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CHAPTER I

Fermat’s equation

“J’ai trouvé une merveilleuse démonstration de cette proposition,
mais la marge est trop étroite pour la contenir.”

I.1. Introduction

Diophantine equations are equations of the shape

P (x1, . . . , xr) = 0,

where P (X1, . . . , Xr) is a polynomial in a number of variables with integral coefficients and where one
looks for solutions in integers (x1, . . . , xr) ∈ Zr. Fermat’s equations are the diophantine equations
in three unknowns given by

xn + yn = zn, (x, y, z) ∈ Z3 (I.1)

for n ∈ N⩾1 an integer. Observe that, since the polynomial Xn+Y n−Zn is homogeneous, whenever
(x0, y0, z0) ∈ Z3 is a solution, then for any a ∈ Z the triple (ax0, ay0, az0) is also a solution. So it
is natural to search for the primitive solutions (x, y, z), i.e., solutions for which x, y, z are coprime
(i.e., gcd(x, y, z) = 1).

The case n = 2,

x2 + y2 = z2, (x, y, z) ∈ Z3, gcd(x, y, z) = 1, (I.2)

is known since antiquity and there is a simple procedure to find all its solutions.

Theorem. All primitive solution to the equation (I.2) are obtained as follows.

(1) Take t = u/v a rational number (written as an irreducible fraction, gcd(u, v) = 1), and
let Dt the line with slope t and passing through the point (1, 0), i.e., the line given by the
equation

V = t(U − 1).

(2) The line Dt intersect the unit circle

U2 + V 2 = 1

in two distinct points: (1, 0) and

Pt =

(
t2 − 1

t2 + 1
,− 2t

t2 + 1

)
=

(
u2 − v2

u2 + v2
,− 2uv

u2 + v2

)
and Pt has rational coordinates.

(3) The triple (u2 − v2,−2uv, u2 + v2) is a primitive solution to (I.2).

In particular the equation (I.2) admits infinitely many solutions.

Fermat was the first to realize that for n ⩾ 3 the situation is very different and he claimed his
famous Fermat’s Last Theorem (FLT).

– “Un cube n’est jamais la somme de deux cubes,
une puissance quatrième n’est jamais la somme de deux puissances quatrièmes
et plus généralement aucune puissance supérieure à 2 n’est la somme de deux puissances
analogues.”
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6 I. FERMAT’S EQUATION

He then established the FLT for n = 4 and for the other n’s wrote his famous sentence.
In modern terms Fermat’s claim is rewritten as follows.

Theorem. For n ⩾ 3 the only primitive solutions (x, y, z) to Fermat’s equation (I.1) are con-
tained in the set

{(ε1, ε2, 0), (ε1, 0, ε2), (0, ε1, ε2) : ε1, ε2 ∈ {±1}}.

Since their introduction Fermat’s equations and the search for their solutions have captured
the minds of many mathematicians and have indeed been largely responsible for the development
of algebraic number theory. It is only in 1995 that Andrew Wiles proved Fermat’s claim, the
culmination of a serie of tremendous developments that have taken place during the 19th and 20th
century.

In this chapter, as a warm-up, we will discuss the very first cases of Fermat’s equation and will
start with a variant of the case n = 2 due to Fermat.

I.2. Sums of two squares

Theorem I.1 (Fermat). An integer n ∈ Z− {0} is a sum of two squares, i.e.,

n = a2 + b2, a, b ∈ Z,

if and only if the following are true.

– n > 0.
– n is the product of a square and a (possibly empty) product of prime numbers ≡ 1, 2 (mod 4).

In particular a prime p ⩾ 2 is a sum of two squares if and only if p ≡ 1, 2 (mod 4).

Given a complex number z = a+ ib, then

z.z = |z|2 = a2 + b2,

Thus, given n ∈ N, the question whether n is a sum of two squares is equivalent to the question
whether there exists z = a+ ib ∈ Z+ iZ such that

z.z = n.

I.2.1. The ring of Gaussian integers.

Proposition I.2.1. The additive subgroup of C

Z+ iZ = {a+ ib : a, b ∈ Z}

is a subring of C, called the ring of Gaussian integers. We also have the equality

Z+ iZ = Z[i] = {P (i) : P (X) = adX
d + ad−1X

d−1 + · · ·+ a0 ∈ Z[X]}.

Moreover the field of fractions of Z[i] is

Q(i) = Q[i] = Q+ iQ.

This field is called the field of Gaussian numbers.

Proof. Clearly Z+ iZ is an additive subgroup containing Z, hence 0, 1.
Given a+ ib, c+ id ∈ Z+ iZ, we have

(a+ ib).(c+ id) = (ac− bd) + i(bc+ ad) ∈ Z+ iZ,

hence Z+ iZ is a ring. Note that Z+ iZ is the image of the evaluation at i restricted to the subspace
of polynomials of degree at most one inside Z[X]. Therefore Z+ iZ ⊂ Z[i].

We have in fact

Z+ iZ = Z[i]
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as Z[i] is the smallest subring of C containing both Z and i. Alternatively, one uses that i2 = −1
which implies that for any

P (X) = a2dX
2d + a2d−1X

2d−1 + · · ·+ a0 ∈ Z[X]

we have
P (i) = a2d(−1)d + a2d−1(−1)d−1.i+ · · ·+ a0 ∈ Z+ iZ.

Clearly
Q+ iQ ⊂ Q[i] ⊂ Q(i) = Frac(Z[i])

and the ring Q+ iQ is a a field since it is stable under addition and multiplication and for non-zero
a+ ib ∈ Q+ iQ we have

(a+ ib)−1 =
a− ib
a2 + b2

∈ Q+ iQ− {0}.

Therefore, Q(i) being the smallest subfield of C containing Q and i, we have Q(i) ⊂ Q + iQ and
hence equality. □

Definition I.1. The norm on Q(i) is the map

Nr(z) = z.z = a2 + b2.

Proposition I.2.2. The norm is Q-valued, multiplicative, definite (i.e., z = 0 ⇐⇒ Nr(z) = 0),
and Nr(Z[i]) ⊂ Z⩾0.

Proposition I.2.3. We have

Z[i]× = {±1,±i} = {z ∈ Z[i], Nr(z) = 1}.

Proof. If z ∈ Z[i]× is a unit, by multiplicativity of the norm, we have Nr(z) ∈ Z× = {±1},
hence Nr(z) = a2 + b2 = 1 which implies that z ∈ {±1,±i} and these are obviously units. Alterna-
tively if Nr(z) = 1 then z.z = 1 so z−1 = z ∈ Z[i]×. □

Another consequence of the multiplicativity of the norm is the following:

Corollary I.2.4. If m,n are sums of two squares then so is m.n.

The converse is not true: 9 = 3.3 is a sum of two squares but 3 is not. Nevertheless there is a
partial converse which we will prove later.

Proposition I.2.5. If (m,n) = 1, then

mn = □+□ ⇐⇒ m = □+□ and n = □+□.

To prove this we will need the following fundamental result.

Proposition I.2.6. The ring Z[i] is a Principal Ideal Domain (PID): Z[i] is a domain (i.e.,
z.w = 0 =⇒ z or w = 0) and every ideal q ⊂ Z[i] is generated by one element, i.e., there exists
q ∈ Z[i] such that

q = (q) = qZ[i].

Proof. This follows from a stronger property, namely Z[i] is a euclidean ring:

∀z, q ∈ Z[i], q ̸= 0, ∃k, r ∈ Z[i] such that Nr(r) < Nr(q), z = qk + r.

There exists k ∈ Z[i] such that
|z/q − k| < 1.

Indeed any point—and thus also z/q—in C is at distance ⩽
√
2/2 < 1 from an element k of Z[i].

We choose
r = z − kq ∈ Z[i].

Then
|r| = |z − qk| < |q| ⇐⇒ Nr(z − qk) < Nr(q).

This proves that Z[i] is euclidean.
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Let q ⊂ Z[i] be a non-zero ideal. Let 0 ̸= q ∈ q such that Nr(q) is minimal among the norms of
elements in q (such q exists since Nr takes values in N). Let 0 ̸= b ∈ q, then there exists r ∈ Z[i]
such that b = qk + r with Nr(r) < Nr(q) and r = b− qk ∈ q; therefore r = 0 and b = qr ∈ qZ[i]. As
b was arbitrary, we obtain that

qZ[i] ⊂ q ⊂ qZ[i].
□

Proposition I.2.7. Let q = (q) be a non zero ideal generated by q = a+ ib ∈ Z[i], then Z[i]/q
is finite and

|Z[i]/q| = Nr(q) = a2 + b2.

Proof. One has

q = (a+ ib)(Z+ iZ) = Z(a+ ib) + Z(−b+ ia)

and the index of q in Z[i] is the index of Z(a, b) + Z(−b, a) in Z2 = Z(1, 0) + Z(0, 1). As of the
discussion in Section A.2.1, this index is equal to∣∣∣∣det(a −b

b a

)∣∣∣∣ = a2 + b2.

□

I.2.2. Prime factorisation in a PID. Let us recall that for a general ring O we have the
following basic operations/definitions regarding the set of ideals:

– Given two ideals m, n ⊂ O, we say that m divides n if n ⊂ m. This relation is denoted by

m|n.

– Given a subset M ⊆ O, we denote by (M) or (m : m ∈M) the ideal generated by M , i.e.,
the smallest ideal in O containing M .

– Given two ideals m, n ⊂ O we define the following ideals:

m+ n := (m+ n : m ∈ m, n ∈ n) = (m, n),

m.n := (m.n : m ∈ m, n ∈ n) ⊂ m ∩ n.

– A proper ideal p ⊊ O is prime if O/p is a domain, i.e., for any a, b ∈ O, if a.b ∈ p, then
either a ∈ p or b ∈ p. The set of prime ideals is denoted by

Spec(O)

(for “spectrum”) and a typical non-zero prime will be denoted p.
– A proper ideal m ⊊ O is maximal if it is maximal, relative to inclusion, amongst all proper

ideals (i.e., it is not contained in any distinct proper ideal). Equivalently, an ideal m is
maximal if O/m is a field (in particular a maximal ideal is a prime ideal). The set of
maximal ideals is denoted by

Specmax(O).
We recall that the ring O is a domain if for all a, b ∈ O we have

a.b = 0O =⇒ a = 0O or b = 0O.

Definition I.2. A Principal Ideal Domain (PID) O is a ring which is a domain and for which
every ideal m ⊂ O is principal, i.e., of the form

m = (m) = m.O = {m.a, a ∈ O}

for some m ∈ O.
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Theorem I.2 (Factorisation in PIDs). In a PID O, every non-zero prime ideal is maximal.
Moreover, for every ideal m, there exists a unique tuple of natural integers (vp(m))p prime indexed

by Spec(O) such that vp(m) = 0 for all but finitely many p and such that m can be written as the
following (finite) product:

m =
∏
p

pvp(m),

where p0 := O and the product runs over the non-zero prime ideals.
Alternatively, call a non-zero element p ∈ O “prime” if it is the generator of a prime ideal

p = pO and for every non-zero prime ideal p ⊂ O choose an associated prime p (i.e., p = (p) = pO).
By considering the prime factorisation of the principal ideal p = (m) generated by m ∈ O, i.e.,

(m) =
∏
p

pvp(m) =
∏
p

(p)v(p)((m)),

we obtain that any m ∈ O can be written as a product of prime powers:

m = u.
∏
p

pvp(m),

where u ∈ O× and vp(m) = vp(m). Moreover, for non-zero m ∈ O, this factorisation is unique
(given the choice of a generator p for each prime ideal p).

Remark I.1. The integer vp(m) is called the valuation of m at the prime ideal p (or the p-adic
valuation of m) and likewise for vp(m).

