) =@ j+iy;;j €Clor j=ri+1---171 +71o.
Let
Wi = Tij, J =1, ,r1+72, Uiy =Yij, J=r2+1,--,2rs.
It suffices to show that
|det((ui,j)i,j:1’...,n)| 75 0.
We have

_0j(2i) +0i(2) _0j(z) —0(2)
21
and therefore

| det((uij)ij=1, )| =27 det((0(2i))ij<n)l-

But let us recall that

disc(Ok) = discr/g(21, -+, za) = det((tri g (2i2))i ) = det((D_ or(2i2))))is)
k=1

= det((D_ or(21)0k(2)))i;) = det((0h(2i))i hn)?
k=1
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Since disc(Ok) # 0, |det((wi ;)i j=1,--.n)] # 0 and (00(21), - - , 00 (2r)) is an R-basis of Ko, there-
fore 05, (Ok) C Ko is a lattice.

More generally for any fractional ideal a C K there exists N > 1 such that NOg C a C N~ 10k
which proves that o (a) is a lattice.

Density of oo (K) follows from the fact that for any basis of a finite dimensional real vector
space the QQ-linear hull forms a dense subset. O

The (co)volume of these lattices are given by the following formula

ProrosiTION V.4.1. We have
vol(00s (O )) = 2772 |disc(Ok ) [/
and for any fractional ideal a, we have
vol(0ao(a)) = 2772|disc(a)| /2
and if a C Ok we have
vol(0os (@) /vol(00e (Ok)) = (|disc(a)|/|disc(O)|)/? = [Ok : a] = Nro, (a).
REMARK V.5. In the sequel and to simplify notation we will identify K with its image o, (K) C

K and an ideal a with the corresponding lattice oo (a).

V.5. A precise form of the finiteness of the class group

PROPOSITION V.5.1. There exists C = C(ry,12) > 0 such that for any ideal a C O there is
a € a— {0} such
|Nrg/g(a)| < Cldisc(Og)|/? Nr(a).

PROOF. For t > 0, let

Bt: {(1'17"' y 1yttt 7Z7’2) EKoo: Z\S&H—QZLZA <t}

This is a compact, convex and symetric set. We have
vol(Bt) = vol(By)t" = V™.
Let ¢ be such that
vol(By) = V™ = 2™vol(0s (a)) = 277 "2|disc(Ox )|/ Nro, (a).
By Minkowski’s second theorem there exists a € a — {0} s.t.
a € B;.

We have therefore (by the arithmetic-geometric mean inequality)

r1 ri+r2 n
Nl =[n@l [T I < ;(zaxanwzaxam
n on—r2

ST Vo |disc(Ok)[*/? Nr(a).

To compute C(ry,r9) it suffices to compute V = vol(By):

PRrROPOSITION V.5.2. Let
B, = {(xl,... V21, 2n) € Koot Y i +2) |z < 1}.

271 (37

n!

We have
VOI(Bl ) =
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and therefore

Clrurs) = (é)rz n!

) nn’

The argument leading to the finiteness of the ideal class group that we have seen before can be
formalized as follows:

LEMMA V.5.3. Given a C Ok a non zero ideal, there is a bijection
(a—{0})/O% =6 C Ok, [b] =[a7]
satisfying the following relation on the norms
| Nrg/g(a)l/ Nr(a) = Nr(b).
PrROOF. The bijection is induced by the map
aca—{0}— (a) =a.0g =ab
and
a€a—{0}<alla) = (a)=ab
and we have
[a].[6] = [(a)] = [OK]
and for the norms
Nr((a)) = Nr(a) Nr(b) = | NrK/Q(a)\
by multiplicativity of the norm and the computation of the norm of principal ideals. ([l
COROLLARY V.5.1. Any ideal class [a] € Cl(Ok) contains a representative whose norm is
4N\72 n!
Nr(a) < (;) n—n|diSC(C’)K)|1/2.

REMARK V.6. In particular we have as |disc(Ok )| — o
|C1(Ok)]| < |disc(Og)|H/2Hon D),

THEOREM V.7 (Hermite-Minkowski). Let K be a number field of degree n. We have
w 3w\l

di >T (—) .

dise(0x0)| > 5 (5
In particular, if K # Q one has

|disc(Ok)| > 1.

In other terms, a number field which is not the field of rational numbers is always ramified at some
prime.

PRroOOF. Exercise. O

REMARK V.7. This Theorem is often used the other way around: you have a finite extension
K /Q which you can prove is everywhere unramified and from there you conclude that K = Q. For
instance this kind of argument occurs in A. Wiles proof of FLT.

THEOREM V.8 (Hermite). Given d € Z — {0}. In C there are only finitely many number fields
K such that
disc(Ok) = d.

PROOF. By the previous inequality the degree of K is bounded in terms of |d|. In particular
wlog we may assume that the the degree and the signature (ry,72) are given.
Given X,Y > 1 we consider the subset

B(X,Y) = {(ti)icr,4rs € Koot Junly <X, Juili <1/Y, i > 2}
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if 1 > 0 and
B(X,Y) = {(ui)i<r1+r2 € K ‘?R’Lbl‘l <1, |Imu1\ < X, |Uz|7, < ]./Y,’L > 2}

if 11 = 0, where | o |; is either the usual absolute value if K; = R or the usual complex modulus
if K; = C. This is a product of r; intervals/rectangles and rs disks and there exists a constant
C = C(ry,r2) > 0 such that

CX(1/Y)" 1 ifry > 1,

vol(B(X,Y)) = {CX(l/Y)"2 otherwise.

Let X,Y > 1 be such that
vol(B(X,Y)) = 2"vol(0s (Ok)).
By Minkowski’s second Theorem, there exists z € Ok — {0} such that
(01(2), -+ 041, (2)) € B(X,Y)
and since X > 1 and 1/Y < 1,
o1(z) # 0i(2),0:(2), i = 2.

This implies that z is a primitive element, i.e.
Q(z) =K.

Indeed if one conjugate o1(z) is distinct from all the others conjugates o;(z), ¢ = 2,--- ,n, then
all conjugates are distinct (because the Galois group of any finite Galois extension containing the
{o:(2): i < n} acts transitively on that set and therefore Q(z) C K has degree n over Q so it equal
to K.

Since z is an algebraic integer, the coefficients of its minimal polynomial (which is of degree n
since z generates K) are integers and bounded by a constant which depends only on ri,79, X, Y
(since the coefficients are given by symmetric homogeneous polynomials of degree < n in the roots
{oi(2): i=1,--- ,n}) so that there are only finitely many such possible z and therefore only finitely
many fields generated by these numbers. O

V.6. The group of units

Another very important finiteness theorem concerns the structure of the group of units 0.

THEOREM V.9 (Dirichlet). Set r := 7y 4+ 2. The abelian group of units O is of finite type of
rank v — 1. Its torsion subgroup

OX

Ko = MK ={z€ K:3k>1, 2F =1}

(the group of roots of unity contained in K ) is finite. In other terms one has an isomorphism
OIX( ~ i X /AR

ExaMPLE V.1. For n = 2, we have two cases:

— 1y =0, 2ro = 2: the field K is called imaginary quadratic. We have r; + o — 1 = 0 and
therefore O = pgx and has order 2,4 or 6.

— 11 = 2,79 = 0: the field K is called real quadratic. We have r{ + r, — 1 = 1 and
Of = ug X ek with px = {£1} and wlg wma that the generator ex is positve. This
(unique) positive generator is called the fundamental unit of Q. This special case of
Dirichlet’s unit Theorem is due to Pell.

The proof of this theorem and of more elaborate versions is by studying the action of O} on
K* and on K2 (when Oy is viewed as a subgroup of K% via the archimedean embedding o).
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V.6.1. The logarithmic embedding. The group of units is a multiplicative commutative
group and it will be very useful to pass to additive groups. This is done via the following group
homomorphism called the logarithmic embedding:

X

RT‘

Log: ~
8 (a1, z) — (dilog|zl):

where
1 i=1---
di — Z ) yT'1,
2, di=mr1+1,---,r1+ro.
This is a surjective map whose kernel is
ker(Log) = {z € KX :Vi=1,---,r, |z| =1} ~ {£1}" x (CH)™2, C' = {z € C*: |z| = 1}.

REMARK V.8. The term “embedding” is somewhat improper as the kernel is not trivial (but at
least it is compact).

DEFINITION V.6. The logarithmic embedding (of K*) is the compositum
Log,, = Logoos : K* — R"
that is for z € K*,
Log.,(2) = (loglo1(2)],-- - ;log|oy, ()], 21og |ov, 41(2)], - -+ , 2log|ov(2)]).
REMARK V.9. To ease notations we will usually write Log for Log_.
We consider the restriction of the “embedding” to Oj:

PROPOSITION V.6.1. The kernel ker(Logoo‘OIx() is finite and its image Log(Oy) is a discrete
subgroup of the hyperplane

T

H(R) :=ker(T) = {(ls, -+ .l,) ER": T(ly, -+ ,I,) = Y _l; = 0}.

i=1
PROOF. Given z € O we have
1 r1+r2
Nrgso(z) = [[oi(z) [I @i(2)o;(z) = +1
j=1 j=r1+1

therefore

0 = log | Nrg/g(2)| = log [ Tloy(2)|* = 3 djlogoj(2)| = T(Log..(2))
J Jj=1

Let B C H(R) be compact and let z € O be such that
Log..(2) € B.

The positive real numbers |z;| = |o;(2)|, j = 1,--- ,n are bounded depending on B, so are the
coefficients of Pg/q car,-; since these are integers there are only finitely many such polynomials and
therefore finitely many such z.

It follows that Log,.(Oj) C H(R) is discrete of rank r’ < r — 1 = dim H(R). Moreover

ker(Log,0x ) = {z € Ok : Log(z) = 0}
is also finite. It follows that Oy is of finite type since
Ok /ker(Log . x ) ~ Log,. (Of)

is of finite type. O
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ProprOSITION V.6.2. The finite group ker(Logoo‘OIx{) is the group of roots of unity contained in
K:
ker(Log g 0x ) = Ok tore =12€ 0 In e Z—{0}, 2" =1} = k.

ProOF. We leave it to the reader to check that Oﬁ,wrs = pug. It remains to prove that

ker(Log g 0z ) = Ok

K tors”

Let z € O ..., then there is m > 1 such that 2™ = 1 and, therefore, |o(2)|"™ = |o(2™)| = 1 for

all 0 € Homg(K,C). It follows that |o(z)| = 1 for all 0 € Homg(K,C) and, hence,
O C ker(LogOOwa().

K tors =

For the opposite inclusion, we recall that H = ker(LogoolO}x() is finite, hence H < K* is a finite

subgroup. In particular, for all z € H we have 2/l = 1 by Lagrange’s theorem. In particular, we
obtain that H < pg = Op . O
Let us compute the rank of the free part

PRroOPOSITION V.6.3. We have
=71 +ry— 1.