Because of this the standard factorisation properties of Z extend to a general PID O. Let
m, n ⊂ O non-zero ideals. Then

m|n ⇐⇒ ∀p, vp(m) ⩽ vp(n),

m.n =
∏
p

pvp(m)+vp(n),

[m, n] := largest ideal contained in m and n = m ∩ n =
∏
p

pmax(vp(m),vp(n)),

(m, n) := smallest ideal containing both m and n = m+ n =
∏
p

pmin(vp(m),vp(n)).

In particular, we obtain the following equivalent characterization of coprimality of ideals:

(m, n) = O ⇐⇒ ∀p, vp(m).vp(n) = 0.

I.2.3. Proof of Proposition I.2.5. Consider two integers m,n ∈ N such that (m,n) = 1 (in
the usual sense) and suppose that m.n = □+□ or in other terms

m.n = (a+ ib)(a− ib), a+ ib ∈ Z[i].

Let

a = (a+ ib)Z[i].
Applying complex conjugation we have

a = (a+ ib)Z[i] = (a− ib)Z[i] = (a− ib)Z[i].
Observe that the ideals (m) and (n) are coprime in Z[i]:

1 ∈ mZ+ nZ =⇒ 1 ∈ mZ[i] + nZ[i] = (m) + (n).

In other terms their decompositions into prime factors are disjoint.
Since a|(mn) = (m).(n) we have

a = (a, (m)).(a, (n))
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and likewise
a = (a, (m)).(a, (n))

and
(m).(n) = (a, (m))(a, (m))(a, (n))(a, (n)).

Again, since (m) and (n) are coprime we conclude that

(m) = (a, (m))(a, (m)), (n) = (a, (n))(a, (n)).

Since m = m we have
(a, (m)) = (a, (m)) = (a, (m))

so if we write
(a, (m)) = (a′ + ib′)Z[i]

we have
(a, (m)) = (a, (m)) = (a′ − ib′)Z[i].

Since
(m) = (a, (m))(a, (m)) = (a′ + ib′)(a′ − ib′)Z[i] = (a′

2
+ b′

2
)Z[i],

there is some u′ ∈ Z[i] such that

m = u′.(a′ + ib′).(a′ − ib′) = u′(a′
2
+ b′

2
).

Since m ⩾ 1 we have u′ ⩾ 1 so u′ = 1 and m = □ + □. Exchanging the roles of m and n we
conclude. □

I.2.4. Gaussian primes. Proposition I.2.5 reduces the proof of Fermat’s theorem to the case
where m = p is a prime and we have to show that

p = □+□ ⇐⇒ p ≡ 1, 2 (mod 4).

Such prime are called Gaussian primes.
Observe that

2 = 12 + 12 = z2z2, z2 = 1 + i.

It is therefore sufficient to show that

Theorem I.3. Let p be an odd prime. The following are equivalent.

(1) p = □+□.
(2) p ≡ 1 (mod 4).
(3) −1 is a square modulo p.

Proof. If p = a2 + b2, then (p, ab) = 1 (for example, if p|a, then p = a2 + b2 implies p|b and
it follows that p2|a2 + b2 = p, which is absurd). Let a(−1) ∈ Z be such that a(−1) (mod p) is the
multiplicative inverse of a mod p (i.e., a.a(−1) ≡ 1 (mod p)); we have

1 + (a(−1))2b2 = 1 + (a(−1)b)2 ≡ 0 (mod p)

and hence −1 is a square in F×
p = (Z/pZ)×.

Hence
α := (a(−1)b)2 (mod p) ∈ F×

p

has exactly order 4 (α2 = −1 ∈ F×
p ) and therefore 4||F×

p | = p− 1.

Alternatively (that was proposed by someone in the audience), for any a ∈ Z one has a2 ≡
0 (mod 4) if a is even and a2 ≡ 1 (mod 4) if a is odd therefore if p is odd a and b must have distinct
parities and

p = a2 + b2 ≡ 1 + 0 (mod 4).

Now suppose that 4|p− 1. Since F×
p is cyclic, it admits a cyclic subgroup of order 4. If α ∈ F×

p

is a generator of that subgroup, then α2 has order 2 exactly so equals −1 and −1 = α2 is a square
in Fp.
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Let us show now that if −1 is a square modulo p, then p = □+□.
Suppose again that −1 = α2 ∈ Fp and let m ∈ Z such that m ≡ α (mod p). Then

m2 + 1 = (m+ i).(m− i) ∈ pZ[i].
Let us consider the ideal

p := (m+ i)Z[i] + pZ[i]
generated by m+ i and p. Write this ideal

p = (a+ ib)Z[i].
ince p ∈ Z[i] we have a surjective map

Z[i]/pZ[i] 7→ Z[i]/p
so

|Z[i]/p| = a2 + b2 divides |Z[i]/(p)| = p2

therefore we have either
a2 + b2 = (a+ ib)(a− ib) = 1, p or p2.

The first case cannot occur: this would imply that 1 ∈ p but for any z ∈ p we have

z = u(m+ i) + v.p, u, v ∈ Z[i]
and

Nr(z) = (u(m+ i) + v.p)(u(m+ i) + v.p)

= Nr(u)(m2 + 1) + Nr(v)p2 + p(u(m+ i)v + u(m+ i)v) ≡ 0 (mod p).

There third case cannot occur either since m + i ̸∈ pZ[i] (the elements of pZ[i] are the Gaussian
integers whose real and imaginary parts are divisible by p) so we have

|Z[i]/p| = a2 + b2 = p.

□

Remark I.2. In addition we see that p = (m+ i)Z[i]+pZ[i] is a prime ideal: the quotient Z[i]/π
is a ring of order p and since the map

x ∈ Z/pZ ≃ Fp → x (mod p) = Z[i]/p
induced by the inclusion Z ⊂ Z[i] is non-trivial it is injective and an isomorphism.

I.3. Fermat’s equation for n = 3

As pointed out before, Fermat established his FLT when n = 4 (we leave it as a non-trivial
exercise; cf. [1, §I.1.2]). This enabled him to make the following reduction.

Proposition I.3.1. To prove FLT completely, it is sufficient to prove it when n = p is an odd
prime.

Proof. Suppose we know FLT for all odd primes and for n = 4. Let n ⩾ 6 which is neither 4
or an odd prime, then n can be factored as n = k.ℓ where k is either 4 or an odd prime p. Suppose
we have a primitive solution

xn + yn = zn.

this can be written as
(xℓ)k + (yℓ)k = (zℓ)k

and (xℓ, yℓ, zℓ) is primitive and thus belongs to

{(ε1, ε2, 0), (ε1, 0, ε2), (0, ε1, ε2) : ε1, ε2 ∈ {±1}}.
Therefore (x, y, z) belongs to that set. □



12 I. FERMAT’S EQUATION

It “remains” to establish FLT for n = p ⩾ 3 an odd prime. Notice that since p is odd, Fermat’s
equation can be written

xp + yp + (−zp) = xp + yp + (−z)p = 0,

so that, replacing z by −z, it takes the more symmetric form

xp + yp + zp = 0.

Historically, one considers two cases: Given a primitive solution (x, y, z) (such that xyz ̸= 0 and
gcd(x, y, z) = 1), we consider the alternatives

Case 1: p ∤ xyz
Case 2: p|xyz.

The second case is the hard one.
In this section we discuss the case n = p = 3 which is due to Euler but we follow a method of

Eisenstein.

I.3.1. The first case. Suppose that 3 ∤ xyz then

x ≡ ε1 (mod 3), y ≡ ε2 (mod 3), z ≡ ε3 (mod 3)

where εi = ±1.

Lemma I.3.2. We have

x3 ≡ ε1 (mod 9).

Proof. Write x = ε1 + 3k, then

x3 = ε31 + 3.ε21.3k + 3ε1.(3k)
2 + (3k)3 ≡ ε31 (mod 9) = ε1 (mod 9).

□
This finishes the proof in this, since the equation

ε1 + ε2 = ε3 (mod 9)

has no solutions satisfying εi = ±1.

I.3.2. The second case. Suppose that 3|xyz. We may assume without loss of generality that
3|z (and 3 ∤ xy). Substituting z by −3vz′ for v ⩾ 1 and such that 3 ∤ z′, the equation can be
rewritten as

x3 + y3 = 33vz3, 3 ∤ xyz.
We will show that, if such a solution exists (with xyz ̸= 0 and x, y, z pairwise coprime), the

equation

(x′)3 + (y′)3 = 33(v−1)(z′)3, 3 ∤ x′y′z′

also has a solution. From there we obtain a contradiction on the existence of such (x, y, z) by
induction on v (the case v = 0 is the first case and has been treated already).

This kind of argument (i.e., reducing an equation to another one which is “simpler”, because
the exponent v is reduced by 1) is called a descent.

I.3.3. The ring of Eisenstein integers. We will use a cubic analog of the ring of Gaussian
integers.

Consider the usual cubic root of unity

j =
−1 + i

√
3

2
= e

2πi
3

so that

µ3 = {z ∈ C, z3 = 1} = {1, j, j}.
Fermat’s equation becomes

(x+ y)(x+ jy)(x+ j2y) = 33vz3.
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We are therefore studying a polynomial equation whose variables belong to the so called ring of
Eisenstein integers

Z[j] = {P (j) : P ∈ Z[X]}.

Theorem I.4. The ring of Eisenstein integers enjoys the following properties.

(1) One has

Z[j] = Z+ jZ. (I.3)

(2) Z[j] is invariant under complex conjugation:

Z[j] = Z[j]. (I.4)

(3) The group of units is

Z[j]× = {z ∈ Z[j] : zz = 1} = ±{1, j, j2}.
(4) For any 0 ̸= z ∈ Z[j], let (z) = z.Z[j] the corresponding principal ideal. Then

|Z[j]/(z)| = z.z. (I.5)

(5) The ring Z[j] is a PID.

In what follows, as was the case for the Gaussian numbers, we define the norm Nr on Q(j) (and
on Z[j]) by

Nr(z) = z.z.

Proof. We start with (I.3). We first note that

j2 + j + 1 = 0 :

Indeed j3 − 1 = 0 and X3 − 1 = (X − 1)(X2 +X + 1). Therefore j2 = −j − 1 and any polynomial
P (j) with integral coefficients evaluated at j can be written as an integral combination of 1 and j.
Alternatively, one can do Euclidean division of P (X) with respect to X2 +X + 1: one has

P (X) = (X2 +X + 1)S(X) +R(X), degR < 2

and writing R(X) = a+ bX, a, b ∈ Z we see that

P (j) = (j2 + j + 1)S(j) +R(j) = R(j) = a+ bj ∈ Z+ jZ.

Property (I.4) follows from the identity

j = j2 = −1− j.
To compute the group of units, we first show that

z ∈ Z[j]× ⇐⇒ Nr(z) = 1.

Note for z = a+ bj ∈ Z[j] we have

Nr(z) = z.z = a2 − ab+ b2 ∈ N

since Nr(z) ⩾ 0.
Given z ∈ Z[j]×, we have z−1 ∈ Z[j]. Therefore

Nr(z)Nr(z−1) = Nr(z.z−1) = Nr(1) = 1

and

Nr(z),Nr(z−1) ∈ N>0.

Therefore Nr(z) = 1. Conversely, if Nr(z) = z.z = 1, then z ∈ Z[j] is the inverse of z in Z[j] and
hence is a unit.

To compute Z[j]×, we observe (by completing the square) that

Nr(z) = a2 − ab+ b2 =

(
a− b

2

)2

+
3

4
b2
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and it remains to solve the equation(
a− b

2

)2

+
3

4
b2 = 1, a, b ∈ Z

by inspection of the various cases.
For (I.5), we have for z = a+ jb

(z) = z.Z[j] = Z(a+ jb) + Z(aj + bj2) = Z(a+ jb) + Z(−b+ (a− b)j)
and thus

|Z[j]/(z)| =
∣∣∣∣det( a b

−b (a− b)

)∣∣∣∣ = |a2 − ab+ b2| = Nr(z).

The proof that Z[j] is a PID is left as an exercise. It follows using the same argument as for the
Gaussian integers: The complex plane C is tiled by the translates of parallelotope

Pj = [0, 1] + j[0, 1]

C =
⋃
a,b∈Z

a+ bj + Pj

and the diameter of Pj is the length of the diagonal [0, j − 1] equals

|j − 1| = (
9

4
+

3

4
)1/2 =

√
3 < 2,

so any element of C is at distance < 1 of an element of Z+ Z.j. □
Already in the proof of Theorem I.3, we encountered the problem of “factoring primes” in Z

when viewed as elements in Z[i]. We encountered three classes, namely

(1) the odd primes for which p ≡ 1 (mod 4)—i.e., the case where Z[i]/(p) was not a domain
and therefore p factors as a product of two distinct primes—,

(2) the prime 2 which is associated to a square in Z[i]—i.e., 2 = (1+ i)(1− i) = (−i)(1+ i)2—,
(3) and the odd primes p ≡ 3 (mod 4), which can be shown to be prime in Z[i]. Indeed,

assume that p ≡ 3 (mod 4) is not prime in Z[i] and, in particular, (p) is not a prime ideal.
Then p = z1.z2 for non-units z1, z2 ∈ Z[i] and therefore p = zi.zi, which contradicts the
conclusion of Theorem I.3.

In this section, as mentioned already, we will rely on the factorization of the prime 3 inside Z[j],
which happens to behave as for the prime 2 in Z[i].

Proposition I.3.3. Let π3 = 1− j. The ideal p3 = (π3) is a prime ideal in Z[j] and
Z[j]/p3 ≃ F3.

Moreover, we have
p3 = (π3) = (π3) = p3

and the decomposition
(3) = (π3).(π3) = p23.

Proof. We have
|Z[j]/p3| = Nr(1− j) = (1− j)(1− j) = 3

therefore 3 ∈ p3 and Z[j]/p3 is a ring with three elements. Moreover the map induced by the
inclusion 3Z ⊂ p3

x ∈ Z/3Z ≃ F3 → x (modπ3) ∈ Z[j]/p3
is non trivial (hence injective) since 1 ̸∈ p3: for any z ∈ p3 we have z = (1− j)z′, z′ ∈ Z[j] and

Nr(z) = 3Nr(z′) ∈ 3Z.
We have therefore an isomorphism

F3 ≃ Z[j]/p3
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so p3 is prime.
We have

1− j = 1− j2 = (1 + j)(1− j) = −j2(1− j)
Since −j2 is a unit in Z[j], we have

p3 = (1− j) = −j2(1− j)Z[j] = (1− j)Z[j] = p3

and
(3) = (1− j).(1− j) = p23.

□

I.3.4. Starting the descent. Recall that we are given a non-trivial solution (x, y, z) satisfying

x3 + y3 = 33vz3,

where x, y, z are pairwise coprime and by the first case v ∈ N>0. Set

A = x+ y, B = x+ jy, C = x+ j2y = B

We have therefore
A.B.C = 33vz3, v ⩾ 1

Lemma I.3.4. We have

A = 33v−1z0, B = π3z1, C = π3.z1 = π3z2

where z0, z1, z2 ∈ Z[j] are pairwise coprime and coprime with p3.

Proof. By assumption we have 3|A.B.C and therefore π3|A.B.C. By Gauss’s lemma, π3 divides
at least one of A,B or C. Also observe that

A−B = (1− j)y = π3y, A− C = (1− j2)y = π3y = −j2π3y.
It follows that π3|A, B and C: suppose for instance that π3|A, then π3|B and π3|C and the other
cases are similar.

In addition, since B and C are complex conjugates, the order of divisibility of B by π3 is the
same as the order of divisibility of C by π3 = −j2.π3; therefore π3 divides B and C to the same
order.

Note that none of x, y, z are divisible by π3, otherwise either x
2 = xx, y2 = yy, or z2 = zz would

be divisible by π3π3 = 3, which is in contradiction to the assumption that 3 ∤ xyz.
Now, since

B − C = jπ3y

and since π3 does not divide y, π3 divides B and C at order exactly 1. Therefore

B = π3z1, C = π3.z1 = −j2π3z1 = π3z2

with z1, z2 ∈ Z[j] coprime with π3. Since π3 divides B and C at order 1 exactly and divides 3 at
order 2 exactly, and as z is coprime to π3, we see that π3 divides (3vz)3 at order 6v exactly, and
therefore divides A at order 6v − 2 exactly. Moreover 33v−1 = (−j2)3v−1π6v−2

3 and therefore

A = 33v−1z0, z0 ∈ Z[j], gcd(z0, π3) = 1.

Let us show that z0, z1 are coprime: let p = (π) be a prime ideal dividing (z0) (in particular
p ̸= p3) and suppose that π|z1. Then π divides A and B and, since

A−B = π3y, jA−B = −π3x,
it follows that π divides x and y. But then Nr(π) = ππ divides Nr(x) = x2 and Nr(y) = y2 which is
excluded. One shows in the same way that z0, z1 and z2 are pairwise coprime. □

Lemma I.3.5. There exists u0, u1, u2 ∈ {1, j, j2} and ρ0, ρ1, ρ2 ∈ Z[j] such that

z0 = u0ρ
3
0, z1 = u1ρ

3
1, z2 = u2ρ

3
2
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Proof. We have the identity of ideals

(z3) = (z0).(z1).(z2).

Consider the prime decomposition of (z),

(z) =
∏
p

pvp , vp = vp(z);

we have

(z3) =
∏
p

p3vp = (z0.z1.z2) = (z0).(z1).(z2).

Therefore, if p divides z at order vp, it divides z0.z1.z2 at order 3vp and, since the zi are pairwise
coprime, p divides exactly one of zi, i = 0, 1, 2 at order 3vp. Therefore

(zi) =

(∏
p|zi

pvp
)3

.

Let ρi ∈ Z[j] be a generator of the ideal
∏

p|zi p
vp :∏

p|zi

pvp = ρi.Z[j].

We have

(ρ3i ) = (zi), i = 0, 1, 2

and therefore there exist units ui ∈ Z[j]×, i = 0, 1, 2, such that

zi = uiρ
3
i .

Observe that, since 3 is odd,

zi = uiρ
3
i = (−ui)(−ρ3i ) = −ui(−ρi)3

so we may assume without loss of generality that ui ∈ {1, j, j2}. □

Lemma I.3.6. Under the above assumptions we have u0 = 1 and, moreover, we can choose
ρ0 ∈ Z.

Proof. We have z0 = (x+ y)/33v−1 ∈ Q, so that z0/z0 = 1, and therefore

u0
u0

= (
ρ0
ρ0

)3

is a cube in the fraction field Q(j) = Frac(Z[j]). The next lemma shows that in fact

ρ0
ρ0
∈ Z[j]×

and therefore
u0
u0
∈ (Z[j]×)3.

For u0 ∈ {1, j, j2}, the only possibility is u0 = 1, and we then have

ρ30 = z0 = A/33v−1 ∈ Q×.

The roots of the cubic polynomial X3 − z0 are {ρ0, jρ0, j2ρ0} and one of them is real. We may
assume without loss of generality that ρ0 is a real number; therefore, since

ρ0 = a+ jb, a, b ∈ Z

is real, we have that b = 0 and ρ0 ∈ R ∩ Z[j] = Z. □
Let us now prove the claim made above:

Lemma I.3.7. Let u ∈ Z[j]× be a unit and ρ ∈ Q(j) be such that ρ3 = u then ρ ∈ Z[j]×.
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Proof. Write ρ = r/s with r, s ∈ Z[j] and coprime. We have

r3 = us3.

If p is a prime dividing r, then p|s3 and therefore p|s (Gauss’ lemma), which contradicts the copri-
mality of r, s. Therefore r is a unit. We show in the same way that s is a unit. □

Lemma I.3.8. Under the above assumption (ρ0 ∈ Z) we have u1 = 1.

Proof. We have A = x+ y ≡ 0 (mod 9) and since (9) = p43 we have

π3y = A−B ≡ −B = −u1ρ31π3 (mod p43).

Therefore
y ≡ −u1ρ31 (mod p33).

Since 3 ∤ y, we have y ≡ ±1 (mod 3) which implies that

u−1
1 ≡ ±ρ31 (mod 3).

Since Z[j]/p3 = F3 = Z/3Z one has (since ρ1 ̸≡ 0 (mod p3))

ρ1 ≡ ±1 (mod p3).

hence
ρ1 = ±1 + π3r, r ∈ Z[j]

and
ρ31 = (±1)3 + 3(±1)2π3r + 3(±1)π2

3r
2 + (±1)2π3

3r
3 ≡ ±1 (mod 3).

Therefore
u1 ≡ ±1 (mod 3).

This last congruence excludes u1 = j and u1 = j2 since j ± 1 ̸≡ 0 (mod 3) (j + 1 = −j2 is a unit
j − 1 = −π3 is divisible by π3 to order 1 and not by π2

3 = −j2.3). Since u1 ∈ {1, j, j2} we have
necessarily u1 = 1. □

I.3.5. Conclusion. We have proven that

x+ y = 33v−1ρ30, x+ jy = (1− j)ρ31, x+ j2y = x+ jy = (1− j2)ρ31
with

ρ0 ∈ Z− {0}, ρ1 = a+ jb ∈ Z[j].
Moreover we know that 3 ̸ |ρ0

Expanding (a+ jb)3 and plugging into the second equation and identifying the real and j parts,
we find that

x = a3 + b3 − 6ab2 + 3a2b, y = −a3 − b3 + 6a2b− 3ab2, x+ y = 9ab(a− b).
Observe that a, b, a − b are pairwise coprime (in Z) since x and y are coprime: if p|(a, b) then p|x
and p|y since x and y are polynomials in a and b with no constant term. If p|(a, a− b) or p|(b, a− b),
then also p|(a, b). So these two cases reduce to the first case.

Moreover by the last equation we have

ab(a− b) = a2b− ab2 = (3(v−1)ρ0)
3.

Since a, b and a− b are pairwise coprime and (3(v−1)ρ0)
3 is the cube of an integer, a, b and a− b are

cubes of integers and therefore a2b and −ab2 are also cubes (−1 = (−1)3 is a cube): write

a2b = (x′0)
3, −ab2 = (y′0)

3, ρ0 = z′0.

We have therefore a solution of Fermat’s equation

a2b− ab2 = x′0
3
+ y′0

3
= (3(v−1)ρ0)

3.

We have produced an integral solution (x′0 = a2b, y′0 = −ab2, z′0 = ρ0) to the equation

X3 + Y 3 = (3(v−1)Z)3. (I.6)
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In order to complete the descent step, we need a solution with x′0, y
′
0, ρ0 pairwise coprime and

the product x′0.y
′
0.ρ0 not divisible by 3. We know already that 3 ̸ |z′0. If 3 ̸ |ab then 3 ̸ |x′0y′0ρ0. Given

p ̸= 3, if p divide two of (x′0, y
′
0, z

′
0) it will divide the third and we will obtain another smaller solution

to the above equation, namely (x′0/p, y
′
0/p, z

′
0/p) those product is not divisible by 3. Continuing the

process we may assume that x′0, y
′
0, ρ0 are pairwise coprime.