‘We need two lemmata

LEMMA V.6.4. There exists C = C(K) > 0 s.t. the following holds: for any k <r and a #0 €
Ok, there exists b= by, € Og — {0} satisfying

|Nrg/q(b)l < C
and

Vi#£k, a; > G;.
Here

Logoo(a’) = (alv e ,Of,-), Logoo(b) = (ﬁlv e aﬁr)
are the coordinates of the images of a and b under the logarithmic embedding.
PRrOOF. Write Log.(a) := (a1, , ). We have
dilogloi(a)| = a;

and therefore
s

|Nrg/q(a)| = H loi(a)|% = exp (Zai)

=1 A

For any o € R let

Bu(a) i={(1,++ 20) € Koo |2il < expla:/2) i # b, |2l < exp(a/2)} € Koo

This is a convex, compact and symetric subset of K, (a product of intervals and or disks centered
at the origin) with volume

1 T
vol(By(«)) = C(ry,72) exp (2 (a + ; ai>)
ik
for C(r1,r2) > 0 depending only on r1,72. Suppose that « is chosen such that

vol(Bi(a)) = C(ry,r2) exp (; (a + Z 041)) — 2"ol(Ox).

ik
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By Minkowski’s second theorem there exists b € O — {0} such that b € By(«) and Log (b) has
the required properties. Moreover, since

;o o b)] =
Negal0)] = [Tl = exn(E 50 < emp (5 (a4 T ) ) = sy vl

i£k T17T2)

LEMMA V.6.5. For any k € 1,--- ,r there exists
U € O;i-

such that, setting
Me = Logoo (ur) = (j)j<r € H(R),
we have
ey <0, Vi #k and i >0

REMARK V.10. The last inequality 7 5 > 0 follows automatically from the previous ones since

T
> kg =0.
j=1

PROOF. Given k. By the previous lemma we can find a sequence
ai, -+ ,a;, - € O — {0}
such that
|Nrgg(ai)| < C(K)
and such that, setting
Log.(a:) = (@ij)j=1, .r:
we have for any ¢ > 1 and any ¢ # k
Qip1,5 < Qg
The number of principal ideals a;Ok as i varies is finite (because all their norms are bounded
by a constant depending only on K) and there exists ¢ < i’ such that a;0x = a;yOg. We have
therefore a;; = ura; with ug € OIX( and for any j # 0 we have

N,y = Qirj — 0G5 <0

We can conclude with the following
PROPOSITION V.6.6. Given
r—1
(uk:)k<’l‘ = (U]_, e ;uT—l) S O[X{

an (r — 1)-tuple of units such that for any k, uy is constructed as above. Then (Logw(uk))kq 18
R-linearly independent.

ProoF. It suffices to find, for any non-zero linear form L : H(R) — R, an index k such that
L(Log.(ux)) # 0. Any linear form on H(R) can be written in the form

r—1
L(ly, -+ 1) =Y Nili, A €R
i=1

(since I, = —(I1 + -+ + l,—1) in HR)). Let k be such that || is maximal among the |X;|. Up to
replacing L by —L wma Ar > 0. We claim that

r—1 r—1 r—1
L(n) = Z Aille,i = Z ATk = Ak an,i >0,
i=1 i=1 i1
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Indeed ) )
Z()\i — Xe) ki = Z(Ai — A\e)Mki =0
= i

since A; — A < 0 and 7n;,; < 0 for ¢ # k by construction and

r—1 T
Ak Zﬁk,z‘ =\ an,i —Xeer =0 = A >0
i=1 i=1

since 1y » < 0 by construction.

DEFINITION V.7. Anr — 1-tuple (g1, ,er—1) € OIX(P1 such that

Log,. (g1, ,&r—1) = (Logy,(€1), -+, Logo,(er—1))

forms a Z-basis of Log., (O ) is called a system of fundamental units.
The regulator of Ok (or K) is defined as

reg(Or) = vol (ZLogy (e1) + - + Z Logo(er-1)),

where the volume on H(R) is computed with respect to an orthonormal basis of H(R) (with respect
to the inner product induced by the usual Euclidean inner product on R”).

V.7. The class number formula

In fact the finiteness of the class number and Dirichlet’s finiteness theorem for the group of units
can be proved together in a single statement.

We will not do this here but at least the next Theorem shows that both complement one another.
Let us recall that the number of ideals of norm m is denoted

rr(m) = |{a C Ok : Nr(a) = m}|.
We have seen in the exercises that rx (m) is multiplicative (rx (mm’) = rg(m)rg(m’) if (m,m’) = 1)
and that
Ve >0, rx(m) <g,em’
and therefore the summatory function of rx (m) satisfies
> ri(m) =[{a C Ok : Nr(a) < X} = X'HoxD X — o0,
m<X

We will prove a much more precise result.

THEOREM V.10. [The class number formula] As X — 400 we have

B ~ 2 (2m)"2h(Ok )reg(Ok) “1/n
Z ric(m) = Z 1= wic|disc(Og)[1/? X+ O (X1,

m<X aCOk
Nr(a)<X

In this formula h(Ok) = |Cl(Ok)| € Nsg is the class number, reg(Ok) > 0 is the regulator,
disc(Ok) € Z is the discriminant and wx = |px| is the size of the group of roots of unity in K.
PROOF. (Start) We start by splitting our sum along the various ideal classes:
{a C Ok, Nr(a) <X} = > o' COk, Nr(a) <X, d €a ]} (V.2)
[a]eCl(OKk)
We will now evaluate each term
o' € Ok, Nr(a') < X, a € [a ']}

separately. We have already used the following:
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LEMMA V.7.1. The map
ac€a—{0}+—a :=aa’
induces a bijection between the following two sets
{a € a— {0}, Nr(a) < X Nr(a)}/Of
and
{d €[a™Y], d C Ok, Nr(d) < X}

PROOF. Given o’ in the first set, we have a’ = a.a™! for a € K* uniquely defined modulo O%.
Moreover
d=aa ' COr <= aOx Ca<aca
and by multiplicativity of the norm we have
Nr(a') = Nr(aa™') = Nr(a)/Nr(a) < X <= Nr(a) < X Nr(a).

Moreover for any u € O we have Nr(u.a) = Nr(a) so the constraint Nr(a) < X Nr(a) is invariant
under the action of Oj. O

V.7.1. A counting problem. We start with a number of simple observations: let us define
the norm on K2 as the continuous morphism

Nr:z= (@1, Tryy Zrtls " 5 2rtrs) € KX H ;] H |z|* € Rso.
( J
This norm extend the (absolute value) of the norm on K: for any a € K* we have

r

|Nrgjo(a)l =[] loi(a)

i=1

b = Nr(000(a)).

In particular for u € Oy we have
Nr(owo(u)) = |NrK/Q(u)| =1.
This function is homogeneous of degree n: for any x € Ry we have
Nr(z.z) = 2" Nr(z).
Given X > 0 we denote by K, y the X-level set:
K3 x ={z € K%, Nr(2) = X}
and by
KX y={zeKl Ne(z) <X} = |J KZy.
0<X'<X
By homogeneity we have
KX y=X"" KX

X _ 1/n g~ X
00,1 Koo,gX =X Koo,gl'

We observe that the function Nr is invariant under the multiplication by the subgroup oo, (O ):
Vze K, ue O, Nr(ox(u)z) = Nr(oo(u)) Nr(z) = Nr(z).

o0
Therefore O acts on K% y (through multiplication by ¢o.) and on K . Moreover (by ho-
mogeneity) to understand this action, it is sufficient to understand the action on KZ ; and on
K3 -
We can return to the proof of the class number formula: we are given a lattice oo (a) C Koo
and we wish to evaluate the numbers of (Oj-orbits of) non-zero points a in o (a) such that

Nr(os(a)) < X Nr(a).
To perform the counting, we will exhibit a "nice” precompact fundamental domain

Fexni(a) C© KX <x i)
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representing the quotient K% oy ny(q)/Ox and then count the number of points 0u(a) € oo(a)
contained in F¢x Nr(a)-
For this we use

V.7.2. The Lipschitz principle. The general context is the following: let @ C R™ be a
compact measurable domain and A C R" be a lattice. For ¢ > 0, we consider the scaled compact
domain

Qt =1.0
and we would like to count how many lattice points it contains, at least when ¢ is large: we would
like to evaluate
Nqa(t,A) = |{r € A, A €t.Q}|
as t — oo. It is reasonable to expect that the counting function is proportional to the volume
vol(2;) = t"vol(Q)

and inverse proportional to the covolume of A, ie.
vol(©2)
vol(A)
This is true if the boundary 90X is sufficiently ”nice”.

The Lipschitz principle furnishes a sufficient condition for ”niceness”.

Nﬂ(ta A) ~

t", t — oo.

DEFINITION V.8. Let ¢ : X — Y be a map between metric spaces. The map ¢ is Lipschitz if
there exists ¢ > 0 such that

Vo, 2’ € X, d(o(z),p(x')) < c.d(x, ).

DEFINITION V.9. A compact domain Q0 C R™ has Lipschitz boundary if its boundary OS2 is the
union of the images of a finite set of Lipschitz maps

@ :[0,1]" = o0,

THEOREM V.11 (Lipschitz principle). Let A be a lattice and Q2 compact with Lipschitz boundary.
We have as t — oo
vol(©2)
vol(A)

PROOF. We choose a coordinate system given by a Z-basis of A. In these new coordinates the
boundary is still Lipschitz while the Lebesgue measure is divided by vol(A). We may therefore
assume that A = Z™. We partition R" into cubes with integral vertices

AEZ™ i=1

Ng(t,A) = t" —I—OA’Q(tn_l).

and
Q= | | unc.
AEZ™
We have
{A OO C Q| < IZ" N <A, C(A) Ny # B}

Computing volumes we have

{A, C(N) € Q] < vol() <{A, C(A) Ny # 0}
and to conclude it is sufficient to bound the difference of the left and right most terms and to show
that

A, CON)NQ £ B} — [{\, CO\) C Q) < t™
It

Ae{X, CA) N # 0} —{X, C(N) C Q}



70 V. GEOMETRY OF NUMBERS

then M is at distance < diamC(A) = v/n = O(1) from a point in the boundary 9.
Let @1, ,¢q:[0,1]"71 — 0Q be Lipschitz maps parametrizing 9§ then
tp1, - tapg s [0,1]"7F — 09
parametrize 0€; = tof). Let P C 0€2; be the set of points of the shape

toi(n/t), - tpa(n/t), n € Z"1 N [0,4"}.

The cardinality of P is O(t"~!). Any point in the cube [0,1]"7! is at distance < 1/t from a point
n/t and therefore any point of 9€); is at distance < 1 from a point of P. It follows that the number
of A in the difference is bounded by < "1,

|

In the course of the proof we have also obtained a bound on the number of lattice points ON
the boundary:

COROLLARY V.7.1. Notations and assumptions being as above, we have as t — oo
Noa(t,A) = [{A € A, A€ a(Q)}] = 0" 1),

REMARK V.11. Alternatively we could have just applied the Lipschitz principle directly to 9€:
if the boundary of € is Lipschitz it is measurable and vol(9€2) = 0.