Suppose now that 3|x′0 = a2b and, for instance, that 3|a. It follow that 3 ∤ (a− b)b by pairwise
coprimality of a, b, a− b. Write c = a− b, we have 3 ∤ bc and the equation becomes

bc(b+ c) = b2c+ bc2 = (3(v−1)ρ0)
3.

with b, c, b+ c pairwise coprime. As above b, c, b+ c are also cubes of integers and so are

b2c = x′′0
3
, bc2 = y′′0

3

and we eventually obtain a solution (x′′0 , y
′′
0 , ρ0) to (I.6) where none of the entries are divisible by

3. By the same reduction as above we may also assume that x′′0 , y
′′
0 , ρ0 are pairwise coprime and we

conclude by induction on v that for v ⩾ 0 there exists no (x, y, z) ∈ Z3 such that

x3 + y3 = (3vz)3

with 3 ̸ |xyz and x, y, z pairwise coprime. □

Remark I.3. People have subsequently tried to solve Fermat’s equation

xp + yp = zp

for other values of the prime p by working with the (cyclotomic) ring Z[ζp], where ζp is a p-th root
of unity (for instance exp( 2πip )).

In 1847, Gabriel Lamé announced the complete resolution of FLT for any n. Unfortunately (or
fortunately) Lamé’s proof was incorrect: it was based on the ”fact” that Z[ζp] was a UFD which is
true for some primes p (for instance p = 3) but false in general.

In 1850, Kummer realized that some portions of that argument could be repaired by replacing
factorisation of algebraic numbers by factorisation of ”ideal numbers” (which are the now called
ideals) recovered all previously known cases of the FLT (for an odd prime) and established new
cases; however this approach did not extend to all primes.

As we will see, the fundamental obstruction is a finite commutative group, called the ideal class
group of Z[ζp], which is denoted Cl(ζp). Its order is called the class number h(ζp). We have the
following statement:

The ring Z[ζp] is a PID if and only if the ideal class group is trivial.

One can show that as soon as p is sufficiently large h(ζp) > 1 so there is really no possibility to
completely mimick Lamé’s proof. However, Kummer was able to prove FLT for primes p such that
p does not divide the class number h(ζp). One calls such primes p regular.

Also Kummer provided an elementary criterion (not involving the class number) to determine
whether a prime p is regular; this criterion is formulated in terms of the p-divisibility of numerators
of Bernoulli numbers (depending on p).

It is conjectured, but not known, that there exist infinitely many regular primes.
One of the main objectives of this course will be to define the ideal class group (in greater

generality) and to establish its basic properties.

Exercise I.1. (1) Prove that Z[j] is a PID.
(2) Prove that for a prime p ̸= 3, the following are equivalent:

– p is of the shape p = a2 − ab+ b2 a, b ∈ Z.
– p ≡ 1 (mod 3).
– −3 is a square modulo p.



CHAPTER II

Lattices in number fields

II.1. Archimidean/geometric embeddings

Let Q ⊂ C be the subfield of algebraic numbers C. In the sequel, all the finite extensions of Q
we will consider are included in Q so are fields of complex numbers.

Let K/Q a finite extension of degree n. This is therefore a subfield of C and for any σ ∈
Hom(K,Q), σ(K) is another subfield isomorphic to K and contained in C and the set of all such
subfields is precisely

σ(K), σ ∈ HomQ(K,Q).

Remark II.1. Since K/Q is separable, |HomQ(K,Q)| = n.

Definition II.1. Given σ ∈ HomQ(K,Q) an embedding of K in C. If σ(K) ⊂ R, σ is a real
embedding and complex if σ(K) ̸⊂ R.

We denote the complex conjugation

σC(•) = • : z ∈ C→ z ∈ C.

The group {Id, σC} acts on HomQ(K,Q): the real embeddings are the fixed points for this action
and the complex ones decompose into pairs of complex conjugate embeddings. In particular the
number of complex embedding is even. The number of real embeddings is denoted r1 = r1(K) and
the number of complex ones is denoted 2r2 = 2r2(K) so that

r1 + 2r2 = n.

Remark II.2. This can be considered as an archimedean version of the degree formula.

Set
r = r1 + r2

and
(σ1, · · · , σr1 , σr1+1, · · · , σr) ∈ HomQ(K,Q)r

a choice of representatives of the various orbits of HomQ(K,Q) under the action of {Id, σC}: such a
choice is called a type for K (there are 2r2 possible types up to permutation). In other terms given
a type as above

{σ1, · · · , σr1} = HomQ(K,R)
is the set of real embeddings and

{σr1+1, · · · , σr1+r2 , σr1+1, · · · , σr1+r2} = HomQ(K,C)−HomQ(K,R).
is the set of complex ones.

Let K∞ be the R-algebra

K∞ := Rr1 × Cr2 =

r1+r2∏
i=1

Ki

with

Ki =

{
R i ⩽ r1

C i = r1 + 1, · · · , r2.

19
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We have
K∞ ≃ Rn

where we have identified C with R2 via the usual R-linear map

z = x+ iy ∈ C→ (x, y) ∈ R2.

Given a type, let

σ∞ :
K 7→ K∞
z 7→ σ∞(z) = (σ1(z), · · · , σr(z))

.

This is an injective morphism of Q-algebra called the archimedean or geometric embedding associated
to the type. In the sequel the type is fixed once and for all.

II.2. Lattices in number fields

We let K ⊆ Q as above, i.e., K is a number field of degree n.

Proposition II.2.1. Let B = (ω1, . . . , ωn) ∈ Kn. The following are equivalent.

(1) B is a Q-basis of K.
(2) σ∞(B) =

(
σ∞(ω1), . . . , σ∞(ωn)

)
is a basis of Rn.

The following is an immediate corollary of Proposition II.2.1

Corollary II.2.1. σ∞(K) is dense in Rn.

The proof of Proposition II.2.1 relies on the following Lemma. For what follows, we enumerate
the elements of HomQ(K,C) so that for all 1 ⩽ i ⩽ r2 we have σr+i = σr1+i.

Lemma II.2.2. Let B = (ω1, . . . , ωn) ∈ Kn. Then B is a Q-basis of K if and only if det
(
σi(ωj)

)
̸=

0.

Proof. If B is not a basis, then B satisfies a non-trivial relation over Q and, since the embed-
dings are Q-linear, therefore the columns of

(
σi(ωj)

)
satisfy a linear relation, i.e., det

(
σi(ωj)

)
= 0.

Now suppose that B is a basis and suppose that (c1, . . . , cn) ∈ Cn give rise to a linear relation
among the rows, i.e.,

∀1 ⩽ j ⩽ n

n∑
i=1

σi(ωj) = 0.

Since B is a basis, Q-linearity of the embeddings implies that
n∑
i=1

ciσi = 0

and, by Lemma A.5.5, it follows that c1 = · · · = cn = 0. In particular, the rows are linearly
independent and, hence, det

(
σi(ωj)

)
̸= 0. □

Proof of Proposition II.2.1. Let B =
(
σi(ωj)

)
∈Mn(C) and let A =

(
σ∞(ωj)

)
. If 1 ⩽ k ⩽

r2, then Br+k,j = Br1+k,j , hence

Ar1+2(k−1)+1,j =
1

2
(Br1+k,j +Br+k,j), Ar1+2k,j =

1

2i
(Br1+k,j −Br+k,j),

thus
det(B) = (2i)r2 det(A)

and the equivalence follows from Lemma II.2.2. □

Definition II.2. A subgroup Λ < K is a lattice if it is generated by a Q-basis of K.

Definition II.3. A subgroup Γ < Rn is a (geometric) lattice if it is generated by a basis of Rn.

The following is an immediate corollary of Proposition II.2.1.
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Corollary II.2.2. A subgroup Λ < K is a lattice if and only if σ∞(Λ) is a geometric lattice.

Recall that a subgroup of Rn is a lattice if and only if it is discrete and cocompact; cf. A.2.4.

Lemma II.2.3. Let Λ < K be a subgroup. Then Λ is a lattice if and only if Λ is finitely generated
and contains a Q-basis of K.

Proof. If Λ is a lattice, then Λ is generated by a basis, in particular finitely generated and
contains a basis.

Now suppose that Λ is generated by the finite set S ⊆ Λ and suppose that B ∈ Λn is a Q-basis
of K. In what follows, we denote by ΛB < K the lattice generated by B. Note that ΛB ⊆ Λ.

Since B is a basis, every element in S is a Q-linear combination in B and, clearing denominators,
there exists N ∈ N such that NΛ ⊆ ΛB.

Since σ∞(ΛB) ⊆ σ∞(Λ), Corollary II.2.2 and Lemma A.2.4 imply that σ∞(Λ) is cocompact. On
the other hand, σ∞(Λ) ⊆ 1

N σ∞(ΛB) implies that σ∞(Λ) is discrete. Hence σ∞(Λ) is discrete and
cocompact, therefore a lattice. In particular, Λ is a lattice by Corollary II.2.2. □

Exercise II.1. Let Λ1,Λ2 < K be lattices and let Λ1.Λ2 be the subgroup generated by all
products of elements in Λ1 and Λ2, i.e.,

Λ1.Λ2 =

{
ℓ∑
i=1

aibi : ℓ ∈ N ∪ {0}, ai ∈ Λ1, bi ∈ Λ2

}
.

Show that Λ1.Λ2 is a lattice.

Recycling the argument used in the proof, one obtains a proof of the following.

Proposition II.2.4. Let Λ1,Λ2 < K lattices. There exists N ∈ N such that

NΛ1 ⊆ Λ2 ⊆
1

N
Λ1.

The proof is left as an exercise.

II.3. The discriminant of a basis and the discriminant of a lattice

Definition II.4. Let B = (ω1, . . . , ωn) ∈ Kn. We define the discriminant of B by

discK/Q(B) = det
(
σi(ωj)

)2
.

Exercise II.2. Let B1,B2 ∈ Kn such that the subgroups of K generated by B1 and B2 respec-
tively are equal. Then

discK/Q(B1) = discK/Q(B2).

Definition II.5. Let Λ < K be a lattice. The discriminant of Λ is defined as

discK/Q(Λ) = discK/Q(B),

where B ∈ Λn is any Z-basis of Λ.

Exercise II.3. Let B ∈ Kn be a Q-basis of K. Then

discK/Q(B) = (2i)2r2 covol
(
σ∞(ΛB)

)2
.

Lemma II.3.1. Let B = (ω1, . . . , ωn) ∈ Kn be a Q-basis of K. Then

discK/Q(B) = det
(
trK/Q(ωiωj)

)
.

In particular, discK/Q(B) ∈ Q \ {0}.
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Proof. Recall that for any x ∈ K, the expression trK/Q(x) denotes the trace of the Q-linear
endomorphism [×x]K/Q of K given by multiplication by x.

Using the primitive element theorem, we can assume that K = Q(α) for some α ∈ Q with
minimal polynomial f ∈ Q[X]. Let A ∈ Mn(Q) denote the companion matrix corresponding to f .
Using the basis E = (1, α, . . . , αn−1) of K, one checks that the extension of the map ι : α 7→ A to a
homomorphism Q(α) → Mn(Q) of unital Q-algebras gives a matrix representation of [×•]K/Q, i.e.,
for every x ∈ K, the matrix ι(x) is the representation matrix of [×x]K/Q with respect to E .

Since f is separable, the matrix A is diagonalizable with eigenvalues σ1(α), . . . , σn(α). Since ι
is a homomorphism of Q-algebras, it follows that for every x ∈ K the matrix ι(x) is diagonalizable
with eigenvalues σ1(x), . . . , σn(x) (which might not be pairwise distinct, e.g., consider x = 0). It
follows that

trK/Q(ωiωj) =

n∑
k=1

σk(ωiωj) =

n∑
k=1

σk(ωi)σk(ωj).

This proves the lemma. □

Lemma II.3.2. Let Λ1 ⊆ Λ2 < K be lattices. Then

[Λ2 : Λ1]
2 =

discK/Q(Λ1)

discK/Q(Λ2)
.