V.7.3. Counting lattice points in domains. Let us recall that we need to evaluate
{a € a — {0}, Nr(a) < X Nr(a)}/Ox|.
By Dirichlet’s Theorem we have
O;(( = uK X U

where U = H:;ll €2 is a free abelian group of rank r — 1 (generated by a system of fundamental
units (Ei)izlu.rfl.
Setting wx = |uk|, we have obviously

{a € a — {0}, Nr(a) < X Nr(a)}/Ox| = iHa € a—{0}, Nr(a) < X Nr(a)}/U]|. (V.3)

so it is sufficient to evaluate |{a € a — {0}, Nr(a) < X Nr(a)}/U].
Let F C KX be a fundamental domain for the quotient KX /U then (by homogeneity)

F<x ={z € F, Nr(z) <X}:FQK§O7<X

is a fundamental domain for the quotient K5 . /U.
We will exhibit a domain F¢x which is precompact and whose boundary

OF<x = Fex — Fex®
is Lipschitz.
Let us recall that Log, (U) is a lattice in the hyperplane
HR)=A{(l, L) eR", T(l, -, lp) =li+- -+ 1. =0}
Let

r—1
Py = Z[Oa 1[L0goo (Ei) C H(R)
i=1
be the associated fundamental parallelepiped (a fundamental domain for the action Log. (U) ~
The preimage F; = Log ™! (Py) is a fundamental domain representing the quotient K %1 /U and
(by homogeneity) the cone

Fex =)0, XYM F) = {t.z, t €)0, X/"], z € KX, Log(z) € P} = X" F,
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is a fundamental domain for K2 <X /U. This domain is precompact and has Lipschitz boundary
(because the r — 2-dimensional faces of the parallelepiped P are Lipschitz and bounded and the
exponential function is a smooth function). By the Lipschitz principle (and its Corollary), we have
as X — oo

VO](]:gl)
vol(ooo(a))

2"2vyol
X + Oa(Xl—l/n) _ VO (]:gl)

_ 1-1/n
isc(0r0)| 72 Na(@) ~ T QX

oo (a) N Fex| =

Hence
2T2V01(]‘—<1)
|disc(Of)[1/2
From this, (V.3), (V.2) and the finiteness of the class group we obtain the asymptotic formula
2"2vol(F¢1)h(Ok)
wrc|disc(Ok)[H/2

It remains to compute the volume of the cone vol(Fg1): it is useful to write elements z € KX
in ”polar coordinates”: we write

|0oo () N Fex ne(ay| = [{a’ € [a7!], o/ C Ok, Nr(d) < X}| = X 4 Og(X171m),

[{a C Ok, Nr(a) < X}| = X + Op(X1Ymy,

= (ixl, Tty ixﬁ ’ ple(iel)v e 7p7‘26(7:07'2))
with z;, p; € Rso, 0; € [0,27]. Let

|Z| = (.’171,' Ty, P1y 7p7’2)
so that

Nr(z) = Nr(|z]) = Hifi Hp?

i J
Therefore
VO](]:gl) =2" (27T)T2 / dy - dmrl pidpy - - przdprz
()

where the integral is over the domain of |z| = (z1,- - ,&r,, p1, -+ , pry) € R, satisfying

Log(Nr(|z])~1/™.|2]) € P, Nr(|2]) < 1.
We make the change of variable
|z2| € Ry =1 = (ly, -+ 1) = Log(|z]) e R"
or in other terms
l; =logwx;, ¢t <71y, I 45 =2logp;, 7 <ra.
We have
de; = ébdl; i < r1, pjdp; = %elrlﬂ'dlrlﬂ, j < ro.

and therefore we have to compute
9—T2 /eT(ll,"' ,lr)dll coedl,

where T denote the linear form

T()=> 1, 1= (I, ,l,) €R",
i

and the integration is over the domain
T() <0, Py(l) e Py

where



72 V. GEOMETRY OF NUMBERS

is the projection of the vector [ on the hyperplane H(R) = ker(T"). Putting 7 = T'(I) < 0 we obtain

0
27" /eT(l)dl = vol(PU)/ eTdr =27 reg(Ok)

and
vol(Fgi) =272 (2m) 2reg(Ok)
which concludes the proof. (]

REMARK V.12. In the course of the proof we have obtained that for any ideal class [a] we have
2" (2m)2reg(OK )
w|disc(Ok)[1/?

Therefore the ideals of large norm are approximately equidistributed amongst the finitely many ideal
classes of Ok: the proportion of ideals of large norme belonging to the ideal class [a] is the same
and equal to 1/h(Ok).

Such a result might be seen as an analog to the elementary fact that , given ¢ > 1 some modulus
and a € Z, the number of positive integers n < X such that n = a (modq) (ie. contained in the
congruence class a (mod ¢)) have asymptotically the same size (independently of the congruence class
a (mod q)) as X — oo: indeed

{a’ € [a], Nr(a') < X}| = X + On (X171,

X
Hrn < X, n=a(modq)}| = o +0(1)
so the main term X/q does not depend on a (mod g).

V.8. The Dedekind (-function

In this section we use the class number formula to investigate the analytic properties of the
analog of Riemann’s zeta function.

PROPOSITION V.8.1. Let s be a complex number with Rs > 1 the series

1
Cie(s) = Z Nr(a)*

aCOgk

converges absolutely and defines an holomorphic function in the half-plane Fs > 1.

PrROOF. For o € R consider the series with non-negative terms

1
(@)= D Nrap

It is equal to

where
rr(m) = |{a C Ok, Nr(a) = m}|.
We have seen in an exercice that for any € > 0
Ng(X):= ) rg(m) < X'
m<X

By integration by parts (Abel summation) we have

X
3 ri(m) _ (277 Nic (X)) — /1/2 Ni(z)(z™) dx

me
m<X
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X X
=Ng(X)/X°+o N (x)z™ tde <. X177 + O‘/ 2 %dx
1/2 1/2
which is bounded as X — oo as long as ¢ > 1 + e. The series (i (s) is therefore absolutely
convergent for Rs > 1 and uniformly convergent in any half-plane s > 1 4+ n for n > 0. Therefore
(k is holomorphic for Rs > 1+ 7. |

DEFINITION V.10. The function s — (x(s) is the Dedekind ¢ function of K.

REMARK V.13. When K = Q, (x(s) = ((s) is Riemann’s zeta function so Dedekind’s zeta
function is a version of Riemann zeta function for a number field.

PROPOSITION V.8.2 (Euler product formula). For s > 1 we have the identity of holomorphic

functions
1

Nr(p)*

(r(s)=]J( - )~
p

ProOOF. We have for s > 1

Cx(s) = Z rK(m).

nS
m2=1
Since the function m — rg(m) is multiplicative, we have, in the range of absolute convergence
TK pa
Gres) = [T 220 — T oo,

Qs
p az0 p P

For any prime p we have

rr(p®) 1
Z N Z Nr(a)s’

az=0 aCOgk
Nr(a)=p—power

The ideals whose norm is a p-power are exactly the ideals whose prime divisors are the prime ideals
above p and therefore

1 1
Crepls) = Ne([Lo,. poe)s T No(p)oss
v ap%ﬁp Nr(Hp‘pp ") ap§p|p HP|P Nr(p)er
- T e — L2 7 wrmes) = 110 - -
ap;o,pp HP|P Nr(p) " g apz20 Hp|p Nr(p) F g Nr(p)

O

REMARK V.14. This factorisation is equivalent to the uniqueness of the factorisation of an ideal
into a product of prime ideals just as the Euler product factorisation of Riemann’s zeta function is
equivalent to the fundamental theorem of arithmetic.

THEOREM V.12. The Dedekind ( function admits meromorphic continuation to the half-plane
{s, Rs > 1—1/n} with a simple pole at s =1. We have

| 27 (2m)"2h(Ok )reg(Ok )
ress—1 (x (s) = w |disc(Ok ) [1/2

where wi = |pi|. In particular (x(s) # 0 for Rs > 1.

REMARK V.15. When K =Q, 1 =1, r =1, h(Z) = 1, reg(Ok) = 1, w, = 2, disc(Z) = 1 and
the residue is 1.

We will deduce this result the class number formula:
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PRrOOF. Let
_ 2" (2m)2h(Ok ))reg(Ok)
B wi |disc(Ok )|1/2
and
ri,o(m) :=rg(m) —p.
We have

> rrolm) = O0X'H).
m<X
For ¢ > 1 — 1/n we have by integration by parts

rro(m) . g X X —o—1
> TR = Y ol +o [ a7 ricolm)a

m<X m<x m<ax

X
_ O(]. _’_lel/nfo) +O(/ xfl/nfodm)
1/2

which is bounded as long as ¢ > 1 — 1/n. This implies that for any n > 0 the series
Z TK,O(m)
mS
m>=1

is absolutely uniformly converging for s > 1 — 1/n + n and is holomorphic in this half-plane. We
have for any X > 1 the equality of partial sums

5 O ) — o)
m<X

For n > 0 and Rs > 1+ 7, (x(s) converge uniformly to Riemann’s zeta function . Moreover ((s)
admits meromorphic continuation to s > 1 with a simple pole at s = 1 with residue 1. Therefore

_ rK,0(m)
Ck(s) = pC(s) + Z s
m>=1
admit analytic continuation to ®s > 1 — 1/n with a simple pole at s = 1 with residue p. ]
REMARK V.16. Let us recall the proof of the analytic continuation of {(s) to s > 0 with a

simple pole at s = 1 of residue 1: we have for s > 1
X

x(o) = el o s [l e
1/2
where [x] is the integral part. Writing z = [x] + O(1) we have for s > 0
X X
(x(s) = X"+ O(X™%) + s/ x %dx + s o)z tda
1/2 1/2
s
— 2 9s=1 ., .
s—1 *
where - - - is converging for Rs > 0 as X — oo with limit defining an holomorphic function in this

domain.



APPENDIX A

Background material on rings, fields, and finite dimensional
algebras over a field

A.1. Basic notions about rings and ideals

Let A be a ring. We will assume throughout that A is not the zero ring. We denote by Z4 the
set of all non-zero ideals of A and by P4 C Z4 the subset of non-zero principal ideals, that is, ideals
of the shape

(a) :==A.a, ac A—{04}.
More generally, given a subset S C A, we denote by (5) the ideal generated by S, i.e.,
(8) =({aeZau{(0)}: SCal}.

An ideal a C A is proper if a # A.
We have the following basic operation/definitions regarding the set of ideals:

— Given two ideals a,b C A, we say that a divides b (denoted a|b) if b C a.
— Given two ideals a,b C A, we define the following ideals

a+b=({a+b, acabeb}),
anb = ({u, u€auc b}),
a.b = ({a.b, aca,beb}) Cand.
— A proper ideal p C A is prime if A/p is a domain, i.e., for any a, 3 € A/p
af=0 = a=0o0r f=0.
The set of prime ideals is denoted by
Spec(A)

and a typical prime will be denoted p.
— A proper ideal a C A is mazimal if A/a is a field or, equivalently, if a is not strictly
contained in any proper ideal in A. The set of maximal ideals is denoted

A).
If A is a domain we denote its field of fractions by

Frac(A) = {%: a,be A, b;éO}.

max(

Spec

In that case, the notion of ideal admit a slight but useful generalisation:

DEFINITION A.1. Let A be a domain with field of fractions Q). A fractional (A-)ideal §f C Q is a
subset for which there exist b € A — {0} such that b.f is an ideal in A. Let A be a domain with field
of fractions Q). We denote by Fa the set of non-zero fractional ideals in QQ and by PF4 the subset
of non-zero principal fractional ideals, i.e., fractional ideals of the form

(f)=Af, f=7€Q—1{o}.

75
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REMARK A.1. Note that any fractional A-ideal f C Frac(A) is an A-submodule, but not every A-
submodule of Frac(A) is necessarily a fractional A-ideal. A fractional A-ideal is an A-module in @
whose elements admit some “common denominator” b € A — {0}.

In what follows, if the underlying ring A is clear from context, we will call a fractional A-ideal
in Frac(A) just a fractional ideal.

We assume from now on that A is a domain, denote by @ its field of fractions, and we fix once
and for all an algebraic closure @ of ). Unless specified otherwise, every algebraic extension of @
will be contained in Q.

A.1.1. Noetherian rings and modules.

PRrROPOSITION A.1.1. Let A be a ring and let M an A-module. The following are equivalent.

(1) Every increasing sequence of submodules of M is eventually stationary: if

NycC---CN,C---CM,

then N,, = Npy1 = -+ = N for n large enough.
(2) FEvery non-empty collection of submodules of M admits a mazimal element (relative to
inclusion).

(8) Every submodule of M is of finite type.

ProoOF. If M is not of finite type, then there exists a sequence of elements (x;);en € M such
that for all 7 > 1 we have
it+1

i A.LE]' ; Z A.xj
j=1 j=1

and therefore we obtain an increasing sequence of submodules that is not eventually stationary.

Now suppose that every submodule of M is of finite type and let C be a non-empty collection
of submodules of M. Assume that ¢ C C is a linearly ordered by inclusion, i.e., for all Ny, Ny € ¢
we have N1 C Ny or Ny C Nj. Define

N(e) :U{N: N e c}.

As ¢ is linearly ordered, it follows that N(c) is a submodule of M and N C N(c) for every N € c.
Moreover, N(c) is of finite type by assumption, thus there exists a finite subset S C N(c¢) such that

N(c) = Z A.x.
eSS

For each z € S fix a submodule N, € ¢ such that x € N,. As c is linearly ordered, there is xz, € S
such that N, C N, for all z € S and therefore N(¢) C N,,. As N,, C N(c) by construction, we
obtain an equality and thus N(c¢) = N,, is a maximal element in ¢. This shows that every linearly
ordered subset of C contains an upper bound. Zorn’s lemma therefore implies that C contains a
maximal element.

Finally, we suppose that every non-empty collection of submodules of M contains a maximal
element. We need to show that every increasing sequence of submodule eventually stabilizes. By
assumption, any such sequence contains a maximal element and therefore the claim follows. O

DEFINITION A.2. An A-module M is Noetherian if it satisfies any of the three equivalent con-
ditions in Proposition A.1.1. The ring A is Noetherian if it is Noetherian as an A-module.

PROPOSITION A.1.2. Let A be noetherian and let M be an A-module of finite type, then every
submodule and every quotient of M is of finite type.

The proof of Proposition A.1.2 relies on (part of) the following Lemma.
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LEMMA A.1.3. Let A a ring and suppose that

® P

0 L M N 0 (A.1)

is an exact sequence of A-modules, where L and N are of finite type. Then M 1is of finite type.
Proor. Let z1,...,z. € L and 21,...,2; € N such that

L=Axy+ -+ Ax,,
N=Az +--+ Az.

Set y1 = p(x1),...,yr = @(z,). By exactness, we can find y, 11, ..., yr4+ € M such that ¥(y,4,) = 2;
for all 1 < j < t. Then M is generated by {yi1,...,yr++} over A. Indeed, suppose that y € M is
arbitrary and choose a,11,...,a,4++ € A such that

t
V(y) = Z ArtjZj-
j=1

It follows that y — ap41Yr41 — -+ — GrgtYrte is an element of the kernel of ¢ and therefore lies in the
image of ¢, i.e., is an A-linear combination of y1,...,y,. In particular, y is an A-linear combination
of y1,. . Yrt- 0

PROOF OF PROPOSITION A.1.2. The second part is immediate as any generating set for M
projects to a generating set for the quotient.

So we only need to show that M is noetherian. Suppose that M admits a generating set of
cardinality d € N. Then M (and every submodule) is the homomorphic image (of a submodule)
of A?. Therefore it suffices to show that A? is noetherian.

If d = 1, then this follows from the assumptions. So suppose that A?~! is noetherian with d > 1.

Let now M be a submodule of A% and consider the maps ¢ : A — A% and v : A% — A9~! given
by

p(a) =(0,...,0,a), Y(ai,...,aq) = (a1,...,a4-1)-
Then
0—=opA)NM—>M— (M) ——0

is a short exact sequence of A-modules as in (A.2). Indeed, ¥(M) is of finite type as it is a submodule
of A9~ and p(A) N M is of finite type as it is a submodule of p(A) = A. O

COROLLARY A.1.1. Let A a noetherian ring and suppose that

oMY N 0 (A.2)

0 L
is an exact sequence of A-modules. If M is of finite type, then so are L and L.

PROOF. By exactness, we know that 1) is surjective and thus any generating set of M is mapped
onto a generating set of N. Thus N is of finite type.

Using exactness once more, we know that ¢ is injective and thus L is isomorphic to a submodule
of M. As of Proposition A.1.2, M is noetherian and thus ¢(L) is of finite type and thus so is L. O

COROLLARY A.1.2. Let A be a noetherian ring and R/A a ring extension. Suppose that z € R
is integral over A. Then Alz] is noetherian.

PROOF. If z is A-integral, then A[z] is an A-module of finite type (generated by 1,z,--- 2771,

where d is the degree of any monic polynomial in A[X] annihilating z) and by Proposition A.1.2,
any A[z]-ideal a C A[z] is f.t. as an A-module and, a fortiori, as an A[z]-module. O



78 A. BACKGROUND MATERIAL

A.1.2. Prime factorisation in a PID. Recall that a ring A is noetherian if every ideal is
finitely generated. In what follows, we recall properties of a special class of noetherian rings, namely
the zero-divisor free rings for which every ideal is generated by a single element.

DEFINITION A.3. A Principal Ideal Domain (PID) A is a ring which is a domain, that is,
Va,be A ab=04 = a=04 orb=04,
and such that every ideal, i.e., for every ideal a C A there is m € A such that
a=(m)=m.A.

THEOREM A.1 (Factorisation in PIDs). Let A be a PID A.

(1) Every non-zero prime ideal in A is mazimal:

Spec(A) \ {(0)} = Specy,ax (A).
(2) For every ideal a € Tx there exists a unique tuple of natural integers (vy(a))pespec(a) such
that
— vp(a) =0 for all but finitely many p, and
— a can be written as the following (finite) product

a= H p’UF(a)’
pESpec(A)
where we define p° = A.

Alternatively, if one chooses for every prime ideal p a generator (i.e., an element p € p such
that p = (p)), then by considering the prime factorisation of the principal ideal generated by m

(m) = Hpvp((m))’
p

we obtain that any m € A can be written as a product of prime powers:
m = u. Hp”‘”(m),
P

where u € A* and vy(m) = vp((m)). Moreover, given a choice of a generator p for each prime
ideal p, this factorisation of m is unique.

PROOF. The proof of both statements relies on the fact that every PID is a unique factorization
domain (UFD), i.e., every element in a PID is a finite product of finitely many irreducible elements
and the irreducible factors are unique up to multiplication by a unit. Moreover, in a PID every
irreducible element is prime. We leave the remainder of the argument to the reader and refer to [1]
for details. |

DEFINITION A.4. Given an ideal a € T4 and a prime p € Spec(A), the integer vy(a) is called
the valuation of a at p or the p-adic valuation of a.

Because of this, the standard factorisation properties of Z extend to ideals of a general PID. We
have the following properties
alb <= Vp, vy(a) < v,(b).
ab = Hpup(a)+vp(b)
p
anb = largest ideal contained in a and b =: [a,b] = Hpmax(“"(“)’”"(b))
p

a + b = smallest ideal containing both a and b =: (a,b) = Hpmi“(v"(“)’”"(b)).
p
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or in other terms
vp(a.b) = vp(a) + vy (b)),
vp(a16) = v ([a, b]) = max(vy(a), vy (b))
vp(a+6) = vp((a, b)) = min(vy(a), vy (b))
In particular two ideals a,b in a PID are coprime (that is a + b = A) iff their valuation functions
ve(a): p > vp(a), ve(b): p = vy(b)
have disjoint support:
(a,b) = A <= Vp, vy(a).v,(b) =0.
A.2. Finitely generated modules over a PID

DEFINITION A.5. Let A be a PID and M be an A-module.

- M s of finite type/finitely generated (in short, M is f.t.) if there exists a finite set
{my, -+ ,m.} C M such that M is generated by {mq,--- ,m,} as an A-module, i.e.,

M = ZAmZ = {Zai.mi, a; € A}
— M is A-free if there is r > 0 such that
M ~A A",

In other terms, there exists (an A-basis) {e1,---,e.} C M such that any m € M can be
written 1 a unique wWay as

-
m = Zai.ei, a; € A.
i=1
The integer r is uniquely defined and is called the A-rank of M. It is denoted ko (M).

— M is A-torsion if there exists a € A — {04} such that a.m = 0y for all m € M. The set
of such a (plus 04) is an ideal in A, the annihilating ideal of M :

ann(M)={a€ A:Vm e M a.m =0p}.
We recall the following special case of Proposition A.1.2.
PROPOSITION A.2.1. Let A be a PID. Suppose we have an exact sequence of A-modules
0—-L—>M-—=N—0.

- If M is f.t., then so are L and N.
— If L and N are f.t., then so is M.

THEOREM A.2. Let A be a PID. Any f.t. A-module M is isomorphic to a direct sum
M ~ My @ M,

where My ~ A" is free and My is torsion. Moreover there exists 7 > 1 and a finite sequence of
(non-zero) elements of A such that

AX ? Cl7—|a7—,1‘ T |a1
and
M, ~ D A/ (as).
i=1
In particular, My is annihilated by aq:

Ym e My ay;.m =0.
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The tuple (r,(a1), -, (ar)) is an tnvariant of M : if

M~ A" &P A/ ()~ A" &P A/(d])
i=1 i=1

thenr =1', 7 = 7" and (a;) = (a}). The integerr is the A-rank of M and the ideals (a1)|(az2)| - - |(ar)
are called the elementary divisors of M. The ideal (a1) = ann(M) is called the annihilating ideal
of M.

THEOREM A.3 (Adapted basis). Suppose that N C M is an inclusion of free A-modules of ranks
r’ and r respectively. Then r > v’ and there exist an A-basis {e1,--- ,e,.} of M and (a1,--- ,a,/) €
A" such that {are1, -+ ,ae.} is an A-basis of N.

In particular, if ' = r, the quotient module is torsion:

M/N ~ @A/(ai).

REMARK A.2. The fundamental case is A = Z: a Z-module of finite type is then a finitely
generated abelian group.

Since A is a domain, we write
a
Q = Frac(A) = {E' a,be A, b;éo}
for its field of fractions.

PRrROPOSITION A.2.2. Letr > 1 and let f : A" — A" be an A-linear map. We assume that f
extended to a Q-linear map [ : Q" — Q" is invertible (det f #£0), then A"/ f(A") is torsion and if,

as above, we have
AT/ F(AT) = P A/ (ai),
i=1

then

(det £) = [ (a).
i=1

PROOF. Let B = {ey, - ,e.} be a basis of A" adapted to f(A") as in Theorem A.3. Then B is
a Q-basis of Q7. Let f(B) = (f(e1), -+, f(er)). Then f(B) is a basis of f(A") and a @-basis of Q"
by assumption. Let g be the linear map such that g( f (ei)) = a;e;. Then ¢ is an automorphism
of f(A"), so its matrix in the basis f(B) as well as its inverse have coefficients in A. Therefore det g
and det g~ = (det g) ! are both in A; in particular, det g € A*. The matrix of go f is the diagonal
matrix diag(aq,--- ,a,) and has determinant a;.-- - .a, = det g.det f. Since det g € A* we have

(det f) = (ay.- -+ .a.).
O

A.2.1. Lattices in R". A case of particular interest to this course is given by the PID Z,
whose field of fractions embeds into R. Under some additional topological assumption (discreteness)
which will always be satisfied in the cases of interest, the theory of finitely generated Z-modules in
R" admits a very geometric interpretation which we will develop in this section.

PRrROPOSITION A.2.3. Let r € N and suppose that T' < R” is a non-trivial subgroup. The following
are equivalent.

(L1) T < R" is discrete.
(L2) There is £ € N and (vy,...,vs) € (R")¢ linearly independent such that

I'=7%2Zvi+ -+ Zvy.
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DEFINITION A.6. Let 1 < ¢ <7 and B = (vy,...,v) € (R")¢ linearly independent. Let T' < R”
a discrete subgroup. We say that B is a Z-basis of I if

I'=Zvi+ -+ Zvy.