Proof. Note that

[Λ2 : Λ1] =
covol

(
σ∞(Λ1)

)
covol

(
σ∞(Λ2)

) .
Indeed, if v1, . . . , vℓ ∈ σ∞(Λ2) are representatives of σ∞(Λ2)/σ∞(Λ1), and if F2 ⊆ Rn is a funda-
mental domain for σ∞(Λ2) ↷ Rn, one easily checks that

F1 =

ℓ⊔
k=1

(vk + F2)

is a fundamental domain for Λ2 and, by translation invariance of the Lebesgue measure, we have

covol
(
σ∞(Λ1)

)
= vol(F1) = ℓvol(F2) = [Λ2 : Λ1] covol

(
σ∞(Λ2)

)
.

Hence, the Lemma follows from Exercise II.3. □

II.4. Orders in number fields and the ring of integers

Definition II.6. An order O ⊆ K is a lattice which is also a unital subring.

Lemma II.4.1. There exists an order O ⊆ K.

Proof. Let α ∈ K such that K = Q(α) and let f = anX
n+ · · ·+ a0 ∈ Z[X] be the polynomial

obtained by multiplying the minimal polynomial of f by a common denominator of the coefficients.
Let β = anα. Then K = Q(β) and, therefore, (1, . . . , βn−1) is a Q-basis of K. Moreover, letting

g = X + anan−1X
n−1 + · · ·+ an−1

n a0 ∈ Z[X],

we have
g(β) = an−1

n f(α) = 0

and, hence,
Z[β] = Z+ · · ·+ Zβn−1.

Hence Z[β] is a lattice and, therefore, an order. □

Lemma II.4.2. Let O ⊆ K be an order. Then discK/Q(O) ∈ Z \ {0}.

Proof. Let B = (ω1, . . . , ωn) ∈ On be a Z-basis of O. Since [×ωiωj ]ωk ∈ O for all ωi, ωj , ωk and
since B is a Z-basis of O, we have that trK/Q(ωiωj) ∈ Z for all ωi, ωj . In particular, the discriminant
of O is an integer by Lemma II.3.1. The discriminant of any lattice is non-zero, hence also of □
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Corollary II.4.1. Every increasing sequence of orders in K stabilizes. In particular, K has a
maximal order.

Proof. Let O1 ⊆ O2 ⊆ · · · be an increasing sequence of orders. As of Lemma II.3.2, we know
that

∀i ∈ N discK/Q(Oi+1)|discK/Q(Oi).
Since any non-empty subset of N has a minimum, Lemma II.3.2 implies that there exists a maximal
order in K. □

Theorem II.1. There exists a unique maximal order OK ⊆ K, called the ring of integers in K.

Proof. Let O1 and O2 orders in K. Let O ⊆ K be the subgroup generated by products of
elements of O1 and O2; cf. Exercise II.1. Then O is a lattice as of Exercise II.1. Moreover, since
O1 and O2 are unital, we know that O1 and O2 are contained in O. Since O1 and O2 are unital
subrings, O is a unital subring. In particular, O is an order.

This shows that any two orders are contained in a common order. Therefore there exists a
unique maximal order. □





CHAPTER III

Dedekind rings

III.1. Integral Extensions

For what follows, by a ring we generally mean a commutative unital ring.

Theorem III.1. Let R be a ring and A ⊂ R a subring. Given z ∈ R, the following are equivalent.
(1) z is the root of a monic polynomial with coefficients in A.
(2) The ring

A[z] = {P (z) : P (X) ∈ A[X]} ⊂ R
is a A-module of finite type (f.t).

(3) There exists a subring B ⊂ R containing A and z which is an f.t A-module.

We then say that z is integral over A.

Remark III.1. If A is a field, this is the definition of an algebraic element.

Proof. (1) =⇒ (2): Let P ∈ A[X] a monic polynomial such that P (z) = 0. By euclidean
division, for any Q ∈ A[X] there exist K,R ∈ A[X] such that

Q = KP +R, with degR < degP.

Writing R(X) = adX
d + · · ·+ a0 with ai ∈ A, we find that

Q(z) = R(z) = adz
d + · · ·+ a0 ∈ A+ · · ·+Azd

with d < deg(P ) and therefore A[z] ⊂ R is f.t.
(2) =⇒ (3): Choose B = A[z].
(3) =⇒ (1): Given B as in (3), let z1, . . . , zd be a finite set of generators:

B = A.z1 + · · ·+A.zd.

Let

[×z] : B 7→ B
x 7→ z.x

be the A-module endomorphism of B given by multiplication by z. We have

∀i z.zi =
∑
j

aij .zj .

Let

Mz = (aij)i,j≤d ∈Md(A) and z = (zi)i ∈ Bd.
The above system of equalities can be writen

(zIdd −Mz)z = C(z)z = 0

where 0 ∈ Bd denotes the zero vector and C(z) is the matrix

C(z) = z.Id−Mz = (δij .z − aij)1⩽i,j⩽d ∈Md(B).

Fix i ⩽ d and define the vectors vj ∈ Bd, j ⩽ d as follows: if j ̸= i, we set

vj = C(z)(j)

25
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and if j = i we set

vi = zi.C(z)
(i).

By multilinearity of the determinant, we have

det(v1, . . . ,vd) = zi detC(z).

Set

wi :=

d∑
k=1

zk.C(z)
(k) = vi +

d∑
k=1
k ̸=i

zk.vk, wj := vj , j ̸= i.

Since the determinant is alternating we have

det(w1, . . . ,wd) = det(v1, . . . ,vd) = zi detC(z).

Since
wi = C(z).z = 0

we have
det(w1, . . . ,wd) = 0 = zi detC(z).

We have shown that
∀i detC(z).zi = 0

and therefore
detC(z).1B = detC(z) = 0.

Since detC(z) is a monic polynomial in z with coefficients in A, we are done.
□

Lemma III.1.1. Suppose A ⊂ B ⊂ R and assume that B is an f.t. A-module and R an f.t. B-
module. Then R is an f.t. A-module.

Proof. Let y1, . . . , yd ∈ B, z1, . . . , ze ∈ R such that

B = Ay1 + · · ·+Ayd,

R = Bz1 + · · ·+Bze.

Then

R =

d∑
i=1

e∑
j=1

Ayizj .

□

Proposition III.1.2. The set OR(A) ⊂ R of A-integral elements in R is a subring of R con-
taining A.

Proof. It is clear that A ⊂ OR(A) (a is a root of X − a).
If A[z] and A[z′] are f.t. then A[z][z′] ∼= A[z, z′] is f.t and contains z + z′ and z.z′. Indeed z′

is integral over A and, in particular, over A[z]. Therefore, Lemma III.1.1 implies that A[z, z′] is
f.t. over A. This implies that OR(A) is closed under multiplication and addition. □

Definition III.1. The ring OR(A) is the integral closure of A in R. If OR(A) = R, i.e., if
every element of R is integral over A, one saysthat R is integral over A or that the extension R/A
is integral.

Proposition III.1.3. If B/A is integral and C/B is integral, then C/A is integral.

Proof. Exercise. □

Definition III.2. If A is a domain and Q = Frac(A) is the field of fractions of A, then the
integral closure of A is the integral closure of A in Q. The ring A is integrally closed if it is equal
to its integral closure.
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We have the following consequence from the previous proposition:

Corollary III.1.4. The integral closure of a domain A is itself integrally closed.

Remark III.2. If A ⊂ B is a domain and B/A is integral, then A is a field if and only if B is a
field. Indeed, let z ∈ B − {0},

zd + · · ·+ a1z + a0 = 0

and assume without loss of generality that a0 ̸= 0. If A is a field, then a0 is inveritble in B and thus

1 = −a−1
0 (zd−1 + · · ·+ a1)z

implies that z is invertible in B.
On the other hand, if B is a field and z ∈ A \ {0}, then the assumption that z−1 ∈ B is integral

over A implies that we can find ad−1, . . . , a0 ∈ A such that

z−d = −ad−1z
−(d−1) − · · · − a0.

Multiplying both sides by zd−1 shows that z−1 ∈ A.

Remark III.3. When A is a field, integrality is equivalent to algebraicity.

Proposition III.1.5. If A is a PID, then A is integrally closed.

Proof. Let z ∈ OQ(A), i.e., suppose that there are a0, . . . , ad−1 ∈ A such that:

zd + · · ·+ a1z + a0 = 0.

We may assume without loss of generality that a0 ̸= 0. Write z = a/b with a, b ∈ A coprime. We
have

ad + · · ·+ a1ab
d−1 + a0b

d = 0.

Therefore

ad = −b(ad−1a
d−1 + · · ·+ a1ab

d−1 + a0b
d−1)

so that b divides ad. As a and b are coprime, it follows that b is a unit and therefore z = a/b ∈ A. □

III.2. Dedekind rings

We will be interested mostly in the integral closure of Z in a number field K|Q. As it will turn
out, the integral closure OK = OK(Z), called the ring of integers in K, will not be a PID and
not even a UFD. However, an important property of Z is preserved when passing to the integral
closure OK , namely the unique factorization of ideals into prime ideals; cf. §A.1.2 for a recollection
of this in the case of PIDs. Because of the importance of this inheritence, we will discuss it in
somewhat greater detail. More precisely, we introduce a more general class of rings for which unique
prime factorisation of ideals is true.

Definition III.3. A ring A is Dedekind if

(1) A is a domain,
(2) A is integrally closed,
(3) A is noetherian.
(4) every non-zero prime ideal is maximal.

Remark III.4. We refer the reader to §A.1.1 for a recollection of the definition and basic
properties of noetherian rings and modules.

Example III.1. A PID A is a Dedekind ring: this is a domain by definition; any prime ideal is
maximal; any ideal is generated by one element so A is noetherian and we have seen in the previous
section that A is integrally closed.

The two key results about Dedekind rings in this course are the following.
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III.2.1. Factorisation of ideals. The first property is a generalisation to the unique factori-
sation property of ideals in PIDs. In what follows, given a ring A, we denote by IA the set of
non-zero ideals in A.

Theorem III.2. Let A be a Dedekind ring. Every ideal a ∈ IA factors uniquely as a product of
non-zero prime ideals: there exists a unique function

v•(a) :
Spec(A) 7→ N

p 7→ vp(a)

such that

– v{0}(a) = 0,
– for a.e. p, vp(a) = 0, and
– one has the following factorisation

a =
∏
p

pvp(a),

where p0 = A for any p ∈ Spec(A).

Definition III.4. Given an ideal a ∈ IA and a non-zero prime p ∈ Spec(A), the integer

vp(a)

is called the valuation of a at the prime p or the p-adic valuation of a. This is the largest integer v
such that pv|a. For the zero ideal we set

vp({0}) = +∞.

Remark III.5. Since A is a domain the zero ideal {0} = 0.A is a prime but of course does not
contain any non-zero ideal: this is why we have set v{0}(a) = 0. Usually we will use p is denote a
non-zero prime ideal.

We deduce from the existence and unicity of the factorisation the following result regarding
arithmetics of ideals in Dedekind rings.

Corollary III.2.1. Let A a Dedekind ring and a, b ⊂ A two ideals (possibly 0). Then

a|b⇐⇒ ∀p, vp(a) ⩽ vp(b).

a.b =
∏
p

pvp(a)+vp(b)

a ∩ b = largest ideal contained in a and b =: [a, b] =
∏
p

pmax(vp(a),vp(b))

a+ b = smallest ideal containing both a and b =: (a, b) =
∏
p

pmin(vp(a),vp(b))

and
(a, b).[a, b] = a.b.

In other terms, for any prime ideal p one has

vp(a.b) = vp(a) + vp(b),

vp(a ∩ b) = vp
(
[a, b]

)
= max

{
vp(a), vp(b)

}
,

vp(a+ b) = vp
(
(a, b)

)
= min

{
vp(a), vp(b)

}
.