PROOF OF PROPOSITION A.2.3. We first prove that (L2) implies (L1). So let’s assume that (L2)
holds. We have to show that there is a neighbourhood U of 0 € R” such that TNU = {0}. If £ < r,
we can find vgy1,...,v,. € R such that B = (vy1,...,v,) is a basis of R. Define

U= {tlvl R o A ‘tll < 1/2}.

Then U is the open ball of radius 1/2 with respect to the sup-norm defined by the basis B, and
therefore a neighbourhood of 0.
Let v € [ NU. Then there are (n1,...,n¢) € Z* and (t1,...,t.) € (=1/2,1/2)" such that

V=n101 + -+ npvg = t1v1 + - - - + 0,

As the representation of v in terms of the elements of B is unique, it follows that for all 1 <i < r
we have tq,...,t, € ZN(=1/2,1/2) = {0}. Hence (L1) follows.

We now turn to the proof that (L1) implies (L2). Let V = spang(T') C R" be the subspace
spanned by T and let n = dim(V). As T' is non-trivial, we know that n > 1. Moreover, V is
homeomorphically isomorphic to R™ and thus we can assume without loss of generality that V' = R".
We will prove that (L1) implies (L2) by induction on 7.

If » = 1, the result is standard, but we repeat it for the sake of completeness. As of (L1), we
know that there is € > 0 such that (—e,e) NT" = {0}. In particular, there is v € T'N (0, 00) such
that v € T'\ {0} implies |v| > . Note that Zvy < I". Therefore it remains to show that I' C Zr~.
Suppose that v € T'. Then there is n € Z such that v — ny € [0,7). In particular, |v — ny| < v and
therefore v — ny = 0. As v was arbitrary, it follows that I' C Z~.

Now suppose that 7 > 1 and (L2) is true for discrete subgroups of R* with 1 < k < r. We denote
by |||z the Euclidean norm defined with respect to the standard basis on R". As I is discrete, there
again is a shortest vector in I, i.e., we can find v € T\ {0} such that for any v € T\ {0} we have

[oll2 = [[vll2-

Let W = v+ denote the orthogonal complement of spang{y} in R" and denote by 7: R” — W the
canonical projection. We claim that 7(T') < W is a discrete subgroup. To this end, let w € 7(T)
non-zero. Let v € T'\ {0} such that w = m(v). Then v = w + ¢y for some ¢ € R. Note that for
any n € Z we have v +ny € I' and 7(v + ny) = 7(v) = w. Thus we can assume without loss of
generality that v = w + ¢y for some ¢t € [-1/2,1/2). As w L ~, we obtain that

lwll3 + 27115 = [lvll5 = 1713
and therefore

V3
lwllz > VT =2l > 2l

This proves discreteness of (') in W. By induction, there is (wy,...,w,_1) € W1 linearly
independent such that

(7)) = Zwy + - - Zw,—1.
Let v1,...,v,—1 € I" such that 7(v;) = w; and let v, = 7. Then (v1,...,v,) is linearly independent.
Moreover, given v € I' there is a unique tuple (ny,...,n,_1) € Z"~! such that

m(v) =njwy + -+ np_1we—1 = T(Ngvy + - F Np_1Ur_1).
Thus there is t € R such that
V=NV — = Np_1Up_q =ty €T
Again, we can write t = n,. + 7 for some n, € Z and 7 € [-1/2,1/2). Rearranging, we obtain

v—nvy — - —npu =7y €L
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As ||Tv|l2 < |I7ll2, the choice of  implies that 7 = 0 and therefore we have shown that
v E Zvy + -+ Zv,.
]

DEFINITION A.7. Let r € NU{0}. A lattice in R" is a discrete subgroup T' < R"™ which contains
a basis of R, i.e., spang(T') = R".

Let T' < R" be a discrete subgroup. A fundamental domain for the action of T' on R” is a
non-empty Borel measurable set F' C R" satisfying

R" = |_| (F'+ 7).
~er

LEMMA A.24. Let r € NU{0} and T' < R" a discrete subgroup. Then T' ~ R" admits a
fundamental domain F C R". The volume of F only depends on I' and F can be chosen to have
compact closure if and only if ' is a lattice.

PROOF. If r = 0, the only non-empty subset of R” is {0} and necessarily I' = {0}. We leave it
to the reader to check that F' = {0} is a fundamental domain in this case. Moreover, in this case F’
is necessarily unique.
Suppose now that r > 1 and let (v1,...,vn) € (R")™ be a Z-basis of I and extend it to a basis
B = (v1,...,v,) of R". We leave it as an exercise to check that the set
F(B) = {t1v1 + -+ +tpvp: t1, .. by € [0,1), tpg1, ..., tr € R}

is a fundamental domain for I' ~ R". This implies the existence and clearly it has compact closure
if and only if m = r, i.e., if and only if I is a lattice.

It remains to show that the volume of a fundamental domain for I' ~ R" depends only on T
Since the Lebesgue measure is finite on compact sets, this also implies that discrete subgroups which
aren’t lattices don’t admit precompact fundamental domains.

To this end let Fy, F5 C R" be fundamental domains for I' ~ R” and let vol denote the Lebesgue
measure on R”. We then have

vol(Fy) = Y “vol(Fy N (Fy +7)) = Y _vol((Fy =) N Fy) = vol(Fy).
ver ~yel

Hence the volume of any two fundamental domains agrees, which implies the claim. O
Lemma A.2.4 allows us to make the following definition.

DEFINITION A.8. Let r € NU {0} and let ' < R" a lattice. The covolume covol(T') of T' is
defined as follows. Let FF C R" be any fundamental domain for T' ~ R", then

covol(T") = vol(F).
LEMMA A.2.5. Letr € N and let T' < R" a lattice. Then there is g € GL.(R) such that
r=7Zg={vg:vezZ}
and [0,1)"g is a fundamental domain for T' ~ R". In particular, covol(T") = |det(g)]|.

PROOF. Let B = (v1,...,v.) € (R")" a Z-basis of T and define g € Mat,.(R) to be the matrix
whose i-th row equals v;. If &€ = (eq,...,e,) € (R")" denotes the standard basis of R”, then one
has v; = e;g and thus

F={muvi+ - +nw,.:n; €Z}
={(niey + -+ n.e.)g: n; € Z}
={vg:veZ}=7"g.
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Moreover, the same manipulations show that, using the notation from the proof of Lemma A.2.4,
we have F(B) = F(€)g and hence

covol(I') = vol(F(B)) = vol(F(E)g) = vol(F(€))|det g| = |det g],
as F(€) = [0,1) has unit volume. O

COROLLARY A.2.1. The map GL,(Z)\ GL,(R) given by GL,(Z)g — Z" g is well-defined and gives
a one-to-one correspondence between the set L(R") of lattices in R™ and the quotient GL,(Z)\ GL,(R).

A.2.2. Q-lattices. In this section we return to Z-modules in Q" and use our understanding of
lattices in R” to give a concise description.

DEFINITION A.9. Let V' a Q-vector space of finite dimension. A Q-lattice ' TV in'V is a
finitely generated Z-submodule such that spang(I') = V.

PROPOSITION A.2.6. Let r € N U {0}. The set L(Q") of Q-lattices in Q" is in one-to-one
correspondence with GL,.(Z)\ GL,(Q) via the map

GL,(Z)\GL.(Q) — £(Q")
GL,(Z)g = Z'g

PROOF. Extension of scalars Q" — Q" ®g R = R" gives rise to an embedding £(Q") — L(R"),
where a lattice I' < R" lies in the image of £(Q") under the embedding if and only if " is contained
in the image of Q", i.e., the Q-linear hull of £ inside R". This is the case if and only if I' = Z"g for
some g € GL,.(Q) and hence the claim. O

A.3. Finite dimensional algebras over a field

For the rest of this chapter our main interest concerns the case of torsion modules for the
ring Q[X] of polynomials over a field Q. Since Q[X] is a PID and Q[X]* = Q*, any proper ideal is
generated by a unique monic polynomial. In particular, if V' is a finite dimensional Q-vector space
and z € Endg (V) is a linear map, then V' becomes a torsion Q[X]-module via the map

ev,: P e Q[X]— P(z) € Endg(V)

and the monic generator of the annihilating ideal is the minimal polynomial of z, denoted Ppin, .-
Let Q be a field, @ an algebraic closure, and K a Q-algebra (with unit) of finite dimension as
a Q-vector space. We will assume that K is non-trivial and identify @ with a subfield of K, namely

Q~Q.1lx CK.
We may and will therefore assume that
QCK

and hence that Ox = 0g and 1x = 1¢.

A basic (in general non-commutative) example is the algebra K = Endg (V') of endomorphisms
of a finite dimensional Q-vector space V: we have dimg(K) = d?, where d = dimg (V).

Another basic example is K being a field extension of @ of finite Q-dimension.

DEFINITION A.10. Let K/Q be a finite dimensional Q-algebra. Its dimension is also called the
degree of K/Q and is denoted

dimg (K) = deg(K/Q) = [K : Q]

A.3.1. Polynomials, minimal and characteristic.
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A.3.1.1. Minimal polynomial. Given z € K, the “evaluation at z-map”

LoQx e K
V2P s evi(P)=P(2)
is a Q-algebra morphism whose kernel is an ideal of Q[X], hence principal. Since
Q[X]/ker(ev,) ~Qlz] C K

and K is finite dimensional, the kernel is non-zero and has a unique monic generator called the
minimal polynomial of z over @), which is denoted Py min,z:

ker(ev,) = {P € Q[X]: P(2) = 0k} = Pg.min,z-Q[X] = (PQ.min,z)-
As Q[X]/(Pg,min,z) =~ Q[z], we have that
deg(PQ.min,-) = dimg Q[2] = [Q[2] : Q].
The integer

degq(2) = deg(Pq,min,=)
is called the degree of z over Q.

REMARK A.3. If K is a field, then Q[z] C K is a domain and, since

Q[z] ~ QIX]/(Pqmin,2);

the ideal (Pg min,») prime and hence is maximal (since Q[X] is a PID): Pg min . is an irreducible
polynomial.

A.3.1.2. Characteristic polynomial. To any z € K, we also associate the (Q-linear) “multiplica-
tion by z”-map
K - K

[XZ}K/Q:x = z.x

REMARK A.4. The index ey /o is sometimes necessary: for instance, if we have a tower of
algebras @ C K C L and z € K, then z acts on K and L but the maps [xz]x/q and [xz]z/q
are obvioulsy different. However, if the algebra K/Q on which z acts is clear from context, we will
simply write [xz] instead of [xz]x/q.

LEMMA A.3.1. The map
[X.}K/Q: ze K — [XZ]K/Q S EndQ(K)

is injective and K can be identified with a subalgebra of Endg(K). For any z € K, define the
following annihilating ideals (in Q[X]):

Ann([xz]k/q) = {P € Q[X]: P([xz]) = OEndo (K) }»
Anng,q(z) = {P € Q[X]: P(z) = 0k}.

Then Ann([xz]K/Q) = Anng/o(2) and, therefore, the minimal polynomial P Q min,» of the linear
map [xz] is equal to the minimal polynomial Py wmin, . of z over Q.

ProOOF. Given z € K s.t. [xz] = Ogna, (k), We have
OK = [XZ](lK) = Z.IK = Z.

This proves injectivity. The equality of the ideals follows from [xe]x/o being a homomorphism
of Q-algebras, i.e., for any P € Q[X] and for any z € K we have that

[(xP(2)lk/q@ = P([x2]k/q)-

By Cayley-Hamilton we know at least one non-zero element of Ann([xz] K /Q).
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DEFINITION A.11. The characteristic polynomial Pk /q car,.(X) € Q[X] of 2z is the characteristic
polynomial of [xz]k/q: if d = [K : Q] denotes the degree, then we have
Pr/car,=(X) = det(X Idk — [x2]k/q) = X — tr([x2] k@)X + -+ (=1)? det([x 2]k /q).
It belongs to Ann([xz]k,/q) by the Cayley-Hamilton theorem. In particular, one has
PQ,min,z|PK/Q,car,z~
A.3.2. Norm and trace.

DEFINITION A.12. The d — 1-th coefficient (multiplied by —1) and the constant coefficient (mul-
tiplied by (—1)%) are respectively the trace and the determinant of [xz]k/q. They are also called
the K/Q-trace and the K/Q-norm of z:

tr([xz]k/q) =: trK/Q(z), det([x2]k/q) =: Nrg/q(2).
REMARK A.5. If we factor the characteristic polynomial over @Q
d

PK/Q,Car,z(X) = H(X - z’i)

i=1
(the roots z; are the eigenvalues of [xz]), then we obtain the formula
trg/Q(2) = 21 + -+ + 24, Nrgyo(2) = 21, .24
REMARK A.6. For any P € Q[X] we have
tI‘K/Q(P(Z)) =P(z1)+ -+ P(zq), NrK/Q (P(Z)) = P(z1).-+ .P(zq)

since, for any P € Q[X],

[xP(2)lx/q = P([x2k/q)
and the eigenvalues of P([x2]x/q) are the P(z;), i =1,--- ,d.

ProPOSITION A.3.2. The trace map
trg/g: 2 € K — trg/q(z) € Q
is a Q-linear form and the norm map
NI‘K/QZ ze K — NI‘K/Q(Z) S Q
is multiplicative:
VA€ Q, 2,2 € K, trgq(Az+2') = Mrg/o(2) + trg/o(2),
Nrq(z.2") = Nrg/g(2). Nrg g (2).
Moreover, for A € Q, one has
tre/o(A) = d.A, Nrg o(N) = A%
If K is a field, we have
Vze K, Nrg/g(2) =0 <= z=0.
Proor. This is a direct consequence of the linearity of the trace and the multiplicativity of the
determinant and the fact that
Z = [XZ]K/Q
is a K-algebra morphism. Moreover for A € @,
Finally, if K is a field, using that an injective algebra homomorphism gives an isomorphism between
the group of units and the group of units in the image, we obtain that
z# 0x <= [xz]g/q is invertible <= det ([x2]x/q) # 0.

(Note that for z # 0 we have [xz}}l/Q =[xz Yk/0.) O
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A.3.2.1. Transitivity relation. Consider an inclusion of finite dimensional Q-algebras
QCKcCL
and suppose that K is a field, then L is a K-vector space.

PROPOSITION A.3.3 (Transitivity for degree, the trace and the norm). We have for any z € K

Prg.car,-(X) = PK/Q,car,z(X)[L:K]‘
In particular, we have
[L:Q]=I[L:K[K:Q)
and
try q(2) = [L : K]trgq(2), Nrpq(2) = Nrg/o(z) X

PrROOF. Let £ = [L: K], d = [K : Q], (e1, -+ ,eq) a Q-basis of K and (f;,---,f;) a K-basis

of L. Then
L= @Kfj = @Qezf]
J 0.
Moreover the Q-subspaces K.f; = P, Qe;.f; are stable under [xz]|;,q (because z.K C K). There-
fore, the marix of [xz]z/q in the basis

(el.fh...,ed.fl,...7e1.fg7...,ed.f4) (A3)

is block-diagonal with [L : K]-many blocks which are the matrices of [x 2] x/¢ in the basis (e1, ..., eq).
Therefore, we have

PL/Q,car,z(X) = PK/Q,car,z(X)[L:K].

Regarding the minimal polynomial we have the following Proposition.
PROPOSITION A.3.4. We have
PL/Q,min,z = PK/Q,min,z~

PROOF. As we have seen, in the basis (A.3), the matrix of [xz];,q is block-diagonal with
diagonal blocks identical to the matrices of [xz]x/q. Therefore, any polynomial in Q[X] annihi-
lating [xz]x/q also annihilates [xz]r/q. On the other hand, if P € Q[X] annihilates [x2]z/q,
since K C L is [xz]pg-invariant we have

0= P([xz]1/Q)lx = P([x2]r/qlx) = P([x2]K/q)
and thus every polynomial that annihilates [x 2]z, /o also annihilates [xz]x /. In particular, we have

Ann([xz]1,0) = Ann([x2]k/q)

and therefore the claim. a
A.3.2.2. Trace bilinear form.

DEFINITION A.13. The trace bilinear form of the extension K/Q is the form
(2,2") € K* = (2,2') /g = trr/q(27)) € Q.
Recall that a bilinear form is called non-degenerate if the dual map

K - K*

z = 2=z, )k/Q 2 (2,2 ) k)0

is bijective.
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A.3.2.3. Discriminant. Let us recall a numerical criterion for a bilinear form to be non-degenerate:
A bilinear form is non-degenrate if and only if its discriminant does not vanish.

DEFINITION A.14. Let K/Q be a finite dimensional Q-algebra and let z = (z1,- -+ ,2,) € K™ be
an n-tuple; the discriminant of z (with respect to the bilinear trace form) is the determinant of the

matriz ((2i, 2j) k/Q)ij<n’
discre/q(z) == det (((2i, %) 1/Q)irj ) -

The most interesting case is when (z1,- - ,2,) = B is a Q-basis of K.

PROPOSITION A.3.5. The bilinear trace form (-,-)r,/x is non-degenerate if and only if there is
at least one Q-basis B = (e1,--- ,e,) of K such that

disck/q(B) # 0.
In that case for any Q-basis B' of K one has discg;o(B') # 0 and for any tuple z = (z1,--- ,2,) € K"
one has
disci/g(z) #0 <= z is a Q-basis.
REMARK A.7. Let us recall that, if z € K" is an n-tuple and M is the matrix giving the
coordinates of z in the basis B = (e, - ,e,), then
disc/(z) = (det M)*disckq(B).
This implies the second part of Proposition A.3.5.
The following definition will be useful.

DEFINITION A.15. Let K/Q be a finite dimensional Q algebra of dimension d and let z € K.
We define the discriminant of z to be

discq(z) = discg (1,2, -+, 2% ).

REMARK A.8. If disck,q(2) # 0, then (1,z,--- ,z971) is a Q-basis of K. In particular, z is
algebraic over @ and K = Q[z] = Q(z) is a field.

A.4. Commutative separable algebras

Given a field Q, we denote by @ its algebraic closure. In particular, whenever we have a finite
dimensional Q-vector space V (which we identify with some Q" by choosing some basis) and a linear
endomorphism f: V — V', we can look at the eigenvalues, eigenvectors, as well as the (generalized)
eigenspaces of f (or the matrix representing f) when we pass to the algebraic closure Q. In more
canonical terms, we look at the spectral properties of f in the Q-vector space V =V ®q Q.

We will apply this to the case where K/Q is a commutative finite dimensional Q-algebra and
to the endomorphisms [xz]x,q € Endg(K).

In particular, if we factor the minimal polynomial Pg min, . in Q, say

d
PQ,min,z (X) = H(X - Zi)eiv
i=1
its roots
{zivi=1,---,d}, d <degg(2)
are the eigenvalues of the (matrix of) [xz]x/q (relative to a(ny) Q-basis of K).

DEFINITION A.16. Let K/Q be a commutative finite dimensional Q-algebra. We say that z € K

is separable (sometimes one says semisimple) if one of the following equivalent conditions is satisfied.
— P min,» has only simple roots (i.e. d = dimg(z) or equivalently e, =1 fori=1,---d).
~ The matriz of [Xz]x/q (computed in any Q-basis of K ) is diagonalisable in Q.

The commutative Q-algebra K/Q is separable if every element in K is separable.
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REMARK A.9. Let us observe that a polynomial P € Q[X] has only simple roots (i.e., is sepa-
rable) if and only if

ged(P, P') =1,
where ged(P, P’) is the unique monic generator of the ideal generated by P and P’.
Let us spell out what diagonalizability means.

Fix a Q)-basis B of K. Given T € Endg(K), we denote by Mg r € My(Q) the matrix represen-
tation of T with respect to the basis B. Then the map

z € K = M, = Mg [x2),,, € Ma(Q)

identifies K with a commutative algebra of d x d-matrices which we will still denote by K. Then z

is separable if and only if there exists g, € GL4(Q) (the base change matrix) such that
Ad(g:)(M.) = g..M..g> ' € Ma(Q)
is diagonal.
THEOREM A.4. Let K/Q be a finite dimensional commutative Q-algebra. The set
K*®P ={z € K: z is separable} C K

of separable elements of K/Q is a Q-subalgebra of K and is the maximal separable subalgebra of K.
It is called the separable closure of @ in K.
In particular if K is generated as a Q-algebra by separable elements, then K is separable.

PRrROOF. It suffices to show that for any z1,20 € K every element of Q[z1, 23] is separable.
Choose a basis B of K/Q and let M., and M., be the associated matrices of [x21]x/q and [xz2]k/q
respectively. Since z1, 2o commute, the endomorphisms [xz1]x /¢ and [xz2] /o commute and if they

are both diagonalisable they can be diagonalized simultaneously in a common basis (of @d): this

. . —=d
follows from the fact that the eigenspaces of M, in ) are preserved by M., (because M, and M,,
commute) and the restriction of a diagonalizable map to a subspace is again diagonalizable. That

is, there exists g € GL4(Q) such that

g.M., g7, g.M,,.g7" € diag,(Q).
Since the map
Ad(g): M € My(Q) — g.M.g~' € My(Q)

is a Q-algebra homomorphism, since the set of diagonal matrices diag,(Q) is a subalgebra of M4(Q),
and since the map

ze€ K— M, € My(Q)

is also a Q-algebra homomorphism, for any P(Z1, Z2) € Q[Z1, Z2] the matrix of P([Xz1]k/q. [X22]Kk/q)
is also diagonalisable: we have

MP([le]K/Qv[XZ2]K/Q) = P(M,,, M.,)
and
Ad(g)(P(M.,, M,)) = P(Ad(g)(M,), Ad(g)(M.,)) € diagy(Q).

The remaining two statements follow immediately from the the first part of the proposition. O

DEFINITION A.17. A commutative algebra K/Q is separable if K°°? = K equivalently K is
separable if every element of K is separable or if K is generated as a Q-algebra by separable elements.
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A.4.1. Relation with the trace and the norm. Let K/Q be a separable commutative
finite dimensional Q-algebra; since all the matrices M,, z € K, commute, these matrices can be

simultaneously diagonalized in a common basis: there exists a matrix g € GL4(Q) such that for
every z € K we have

Ad(g)(M.) = g.M..g~" € diag,(Q) ~ @d,

Since

Ad(g): Ma(Q) — Ma(Q)
is a Q-algebra automorphism of My(Q), we have an injective algebra homomorphism
oc=0,:2€ K gM,.g " € diag,(Q).