In particular, two ideals a, b in a Dedekind ring are coprime (that is a+ b = A) if and only if their
valuation functions

v•(a) : p 7→ vp(a), v•(b) : p 7→ vp(b)

have disjoint supports:
(a, b) = A ⇐⇒ ∀p vp(a).vp(b) = 0.
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III.2.2. Stability. The second property is the stability of the class of Dedekind rings under
integral closure in a separable extension.

Theorem III.3. Let A be a Dedekind ring with field of fractions Q and suppose that K/Q is a
finite separable extension, then OK(A) is an A-module of finite type and a Dedekind ring.

III.2.3. The three key examples of Dedekind rings. The cases of main interest to us are
the following.

– Suppose A = Z, Q = Q, and K/Q is a finite (therefore algebraic and necessarily separable)
extension of Q (contained in C). The integral closure of Z in K is called the ring of integers
of K and is denoted

OK = {z ∈ K : ∃P ∈ Z[X] monic such that P (z) = 0}.

– Suppose A = C[X], Q = C(X), and K/C(X) is a finite (therefore algebraic and necessarily

separable) extension of Q contained in some algebraic closure C(X). For instance, suppose

that K = Q(Y ) where Y is a solution in C(X) of the polynomial equation

Eq(X,Y ) = 0

for a polynomial Eq ∈ C[U, V ] in two variables. Then the set of solutions of the equation

C : Eq(x, y) = 0, (x, y) ∈ C2

defines a complex algebraic affine curve with an algebraic map to the affine line

(x, y) ∈ C(C) 7→ x ∈ C

and the field K is the field of (algebraic) functions on C. To this curve corresponds a

projective algebraic curve C(C) with an algebraic map

x : C(C) 7→ P1(C) = C ∪ {∞}

and the integral closure

OK = {F ∈ K : ∃P ∈ C[X][Z] monic such that P (F ) = 0}

corresponds to the algebraic functions on C(C) which are regular outside the preim-
age x−1(∞).

Alternatively (and equivalently), to C is associated a Riemann surface C(C) with a map
x to the projective line (the Riemann sphere) and OK corresponds to the meromorphic

functions on C(C) which are holomorphic outside the preimage x−1(∞).
– Suppose A = Fp[X], Q = Fp(X), and K/Fp(X) is a finite (therefore algebraic) and separa-

ble (this is not always the case) extension of Q contained in some algebraic closure Fp(X).
We denote the integral closure by OK :

OK = {F ∈ K : ∃P ∈ Fq[X][Z] monic such that P (F ) = 0}.

This situation corresponds to that of an algebraic curve C(Fp) defined over the finite field Fp
by some equation, for instance

Eq(x, y) = 0, Eq(U, V ) ∈ Fp[U, V ],

with a map to the projective line P1(Fp). The ring OK corresponds to those algebraic

functions on C(Fp) defined over Fp which are regular outside the preimage x−1(∞).

Remark III.6. The fact that in all three cases A is a PID provides additional structures on the
rings OK by comparison with the general theory.
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III.3. Factorisation into primes

In this section we will prove Theorem III.2. We start with some preparations.

Lemma III.3.1 (Gauss’ Lemma for ideals). Let A be a domain and p be a prime ideal. Let a, b
be ideals such that p|a.b then either p|a or p|b.

Proof. Suppose that a ̸⊂ p, we will prove that b ⊂ p. We fix an element a ∈ a − p, which
exists by assumption. Let b ∈ b; since a.b ⊂ p we have a.b ∈ p and, as A/p is a domain, we either
have a ∈ p or b ∈ p. Since a ̸∈ p, we have b ∈ p. As b ∈ b was arbitrary, it follows that p|b. □

Lemma III.3.2. Let A be a noetherian ring and a be a non-zero ideal, then a contains a product
of non-zero prime ideals.

Proof. Consider the set of all non-zero ideals a ⊂ A which do not contain any product of
non-zero prime ideals. Since A is noetherian this set contains a maximal element a which is not
prime. Therefore there exist x, y ̸∈ a such that x.y ∈ a. Consider the ideals

Ax+ a, Ay + a.

As they are strictly greater than a, they contain products of non-zero prime ideals

p1. · · · pr ⊂ Ax+ a, q1. · · · qs ⊂ Ay + a

and then

p1. · · · pr.q1. · · · qs ⊂ (Ax+ a)(Ax+ a) ⊂ Axy + a = a.

This is a contradiction. □

Definition III.5. Let A a domain and Q = Frac(A). A subset f ⊂ Q is a fractional (A-)ideal
if there is b ∈ A such that a = b.f is a non-zero ideal in A.

Remark III.7. Note that a fractional ideal in a Dedekind ring (more generally a noetherian
domain) is of finite type: if f ⊂ Q is a fractional ideal and b ∈ A− {0} such that a = b.f ⊂ A is an
ideal, then a is of finite type (because A is noetherian) and therefore f = b−1.a is of finite type.

The following lemma will prove useful later on.

Lemma III.3.3. Let A be a Dedekind ring, a a non-zero ideal in A, and x ∈ Frac(A). If xa ⊂ a,
then x ∈ A.

Proof. If xa ⊂ a, then also P (x)a ⊂ a for all P ∈ A[X]. Thus for any b ∈ a \ {0} we have

bA[x] ⊂ a ⊂ A.
Moreover, bA[x] is an ideal in A and, in particular, A[x] is a fractional ideal and therefore of finite
type. Thus x is integral over A. As A is integrally closed, it follows that x ∈ A. □

Proposition III.3.4. Let A be a Dedekind ring and p ⊂ A be a maximal/prime ideal. There
exists a fractional ideal p−1 ⊂ Frac(A) such that

p.p−1 = A.

Moreover, we have A ⫋ p−1.

Proof. Let

p−1 = {x ∈ Q : x.p ⊂ A}.
We will show that p.p−1 = A.

By definition, p−1 is an A-module containing A and p.p−1 ⊂ A. Moreover for any b ∈ p− {0},
we have p−1.b ⊂ A and therefore p−1 is a fractional ideal.

We have A ⊂ p−1 and hence

p ⊂ p.p−1 ⊂ A.
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Since p is maximal, this implies that either

p.p−1 = p or p.p−1 = A.

Suppose p.p−1 = p. For x ∈ p−1, we have x.p ⊂ p and therefore x ∈ A by Lemma III.3.3. As x was
arbitrary, this implies that p−1 ⊂ A. Therefore p−1 = A. We will derive a contradiction.

Let a ∈ p− {0}. By Lemma III.3.2, there exists r ⩾ 1 and r prime ideals pi, i = 1, · · · , r, such
that

p1. · · · .pr ⊂ A.a ⊂ p;

let us also assume that r is minimal with this property.
Since

p1. · · · .pr ⊂ p,

Gauss’ lemma for ideals implies that there is i (say i = 1) such that

p1 ⊂ p.

Since p1 is maximal, we have p1 = p. Setting b = p2. · · · .pr, we therefore have

p.b ⊂ A.a.
By the minimality of r, b is not contained in A.a. Thus we fix b ∈ b such that b ̸∈ A.a. We have

b.p ⊂ A.a
so that (multiply both sides by a−1)

b.a−1p ⊂ A,
hence b.a−1 ∈ p−1 = A. Multiplying both sides by a, we obtain that b ∈ A.a, a contradiction. □

III.3.1. Proof of Theorem III.2. We can now prove Theorem III.2. Let a ̸= A be a non-zero
proper ideal which is not a product of prime ideals and which is maximal for this property. Let p
be a maximal ideal containing a. We have a strict inclusion

a ⊂ p

and if we multiply both sides by the fractional ideal p−1 we obtain

p−1a ⊂ A
and since A ⊂ p−1 we also have a ⊂ p−1a. The inclusion

a ⊂ p−1a

is strict: suppose that

a = p−1a,

then for any x ∈ p−1 we have x.a ⊂ a and thus x ∈ A by Lemma III.3.3. In particular, we find
that p−1 ⊂ A, which is in contradiction to Proposition III.3.4.

By the maximality of a, the ideal p−1a which is strictly bigger than a is a product of prime ideals
and a = p.p−1a is the product of p and of this product of prime ideals, which is a contradiction.

Let us show that this decomposition is unique. Suppose that we have

a =
∏
p

pvp(a) =
∏
p

pv
′
p(a).

Suppose that q ∈ Spec(A) is such that vq(a) > v′q(q). Multiplying both sides by (q−1)v
′
q(a), we

obtain

qvq(a)−v
′
q(a)

∏
p̸=q

pvp(a) =
∏
p̸=q

pv
′
p(a).

Therefore q|
∏

p̸=q p
v′p(a) and by Gauss’ Lemma q contains one of the p ̸= q, which is not possible

since the p are maximal and distinct from q. □
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III.3.2. Extension to fractional ideals. Let us recall that a fractional ideal f ⊂ Q is a subset
of the shape f = b−1a, where a is a non-zero ideal in A and b ∈ A− {0}.

Let f, f′ be two fractional ideals. We define their sum to be the A-module generated by sums of
elements from f and f′,

f+ f′ = {f + f ′ : f ∈ f, f ′ ∈ f′}
and their product f.f′ to be the A-module generated by their products,

f.f′ =
(
{f.f ′ : f ∈ f, f ′ ∈ f′}

)
.

The A-modules f+ f′, f.f′ and f∩ f′ are all fractional ideals: if f = b−1.a, f′ = b′
−1
.a′ for b, b′ ∈ A−{0}

and a, a′ ∈ IA, then

bb′(f+ f′) = b′.a+ b.a′, (bb′).f.f′ = a.a′, bb′.f ∩ f′ = b′.a ∩ b.a′.

Let f = b−1.a a fractional ideal and consider the factorisations

(b) = b.A =
∏
p

pvp(b), a =
∏
p

pvp(a);

we have therefore

b.f = (b).f =
∏
p

pvp(b).f =
∏
p

pvp(a)

and multiplying by powers of the fractional ideals p−1, we see that

f =
∏
p

pvp(a)−vp(b).

We can deduce the following

Theorem III.4. Let A be a Dedekind ring with field of fractions Q. Every fractional ideal
f factors as a product of primes ideals (possibly with negative exponents): there exists a unique
function

v•(f) :
Spec(A) 7→ Z

p 7→ vp(f)

such that

– v{0}(f) = 0
– for a.e. p, vp(f) = 0, and
– (setting p0 = A) one has the following factorisation

f =
∏
p

pvp(f).

– For

f =
∏
p

pvp(f), f′ =
∏
p

pvp(f
′)

two fractional ideals, we have

f.f′ =
∏
p

pvp(f)+vp(f
′).

– If we define the fractional ideal

f−1 :=
∏
p

p−vp(f)

we have

f.f−1 = A.
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– In addition we have

f′ ⊂ f ⇐⇒ f|f′ ⇐⇒ ∀p vp(f) ⩽ vp(f
′).

f+ f′ =: (f, f′) =
∏
p

pmin(vp(f),vp(f
′)),

f ∩ f′ =: [f, f′] =
∏
p

pmax(vp(f),vp(f
′))

(f, f′).[f, f′] = f.f′.

Definition III.6. Given f a non-zero fractional ideal, the exponent vp(f) is called the p-adic
valuation of f. This is the largest integer v such that pv|f (i.e. f ⊂ pv). For f = (0) we set
vp({0}) = +∞.

III.3.3. The ideal class group. From the above discussion we have the following

Corollary III.3.1. Let A be a Dedekind domain with field of fractions Q. The set FA of
fractional ideals in Q equipped with the multiplication of fractional ideals forms a commutative group
whose identity element is the ideal A. Moreover (FA, .) is isomorphic to the free commutative group
(of formal finite integral linear combinations) generated by the non-zero prime ideals

(FA, .) ≃ Div(Spec(A)) =

{∑
p

vp.p : vp ∈ Z, vp = 0 for a.e. p

}
via the map

f =
∏
p

pvp(f) 7→
∑
p

vp(f).p.