In what follows, we assume implicitly a fixed g as above.
Given z € K, we have

o(z) = diag(o1(2), -+ ,04(2))

and the entry o;(z) is the i-th eigenvalue of the matrix M, (for the ordering determined by g). Note
that, as ¢ is a morphism of @Q-algebras, for ¢ = 1,--- ,d the maps

oi 2z 0i(2) €Q

are Q-algebra morphisms from K to Q. Observe also that the map o is injective (being the compo-
sition of two injective maps).
Considering the characteristic polynomial, we have that for all z € K

d
PK/Q,car,z(X) = H (X - Uz(z)) (A4)

d d
trc/q(z) = Y 0i(2), Nrgjq(z) = [[oi(2). (A.5)
i=1 i=1
Using these relations, we deduce the following formula for the discriminant of the trace bilinear
form (-, '>K/Q5

PROPOSITION A.4.1. Let K be a finite dimensional commutative separable algebra over QQ and
denote by d = [K : Q) its degree. Let (z1,---,24) € K? be a d-tuple. Then

. 2
dlSCK/Q(Zl, s ,Zd) = det ((tI‘K/Q(ZZ‘Zj))Z‘,jgd) = det ((O'k(zi))i,kéd) .
Moreover, the trace bilinear form (-, ->K/Q is non-degenerate.

PROOF. Since the o, i = 1,---,d, are algebra morphisms, we have the following identities
between d X d matrices over @):

(tri/Q(2i2i)),; g = (Z Uk(%‘%‘)) = (Z Uk-(%)dk(Zj))
i,j<d k i,j<d

k
= (ok(2i)); pca X (0k(25))k,j<a = M x ‘M

and taking determinants we have

det ((trK/Q(zizj))l.ngd) = det(M)? = det ((O‘k,(Zi))i’kgd)Q.
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A.5. The case of fields

In this section we consider the case where K is a field containing (and of finite dimension over) Q.
Without loss of generality we may assume that K is a subfield of an algebraic closure of Q:

QCKcCaQ.

The important difference in comparison to the general case of commutative algebras is that for z € K
the minimal polynomial Pg min .(X) is irreducible: indeed the evaluation map

P(X) e Q[X]—ev,(P)=P(z) e K
has for image the domain

Q] ~ Q[X]/(Pg,min,=)
and therefore Py nin,» is irreducible and Q7] is a field.

A.5.1. Non-separable elements. The next result shows that if K is a field, most if its
elements are separable unless we are in a very special situation.

ProprosITION A.5.1. If z € K is not separable, then the characteristic of Q, p say, is non-zero
and there exist k > 1 and an irreducible polynomial R € Q[X] with only simple roots such that the
minimal polynomial Py min,»(X) is of the form

k
Py min - (X) = R(X?).
In particular,
p* deg(R) = [Q[2] : Q)IIK : Q).
Conversely if Pg min,» 15 of that shape, then z is not separable.

PROOF. Let us recall that z is separable if and only if its minimal polynomial is coprime to its
first derivative:

(PQJHiILZa PC,Q,min,z) =1

However, as K is a field, Pg min,» is irreducible and thus coplrime to Pf ,;, . (and hence z is
separable) unless

Pé,rnin,z =0.
Write
Py min,»(X) = X4+ ag_1 X7+ + ag.
We have
Pélmin,z(X) = dXd_l + adfl(d — 1)Xd_2 + - 4a.
As z is non-separable, we have Pé,min,z — 0 and therefore for any k > 1 with ax # 0 we must
have k.1g = 0. This can only occur if car(K) = p > 0 and k is a multiple of p. Therefore
PQ,min,z(X) = R1 (Xp)

for Ry € Q[X] irreducible. If the roots of Ry are simple we are done. Otherwise, by the same
argument there is an irreducible polynomial Ry € Q[X] such that R;(X) = R2(X?) and we continue
until we obtain a polynomial with simple roots. O

COROLLARY A.5.1. A field extension of characteristic zero is separable. A field extension of
degree coprime to the characteristic of Q is separable.

COROLLARY A.5.2. If Q is a finite field, then any finite degree extension K/Q is separable.
Proor. Write Q =F, and K = F a. Any z € K — {0} is a root of P = X7'~1 — 1 which has

simple roots since (qu_l -1y = — X2 which is coprime to Xa'-1 1. As Pr /@ min,-| P, 2 is
separable. O
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A.5.2. Perfect fields.
DEFINITION A.18. A field k is perfect if any algebraic extension of k is separable.

ExAMPLE A.1. From the previous discussion we know that fields of characteristic 0 and finite
fields are perfect. Obviously algebraically closed fields are perfect.

EXERCISE A.1. Let Q C @ be a field of characteristic p and let
QYT = {z€Q: P Q for some k > 0}
(the set of p-th power roots of elements of @)). Show that QP is a field and that it is perfect.
A.5.3. The primitive element theorem. A fundamental result for separable extensions is

THEOREM A.5 (Primitive element). Let K/Q be a finite separable extension. There exists z € K
such that

In particular for such z one has
PQ,min,z(X) = PK/Q,Car,Z (X)

and Pk q car,-(X) 48 irreducible with simple roots.

PROOF. If @ is a finite field, then K is finite and K* is cyclic so that K = Q({) where ( is a
generator of K *.

Suppose now that K is infinite. As K is finitely generated over @, it is sufficient to show that
if K = Q(z,y) with 2,y € K, then K = Q(z) for some z € K. It will turn out that we can find
such z of the shape

=2+ Ay
with A € Q. Set K\ = Q(zx). Let P(X) = [[,(X — ;) and R(X) = [[;(X —y;) be the minimal
polynomials of z and y factorized over @ and assume x = 1, y = y1; since = and y are separable,
the z; are distinct and likewise for the y;. The polynomial Ry (X) = P(zx — AX) has coefficients
in K and vanishes at y so R and R) have y as a common root. Since K is infinite, we may choose A
so that y is the only common root: the other roots of R are y; (y1 = y) and the roots of Ry are

=T x1— T+ Ay
A A
for x; running over the roots of P (x = x1).

For such A we find in particular, that both R and R, are divisible by X — y in K[X]. As
they don’t share any further roots, we in fact have that (R, Ry) = X —y. On the other hand,
we have that (R, R)) is invariant under field extension, i.e., (R, Ry) € K,[X]. To this end recall
that the calculation of (R, Ry) via the Euclidean algorithm only uses arithmetic in the base field
(in this case Ky). In particular, X —y € K,[X] and therefore y € Ky = Q(z)). It follows
that x = 2\, — Ay € K. O

A.5.4. Separability is transitive.

PROPOSITION A.5.2. Consider a tower of finite algebraic extensions Q@ C K C L, then L/Q is
separable iff K/Q and L/K are.

PROOF. We may assume that Char(Q) = p > 0. Suppose L/Q separable, then K/Q is obviously
separable and L/K is since for any z € L, Pk min,, divides Pg min,» which has only simple roots.

Conversely suppose K/Q and L/K separable. Let L*°P be the separable closure of L relative
to Q. By assumption we have K C L*°P. Since L/K is separable, by the previous discussion L/L%P
is separable.

We want to deduce that L%P = L. Given z € L, its minimal polynomial is of the shape R(X9)
for ¢ = p¥, where k is a non-negative (possibly zero) integer and R is irreducible with simple roots
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and coefficients in (). Recall that z € L%P if and only if £ = 0 and therefore we will show k£ =1
(respectively k = 0). Let p;, i = 1,--- ,r be the simple roots of R in Q. Let p;/q € @ be a root of
the polynomial X7 — p;; there is only one root in fact since
(X =/ = X1~ p;
and therefore
1
Po.uin-(X) = R(X?) = [J(X7 = pi) = [J(X = oi/")?
Suppose z = p}/ ? then 29 = p; € L and p; is separable over () since its minimal polynomial is R
which has simple roots. Therefore p; € L*P. Now Prsep min,, divides X? — p;, which has only a
single root of order ¢ in Q. Since L/L°P is separable, we conclude that ¢ = 1 and thus L = L5°P.
|

A.5.5. A trace criterion for separability.

THEOREM A.6. Let K/Q be a field extension of degree d. The extension is separable if and only
if the trace bilinear form (-,-),q is non-degenerate.

ProOF. If K/Q is separable, then there exists z € K such that
K=Q[R=Q+Qz+ - +Q2"", d=[K: Q]

Choosing B = {1,---,2%71} as a basis of K/Q, the discriminant formula gives

. . — i— 2 i— 2
disc/q(2) = discg (1, -+, 297" = det (o (2" ik<a)” = det((or(2))ik<a)
since the oy are algebra morphisms.
The determinant det ((0%(2)""!); r<a) is a Vandermonde determinant and equals

det ((ox(2) Dik<a) = [J(05(2) = 0i(2))-

J>i
Since z is a generator of K/Q we have

PK/Q,car,z(X) = PK/Q,min,z(X)
and the roots of the latter are the o;(z), j < d which are all distinct (by definition of separability)
so that
discg/q(1,--- ,zd_l) = det ((O'k(z)i_l)i’kgd)Q #0.
For the converse we recall a few facts related to (in-)separability.
(1) Let K/L/Q a tower of extensions. Then K/Q is separable if and only if K/L and L/Q

are separable.
(2) Let K/Q be an extension, then

K*P = {z € K, z is separable over Q}

is a subfield of K.

(3) If K # K*°P, then char(Q) = p # 0 and K/K®*P is purely inseparable, i.e. for all z € K
there is some n € N such that zP" € K5P,

(4) If K/Q is not separable, then there exists an intermediate field L such that [K : L] = p
and K is totally inseparable over L. More precisely, there is some ¢ € L such that K is
generated over L by a single root of the irreducible polynomial X? — /.

So assuming that K/Q is inseparable, one first chooses an intermediate field K/L/Q as in the last
item above and proves that trg,;, vanishes on the basis (1,2, ..., 2P~1) of K over L by showing that
the minimal polynomial of 2? over L is XP — t'. Then one uses that given any finite dimensional L-
vector space V, letting Vo denote V' viewed as a @Q)-vector space, we have that

try, =trpg otry.
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Applying this with V' = K, it follows that for inseparable K|Q the trace vanishes exactly. In
particular, the trace bilinear form is not non-degenerate.
O
A5.5.1. The structure of separable algebra. Let K/Q be a commutative finite dimensional @
algebra. We have the following

THEOREM A.7. The algebra K/Q is separable iff either of the two equivalent conditions is
satisfied
— The trace bilinear form (-,-) ko is non-degenerate.

— The Q algebra K is isomorphic to a product of separable field extensions of Q.

PROOF. (sketch) If K/Q is separable, then all the maps [xz]x/q are semisimple and commute.
Therefore K decomposes as a direct sum
K@

of finitely many Q-subspaces which are all invariant under [x z] /. By finite dimensionality of K/Q
we can assume that all the subspaces V; are maximal with this property. One then shows that the
subspaces V; are subfields of K which are separable extensions of Q.
If K is a direct sum of separable field extensions of @, then K/Q is clearly separable over Q.
The equivalence of the two conditions is left as an exercise. O

A.5.6. Embeddings.

DEFINITION A.19. Let Q C K C Q be an extension of fields. A field K" containing Q and
isomorphic to K as a Q-algebra is called a Q-conjugate of K in Q.

DEFINITION A.20. A ring morphism o : K = Q is Q-linear if
VA eQ, z€ K, o(Az) = Aa(z).
The set of conjugates is parametrized by the following set
Homg (K, Q) := {0 : K = Q,0 a Q-linear ring morphism}
C Hom(K, Q) = {0 : K — @ ring morphism}.

Observe that since K is a field, and non-zero ring homomorphism o : K — @ is injective and its
image o(K) C @ is a field isomorphic to K. Therefore Hom (K, Q) is also called the set of embeddings
of K into @) and the subset Homg (K, Q) is the set of Q-linear embeddings or Q-embeddings.

Observe that if o is a @-linear embedding, then 0| = Idg so that o(K) is a field containing @

and isomorphic to K as a (Q-algebra. There is therefore a bijection between the set of Q-conjugates
of K and the set of @-linear embedding given by

o— K' =o(K).
We have the following proposition.
PROPOSITION A.5.3. The set of Q-conjugates of K in Q is finite; equivalently, the set of Q-linear
embeddings Homg (K, (Q)) is finite. More precisely
|Homg (K, Q)| < [K : Q).

PROOF. Assume first that K is monogenic, i.e., there is z € K such that K = Q[z]. For any
given 0 € Homg (K, Q), the conjugate o(z) is a root of the minimal polynomial Py, » k¢ and hence
takes one out of at most [K : ()] values. For general x € K we have x = P(z) for some P € Q[X]
and (by Q-linaearity)

o(z) = a(P(z)) = P(o(2))
so o is completely determined by o(z). This prove the theorem in the monogenic case.
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We handle the general case by recurrence on the degree. Given z € K — @ and L = Q[z] the
field generated by z. We may assume L # K and we already know that |Homg (L, Q)| < [L : Q.
Given o € Homg(K, @), by recurrence its restriction to L can take at most [L : Q] values. Let us
consider the set

{r € Homq(K,Q): 71, = o}
of @-linear embeddings whose restriction to L equals o|,. It will be sufficient to show that this set is
of size at most [K : L]: given 7,7’ in that set and let L’ = (L) = 7(L) = 7/(L), then L’ is contained
in 7(K), 7 (K) and o(K). Consider

U=r'or! :7(K) = 7'(K)

then W is L'-linear so can take at most [7(K) : L'] by recurrence (since [7(K) : L'] = [7(K) : 7(L)] =
[K:L<[K:Q]) O
During the proof we have also established

LEMMA A.5.4. Given Q@ C L C K a tower of finite extensions and o € Homeg (L, Q), the set of
embeddings extending o,
{r e HomQ(K,Q): TL = o},
is of size at most [K : L].

LEMMA A.5.5 (Dedekind). Let L be any field containing Q as a subfield.I needed linear inde-
pendence over C, so I generalized it a bit. The Q-linear embeddings

Ti, 1= ]-7 coed = |HOH1Q(K,@)|
are L-linearly independent.

PROOF. Suppose that

d
Z )\Z‘O'i =0
i=1

for \; € L not all zero. We assume that the number d’ of ¢ such that A; # 0 is minimal amongst all
non-trivial linear dependence relations. Necessarily d’ > 2 (because o1(1) = 1).
Up to permuting the indices we may assume that this relation is of the shape

&
Z /\iUi =0
i=1
for some 2 < d’ < d and with \; # 0 and that d’ is minimal. We have for every z,2’ € K
&
Z Nioi(22") =0
i=1

and therefore since 0;(z.2") = 0;(z).04(2") for every 2z’ € K we have

d/
Z )\iO'i(Z/)O'Z' =0.
i=1

Choose j € [1,---,d'] and combine two such relations (for z’ and for 2’ = 1) we have

d d & &
0= Z Nioi(2)o; — o;(2) Z \io; = Z Ni(oi(2") —0;(2)o; = Z Xi(oi(2") — 0;(2"))o;.
i=1 i=1 i=1 i=1
i#j
This is a linear relation amongst the o; with < d’ — 1 terms; moreover since for ¢ # j o; # o0}
one can find 2’ such that the o;(z") — 0;(2’), ¢ # j are not all zero and the relation is non trivial

contradicting the minimality of d’.
a
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A.5.6.1. Conjugates.
DEFINITION A.21. For any z € K the set of (distincts) roots of Pg min,z
{2 € Q: Pomin-(2') =0}
is called the set of conjugates of z in Q.
This terminology is justified by the following fact
PROPOSITION A.5.6. The set of conjugates of z in Q is the set
{o(2): 0 € Homg(K,Q)}
of images of z under the various Q-linear embeddings.

PROOF. Since Pg min,» has coefficients in @, and o is a @Q-linear ring morphism, we have
0 = 0(PQ,min,=(2)) = Pomin,:z(0(2)),

so we have one inclusion. The converse inclusion follows from the following extension lemma applied
to L = Q[z]. O

LEMMA A.5.7. Given Q C L C K a lower of finite dimensional field extensions. For any
o € Homg(L, Q) there exists T € Homg (K, Q) such that

T|K = 0.
We will prove the
THEOREM A.8. A finite field extension K/Q is separable if and only if
|Homg (K, Q)| = [K : Q).
PROOF. Suppose K/Q is separable and let z be a primitive element of K,
PQ,min,z = PK/Q,car,z

has degree [K : Q]. By separability, Pg min,. has [K : Q] distinct roots which is the cardinality of
Homg (K, Q).

Suppose K/@Q is not separable and let z € K be a non separable element. Let L = K|[z]. Its
minimal polynomial has degree [L : )] and is of the shape

PQ,min,z(X) = R(Xq)7
where R has r < [L : Q] distinct roots p;, ¢ =1..., u, and
Poumin.z(X) = [T(X = /)",

?

Therefore | Homg (L, Q)| = r and by Lemma A.5.4,
|Homg (K, Q)| < r.[K: L] < [K : Q).
O

A.5.6.2. Relation to the eigenvalues. We have seen that if K/Q is separable we have a map of

Q-algebras -
o: K+ o(z) =diag(o1(z2), -+ ,0a(z)) € diagy(Q).
Consequently for each 7 the i-th eigenvalue
oi:2€ K o0i(2)€Q

is a @-linear embedding. Moreover the various embeddings o;, i« = 1,---d are distinct since, if z
is a generator of K/Q, the o;(z),i = 1,--- ,d are the distinct d roots of the minimal polynomial

PQ min,-- We have therefore
Homg(K,Q) = {o;:i=1,---d}.
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In particular we have

Vz € Kv PK/Q,car,z(X) = H (X - 0(2))
oc€Homg (K,Q)

trg/q(z) = Z o(z), Nrg,q(z) = H o(z).

oeHomQ(K,é) UEHomQ(K,a)
A.6. Galois Theory

Let K/Q be a finite separable field extension and consider the subset of K-valued embeddings
Homg (K, K) € Homg (K, Q).
This is the group of Q-automorphisms of the field K: indeed o € Homg (K, K) is K-linear injective,

hence surjective .

DEFINITION A.22. The extension K/Q is normal if and only if
Homg (K, K) = Homg (K, Q).
An extension K/Q is Galois if K/Q is normal and separable:
| Homg (K, K)| = | Homg(K. Q)| = [K : Q).
The group Homg (K, K) is called the Galois group of K/Q:
Gal(K/Q) = Homg (K, K).

EXERCISE A.2. Show that a finite extension K/Q is Galois if and only if for all z € K the map
[x2]k/q is diagonalizable over K.

EXAMPLE A.2. — Any extension K/Q of degree 2 is Galois.
— Any finite extension K/Q of a finite field @ is Galois: we have

Gal(K/Q) = frobg
where frob,, is the Frobenius (¢ = |Q|)

K

froby : . : K

x?
THEOREM A.9 (Main Theorem of Galois Theory). Let K/Q be a Galois extension and
G = Gal(K/Q) = Homg (K, K)
be the Galois group.
The map
K HCcG— Kl ={xcK, VoecH, o)=2}CK
is a bijection between
— the set of subgroups of G and
— the set of extensions of QQ contained in K.
Moreover K/KH is Galois and
Gal(K/K") = H.
Conversely, for any subextension Q@ C K' C K, the extension K/K' is Galois. The inverse of
the map K*® is
Gal(K/e): K'— Gal(K/K') = Homg: (K, K) C G.
The map K*® also induces (by restriction) a bijection between

— the set of normal subgroups of G and

— the set of Galois extensions of Q contained in K (the Q@ C K' C K such that K'/Q is
Galois).



A.6. GALOIS THEORY 97

In addition, for any such H <G we have
Gal(K"/Q) ~ G/H.

PRrROOF. Given H a subgroup of G, since any ¢ € H is Q-linear, () is in the set of fixed points
of o so Q C K. Moreover since ¢ is a field morphism, the set of fixed point of ¢ is stable under
addition, product, and inversion. So the set of fixed points of ¢ is a subfield of K containing @) and
so is K which is the intersection of the fixed points of o over all o € H. The extension K/K*# is
separable since K/Q is separable and it is normal since

Hompg# (K, Q) C Homg(K, Q) = Homg (K, K)

(because K/Q is normal) so any K*-linear morphism of K into @ maps K to K.
To show that this map is bijective it suffices to show that for any H C G

Gal(K/K™)=H (A.6)
and that for any Q C K’ C K, K/K' is Galois and
e ¢ (A7)

Indeed this will prove that the maps
H+— K7 and K’ — Gal(K/K')

are inverse to one another so that both sets are in bijection.
We start with (A.6). Any o € H is by definition K-linear so H C Gal(K/K*). We have
therefore
|H| < |Gal(K/K")| = [K : KH].
We will prove that this is an equality which will imply (A.6).
Assume that |H| < [K : K]: there exists #1, -+ ,g|11 € K which are K -linearly indepen-
dent (in particular distinct).

For m < |H| + 1 we consider the homogenous linear system with |H| equations in m variables
(}/17 ) Ym)

m
{ > o(x;)Y;=0,0€H (A.8)
i=1
When m = |H| + 1 this system has more variables than equations so admits a non-trivial solution
(y1, - ,ym) € K™; let m be minimal with this property.

By minimality wlogwma ¥,, = 1. The system becomes

m—1
Vo € Hyo(xy) = — o (x;)yi-
i=1
applying 7 € H to this identity we obtain
V1,0 € H, 7(0(zm)) = — m_lT(U(CEi))T(yi)-
i=1
Changing variables X
V1,0 € H, o(zy) = —m_ o(zi)7(ys),
and subtracting X -
Vr,0 € H, 0 = 3 o(xi)(yi — 7(yi))-
i=1

but now
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is a solution to (A.8) in m — 1 variables. Since m is minimal the solution must be the trivial one:
Vi<m-—1VreH, y,—7(y;) =0
and y; € K. Taking 0 = Idg we get

m
Z ZiYi = 07
=1

contradicting (remember that m < |H|+1) the fact that the {z;} are K*-lineary independent (since
Ym = 1 the linear relation is non-trivial). Therefore [K : K#] < |H| so | Gal(K/K®)| = [K : KH] =
|H| and

Gal(K/K") = H.

Let us prove (A.7): consider Q C K’ C K. Repeating the beginning of the previous argument
the extension K /K’ is Galois. By definition we have K/ C K Gal(K/K') and by the previous argument
applied to H = Gal(K/K’) we have

(K : K] = | Gal(K/K'")| = [K : KSE/KD),
which by multiplicativity of the degree implies (A.7).

Let us restrict the above map to extensions @ C K’ C K such that K'/Q is Galois. Let
H = Gal(K/K'). By the preceding discussion, the group H is the pointwise stabilizer of K’ in K
and therefore for any o € Gal(K/Q), o.H.c~! is the stabilizer of o(K’). But o(K’) = K’ since
K’/Q is normal, so 0.H.c~! = H and therefore H is a normal subgroup of G. We have

|Gal(K'/Q)| = [K": Q] = [K : QI/[K : K'] = |G|/|H| = | Gal(K/Q)/H],
so it is sufficient to construct an injective map
Gal(K/Q)/H — Gal(K'/Q).
Consider the restriction map
resg 1 0 € Gal(K/Q) — o € Gal(K'/Q).

This is a group homomorphism and the kernel of that map is precisely the pointwise stabilizer of
K’ which is H and we obtain the required injection. O
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