Definition III.7. A fractional ideal is principal if it is of the form (f) = f.A for f ∈ Q×. We
denote by

PFA ⊂ FA
the set of principal fractional ideals.

Observe that the product of two principal ideals is principal. One has

Lemma III.3.5. The set of principal fractional ideals PFA forms a subgroup of FA under mul-
tiplication and the map

(•) : Q
× 7→ PFA
f 7→ (f) = f.A

is a group morphism whose kernel is the group of units

ker((•)) = A×.

Definition III.8. The ideal class group of A is the quotient

Cl(A) := FA/PFA.

Observe that Cl(A) is trivial if and only if A is a PID and that, in general, Cl(A) is generated
by the classes of prime ideals in FA.

III.4. Stability of the Dedekind property

In this section we prove Theorem III.3 which we recall is the following.

Theorem. Let A be a Dedekind ring with field of fractions Q and suppose that K/Q is a finite
separable extension, then OK(A) is an A-module of finite type and a Dedekind ring.
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For what follows, we will assume that we are given a fixed algebraic closure Q of Q and an
extension Q ⊂ K ⊂ Q as in Theorem III.3. It is clear that OK(A) is a domain and integrally closed.
We thus have to show that every ideal of OK(A) is of finite type and that every prime ideal is
maximal. For this we will need the separability hypothesis.

Let us recall the following characterization of separability for finite extensions.

Theorem. A finite field extension K/Q is separable if and only if one of the following equivalent
conditions is satisfied.

– For any z ∈ K, the linear map [×z] : K 7→ K is diagonalisable (over Q).
– For any z ∈ K, its minimal polynomial PQ,min,z(X) has simple roots.
– The trace bilinear form

⟨·, ·⟩K/Q :
K ×K 7→ Q
(z, z′) 7→ trK/Q(z.z

′) = tr
(
[×z.z′]K/Q

)
is non-degenerate.

– Let Q be an algebraic closure of Q. Then |HomQ(K,Q)| = [K : Q].

Let us also recall that if [K : Q] is coprime to car(Q) or if Q is a finite field then K/Q is always
separable.

Let d = [K : Q] be the degree of the field extension.

Lemma III.4.1. One has

OK(A) = {z ∈ K : PK/Q,char,z(X) ∈ A[X]}.

Proof. As PK/Q,char,z is monic, it suffices to show that PK/Q,char,z ∈ A[X] for any z ∈ OK(A).
As of Proposition A.3.3 and Theorem A.5, we have

PK/Q,char,z(X) = PQ,min,z(X)[K : Q[z]].

Thus it suffices to show that for z ∈ OK(A) we have PQ,min,z ∈ A[Z]. Let zi ∈ Q, i = 1, . . . , r
denote the pairwise distinct roots of PQ,min,z. Suppose that P ∈ A[X] is a monic polynomial such
that P (z) = 0. Then PQ,min,z|P and hence P (zi) = 0 for all the roots zi. In particular, all the zi
are integral over A. Moreover, the coefficients of

PQ,min,z(X) =
∏
i

(X − zi)

are sums of products of the zi and therefore contained in A[z1, . . . , zr] ∩Q. Note that A[z1, . . . , zr]
is of finite type over A by integrality of the zi and thus all the coefficients of PQ,min,z are integral
over A. As A is integrally closed, it follows that PQ,min,z ∈ A[X]. □

Lemma III.4.2. For any z ∈ K, there exists b ∈ A such that b.z ∈ OK(A).

Proof. Let
P (X) = Xd + ad−1X

d−1 + · · ·+ a0, ai ∈ K, a0 ̸= 0

be an annihilating polynomial of z and let b ∈ A− {0} be such that bai ∈ A. We have

bdP (z) = 0 = (bz)d + ad−1b(bz)
d−1 + · · ·+ bda0

and therefore bz ∈ OK(A). □

Proposition III.4.3. The ring OK(A) is an A-module of finite type. If A is a PID, then B is
free of rank d = [K : Q].

Proof. Let z1, · · · zd be a Q-basis of K. There is b ∈ A− {0} such that bz1, · · · , bzd ∈ OK(A).
Then bz1, · · · , bzd is a Q-basis, so we may assume without loss of generality that z1, · · · , zd ∈ OK(A)
to begin with. In particular, OK(A) contains the A-module Az1 + · · ·+Azd, which is of finite type.
Since trK/Q is non-degenerate, there is a dual basis (z∗1 , · · · , z∗d) ∈ Kd: the unique basis such that

trK/Q(ziz
∗
j ) = δij .
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We claim that

OK(A) ⊂ Az∗1 + · · ·+Az∗d .

Indeed for any z ∈ OK(A) we have

z =
∑
i

αiz
∗
i

and trK/Q(zzi) = αi ∈ A. For the latter inclusion, note that zzi ∈ OK(A) and hence its trace
belongs to A. In particular, OK(A) is a sub-module of an f.t. A-module, so it is f.t. Moreover, if A
is a PID, OK(A) contains a free submodule of rank d and is contained in such a free rank d module,
so it is free of rank d. □

Corollary III.4.1. The ring OK(A) is noetherian. If A is a PID, every non-zero ideal in
OK(A) is a free A-module of rank d = [K : Q].

Proof. Since OK(A) is an A-module of f.t. and A is noetherian, the same holds for any OK(A)-
ideal and, in particular, any OK(A)-ideal is of f.t. over OK(A). Moreover, if A is a PID, any non-zero
ideal b of OK(A) satisfies for any b ∈ b− {0} that

b.OK(A) ⊂ b ⊂ OK(A),

so b is free of rank d. □

Corollary III.4.2. Suppose that K/Q is a number field and let OK be the maximal order in
K; cf. Theorem II.1. Then OK = OK(Z).

Proof. Exercise.

Lemma III.4.4. Every non-zero prime ideal of OK(A) is maximal.

Proof. Let P ⊂ OK(A) be a non-zero prime ideal, then

kP := OK(A)/P

is a domain. Let p = A ∩P, and let

kp := A/p.

We have the canonical injection

A/p ↪→ OK(A)/P

which implies that kp is a domain (since OK(A)/P is a domain).
In order to see that p ̸= 0, let z ∈ P non-zero. As z is integral over A, there is P (X) =

Xr + ar−1X
r−1 + · · ·+ a0 ∈ A[X] satisfying a0 ̸= 0 and P (z) = 0. Then

0 ̸= a0 = −zr − ar−1z
r − · · · − a1z ∈ p.

As A is Dedekind, it follows that kp = A/p is a field.
We can now show that P ⊂ OK(A) is a maximal ideal, i.e., OK(A)/P is a field. As of Proposi-

tion III.4.3, we know that OK(A) is of finite type over A and, in particular, OK(A)/P is kp-algebra
of finite dimension which is also a domain. We claim that any such algebra is a field. To this end,
let z ∈ OK(A)/P non-zero. Then kp[z] ⊆ OK(A) is a subspace and, hence, of finite dimension. In
particular, there exist a0, . . . , ad ∈ kp not all zero such that

0 =

d∑
j=0

ajz
j .

Let j∗ minimal such that aj∗ ̸= 0, then

0 =

d∑
j=j∗

ajz
j = zj∗

d∑
j=j∗

ajz
j−j∗
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and, since OK(A)/P is a domain, we have

0 =

d∑
j=j∗

ajz
j−j∗ .

In particular, we obtain

1 =

−a−1
j∗

d∑
j=j∗+1

ajz
j−j∗−1

 z.

Thus z is a unit and it follows that OK(A)/P is a field.

III.5. Dedekind rings: relative theory

For what follows, we let A be a Dedekind ring, Q = Frac(A) its field of fractions. Let K/Q a
finite separable extension and we denote by B = OK(A) the integral closure of A in K. We have
seen that B is a Dedekind ring.

We denote by Spec(A) and Spec(B) the set of prime ideals of A and B respectively.
In what follows, given any subset S ⊂ B, we denote by S.B ⊂ B the ideal generated by S.

Using this notation, the set of ideals of A and B are related by the following maps:

• ∩A : b 7→ b ∩A, •.B : a 7→ a.B.

The ideal b ∩ A is sometimes called the contraction of b and the ideal a.B is called the extension
of a. The maps are correspondingly called the contraction and the extension map.

We will examine these two maps and for by factorisation of ideals it is sufficient to focus on the
sets of (non-zero) prime ideals in Spec(A) and Spec(B).

We have more or less already seen the following

Lemma III.5.1. Given non-zero P ∈ Spec(B), the intersection p = P ∩ A is a non-zero prime
ideal in A.

Proof. We have an injective map

A/p ↪→ B/P

and therefore A/p is a domain so p is prime. In order to see that p is non-zero, note that for any
z ∈ P − {0}, the constant term of the minimal polynomial of z (which is non-zero) is contained in
p. □

We have therefore a canonical projection (or contraction) map

• ∩A :
Spec(B) 7→ Spec(A)

P 7→ P ∩A .

Proposition III.5.2. The map •∩A is surjective and for any non-zero p ∈ Spec(A) the preimage
of p, i.e. the set of P ∈ Spec(B) such that p = P∩A, is exactly the set of prime ideals appearing in
the prime decomposition of the B-ideal p.B:

P ∩A = p ⇐⇒ P|p.B ⇐⇒ vP(p.B) > 0.

Proof. If p is the zero-ideal, then p is the image of the zero ideal under the projection map.
Let now p ∈ Spec(A) non-zero. By maximality of non-zero prime ideals in A, we know that for

any P ∈ Spec(B) we have

p = P ∩A ⇐⇒ p ⊂ P.

Now we note that by definition of divisibility

p ⊂ P ⇐⇒ p.B ⊂ P ⇐⇒ P|p.B ⇐⇒ vP(p.B) > 0.

This completes the description of the preimage of p. It remains to prove surjectivity.
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As B is a Dedekind domain, the unique factorization of ideals implies that it suffices to show
that p.B is proper (p.B ̸= B): any prime P dividing p.B will contain p.

By uniqueness of prime factorization in A there is some z ∈ p− p2 and A.z = pa for some ideal
a ⊂ A coprime to p. Let a ∈ a− p.

If p.B = B, then a.B = ap.B ⊂ A.z.B = B.z and, thus, there is b ∈ B such that a = b.z.
As a, z ∈ A− {0}, it follows that b ∈ B ∩Q = A and thus a ∈ A.z ⊂ p, which is absurd.

□

Remark III.8. The main step in the proof of surjectivity was to show that p.B ̸= B. A
more general argument, which does not rely on A being integrally closed, follows the proof of the
Nakayama lemma; cf. the proof of Proposition III.1. Assuming for the sake of contradiction that
B = p.B, we fix a set of generators z1, . . . , zd of B as an A-module and find (aij)

d
i,j=1 ∈ pd×d such

that

∀i
d∑
j=1

(δij − aij).zj = 0.

Therefore there is a matrixM ∈ Ad×d such that det(M).b = 0 for all b ∈ B and det(M) ≡ 1 (mod p),
which is absurd since B is a domain.

Definition III.9. Given a non-zero p ∈ Spec(A) , we denote by

Specp(B) = {P ∈ Spec(B) : P|p.B} = {P : vP(p.B) > 0}

the fiber of the projection map.
A prime ideal P ∈ Specp(B) is said to “lie above” p or to “divide” p and we write simply P|p.

We have (by definition) for P ∈ Specp(B)

p = P ∩A.

We will need the following generalisation later

Lemma III.5.3. Let p ∈ Spec(A) be a non-zero prime ideal and P ∈ Specp(B). For any 1 ⩽ e ⩽
vP(p.B), we have

p = Pe ∩A.

Proof. Exercise.
Notice that Specp(B) is finite since this is the set of primes dividing p.B. We will see that the

cardinality is at most [K : Q].
Let us first introduce some further terminology.

Ramification index.

Definition III.10. Given a non-zero p ∈ Spec(A), the exponent vP(p.B) in the decomposition

p.B =
∏
P|p

PvP(p.B)

is called the ramification index of P (at p). It is denoted

vP(p.B) =: eP/p,

so that

p.B =
∏
P|p

PeP/p .
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Residue fields and inertia degree.

Definition III.11. Given a non-zero p ∈ Spec(A),the quotient A/p is a field called the residue
field of A at p; it is denoted kp.

Given P ∈ Specp(B) non-zero, let kP be the residue field of B at P. Since P ∩ A = p we have
an injective map

kp = A/p ↪→ kP = B/P

which makes kP an extension of kp. Moreover, since B is an A-module of f.t., this extension is finite.

Definition III.12. The degree of the extension kp ↪→ kP is denoted

[kP : kp] = fP/p.

It is called the inertia degree of P (at p).

Notation. If the base ring A ⊂ Q is understood (so that p = A ∩P) we will simply write

fP/p = fP, P/p = eP.

III.5.1. The degree formula. Given p ∈ Spec(A) a non-zero prime ideal, the quotient

Kp := B/p.B

is a kp-algebra of finite dimension. We will study the structure of this algebra in greater detail.

Theorem III.5. We have

dimkp(Kp) = [K : Q] =
∑
P|p

eP/pfP/p.

In particular,

|Specp(B)| ⩽ [K : Q].

Lemma III.5.4. If A is a PID, then B is a free A-module of rank d = [K : Q] and

[K : Q] = dimkp(Kp).

Proof. Indeed, let a ∈ A such that p = (a) and let (z1, . . . , zd) ∈ Bd be an A-basis of B. We
claim that the images of z1, . . . , zd mod p.B are linearly independent over kp. Note that p.B is a
free A-module with A-basis (az1, . . . , azd) ∈ Bd.

Suppose that a1, . . . , ad ∈ A are such that

a1z1 + · · ·+ adzd ∈ p.B,

i.e., there are r1, . . . , rd ∈ A such that

(a1 − ar1)z1 + · · ·+ (ad − ard)zd = 0.

As by assumption (z1, . . . , zd) is linearly independent over A, it follows that ai ∈ p for all 1 ⩽ i ⩽ d
and thus the images of the zi mod p.B are linearly independent over kp. □

We will establish the formula

[K : Q] = dimkp(Kp)

in full generality later (as we have already seen, this is true if A is a PID; we will reduce to that
case). For now we focus on the right hand side of the equality. We start with the following Lemma.

Lemma III.5.5. For any e ⩾ 0, the A-module structure on the quotient Pe/Pe+1 admits a
compatible kp-module structure and as such, it has kp-dimension fP/p.
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Remark III.9. LetM be an abelian group, let π : R→ Q be a ring homomorphism, and suppose
that there we are given homomorphisms ϱR : R → End(M) and ϱQ : Q → End(Q). The induced
module structures are compatible (with π) if the diagram

R

ϱR ##

π // Q

ϱQ{{
End(M)

commutes. Recall that for a ring R and an R-module M , the set

Ann(M) = {r ∈ R : ∀m ∈M rm = 0}
is an ideal, called the annihilator. Moreover, for any ideal I ◁R the module M admits a compatible
(for the canonical projection) R/I-module structure if and only if I ⊆ Ann(M).

Proof of Lemma III.5.5. Since Pe+1 ⊆ Pe is a B-submodule, the quotient is a B-module
and, in particular, an A-module. Clearly, we have that P ⊆ Ann(Pe/Pe+1) and, therefore, both
the A- and B-module structures admit compatible kp- and kP-structures.

Since dimkp(kP) = fP|p, it is sufficient to show that dimkP(Pe/Pe+1) = 1. For this we observe

that there is a bijection between the kP-subspaces of Pe/Pe+1 and the B-submodules of Pe con-
taining Pe+1 or in other terms the B-ideals satisfying Pe ⊂ a ⊂ Pe+1. But the only such ideals are
either Pe or Pe+1. □

Proof of the second equality in Theorem III.5. First we observe that for P and P′

distinct and above p the ideals PeP/p and P′eP′/p are coprime so by the Chinese reminder theorem,
we have an isomorphism of kp-algebras:

B/p.B ≃
∏
P|p

B/PeP/p .

In particular we have

dimkp(B/p.B) =
∑
P|p

dimkp(B/P
eP/p).

We now prove that
dimkp(B/P

eP/p) = eP/pfP/p
If eP|p = 1, this is clear. Suppose now that 1 ⩽ e < eP|p. Then we have an exact sequence

of kp-vector spaces

0 // Pe/Pe+1 // B/Pe+1 // B/Pe // 0.

so by recurrence the conclusion follows from Lemma III.5.5 below. □

III.5.2. Localization. As mentioned above, if A is a PID, then

dimkp Kp = [K : Q] = d (III.1)

and together with the previous discussion, this establishes the degree formula when A is a PID.
We will prove that (III.1) is true in general:

Theorem III.6. Under the above assumptions (A is a Dedekind ring and B is the integral
closure of a finite separable extension of Q), we have for any non-zero p ∈ Spec(A),

dimkp B/p.B = [K : Q] = d

and hence ∑
P|p

eP/pfP/p = [K : Q].

For this we need the localization technique.
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III.5.2.1. Localization. Let A be a general ring and p ∈ Spec(A) a prime ideal. By Gauss lemma,
the set Sp = A− p is multiplicative:

∀x, y ∈ Sp, x.y ∈ Sp.

Definition III.13. The localization of A at p is the set of equivalence classes

{(a, q) ∈ A× Sp}/ ∼, (a, q) ∼ (a′, q′) ⇐⇒ ∃s ∈ Sp (aq′ − a′q)s = 0.

The equivalence class of (a, q) is denoted as a fraction a
q . The set Ap has a ring structure for the

usual addition and multiplication of fractions

a

q
+
a′

q′
=
aq′ + a′q

qq′
,
a

q
.
a′

q′
=
aa′

qq′
.

Remark III.10. The map

fp :
A 7→ Ap

a 7→ a
1

is a ring homomorphism which, in general, need not be injective. However, if A is a domain, then
fp is injective and Ap is a subring of the field of fractions Q:

Ap =

{
a

q
: a ∈ A, q ∈ A− p

}
⊂ Q = Frac(A)

(the subring formed of fractions having at least one denominator not belonging to p).

Proposition III.5.6. If A is a Dedekind ring, then Ap is a PID and mp = p.Ap is the unique
(proper and) maximal ideal of Ap. Moreover any ideal of Ap is of the shape mkp for some k ⩾ 0.

Proof. Exercise. □

Definition III.14. A generator of the ideal p.Ap is called a uniformizer at p. It is usually
denoted π or πp.

We compare the residue fields

kp = A/p and kmp
:= Ap/mp.

Proposition III.5.7. The injection A ↪→ Ap induces an isomorphism

kp ≃ kmp
.

Proof. Exercise. □
Let

Bp =

{
b

q
: b ∈ B, q ∈ A− p

}
⊂ K.

The set Bp = B.Ap is a ring extension of Ap. In particular, Bp ⊆ K is a subring containing B.

Proposition III.5.8. The integral closure of Ap in K is Bp.
In particular (since Ap is a PID), Bp is a free module Ap-module of rank [K : Q] and Bp/p.Bp

is a kmp
= kp-algebra of dimension [K : Q].

Proof. Consider b/q ∈ Bp. We have

bn + an−1b
n−1 + · · ·+ a0 = 0, ai ∈ A

and
(b/q)n + an−1q

−1(b/q)n−1 + · · ·+ a0q
−n = 0

but an−1q
−1, · · · , a0q−n belong to Ap. This shows that Bp is contained in the integral closure of Ap.

Conversely suppose that x ∈ K is Ap-integral, i.e., there exists

n ⩾ 1 and
ai
qi
∈ Ap, ai ∈ A, qi ∈ A− p, i = 1, · · ·n
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such that
xn +

an−1

qn−1
xn−1 + · · ·+ a0

q0
= 0.

Let q := q0. · · · .qn−1 ∈ A − p. Clearing denominators, one obtains that b = q.x is A-integral and
therefore belongs to B. Thus b/q belongs to Bp. □

Proposition III.5.9. We have an isomorphism of kp-algebras

B/p.B ≃ Bp/p.Bp.

In particular
dimkp(B/p.B) = [K : Q].

Proof. We first show that B ∩ p.Bp = p.B. The inclusion ⊃ is clear. To prove ⊂, we note that

p.Bp =

{
r

q
: r ∈ p.B, q ∈ A− p

}
and therefore, for b ∈ B, we have that b ∈ p.Bp if and only if there is q ∈ A− p such that q.b ∈ p.B.
In particular, for any such b ∈ B and for any P|p, we have q.b ∈ PeP/p and since q ̸∈ P we have
b ∈ PeP/p . Therefore

b ∈
⋂
P|p

PeP/p =
∏
P|p

PeP/p = p.B.

This proves ⊂.
The map B/p.B → Bp/p.Bp is therefore injective and it is surjective by the same argument as

in the proof of Proposition III.5.7. □
This last proposition concludes the proof of Theorem III.6 and hence of the degree formula.

III.5.3. p-adic valuation. Let A ⊂ Q be a Dedekind ring and p a prime. We define the p-adic
valuation at p as the function

vp :
Q− {0} 7→ Z

z 7→ vp(z) = vp(z.A)

and we set vp(0) = +∞. For any p > 1 we define the p-adic absolute value (in base p) as the function

| • | : q 7→ R⩾0

z 7→ |z| = p−vp(z)
.

This absolute value is multiplicative
|z.w| = |z|.|w|

and satisfies an enhanced version of the triangle inequality:

|z + w| ⩽ max(|z|, |w|)
with equality if |z| ≠ |w|. The p-adic distance is the function

d(•, •) : Q×Q 7→ R⩾0

(z, z′) 7→ d(z, z′) = |z − z′|.

This gives Q the structure of a metric space such that

BQ(0, 1) = {z ∈ Q : d(z, 0) = |z| ⩽ 1} = Ap

Bo,Q(0, 1) = {z ∈ Q : d(z, 0) = |z| < 1} = p.Ap.

A sequence (un)n⩾0 ∈ QN is Cauchy iff

un+1 − un → 0.

The completion of Q with respect to this absolute value (so that any Cauchy sequence is con-
verging) is called the p-adic completion of Q. This is a complete metric field such that the closed
unit ball is Ap and the open unit ball is p.Ap and such that the converging series

∑
n⩾0 un are the

series whose general term un converge to 0.
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III.6. Ramification

In this section we investigate the values of the ramification index eP/p. In particular we show
that

eP/p = 1

for all but finitely many p.

Definition III.15. Let k be a field. A k-algebra Bk is reduced if it does not contain any non-
trivial nilpotent element: i.e. an element x ∈ Bk − {0} such that xn = 0 for some n ⩾ 1.

Definition III.16. The prime p ∈ Spec(A) is ramified in K if B/p.B is not reduced. Otherwise
p is unramified in B.

Proposition III.6.1. A prime p is ramified in K iff eP/p > 1 for some P above p.

Proof. We have an isomorphism of kp = A/p-algebras.

B/p.B ≃
∏
P|p

B/PeP/p .

If eP/p = 1 for every P, B/p.B is a product of fields and therefore does not contain any
non-trivial nilpotent element: B/p.B is reduced and p is unramified.

On the other hand, if eP/p > 1 for some P above p, any element x ∈ P − P2 defines a class
modulo PeP/p satisfying

xeP/p−1 ̸= 0 (modPe
P/p) but x

e
P/p = 0 (modPe

P/p).

The algebra B/p.B is then not reduced. The prime p is ramified in B and one says that p is ramified
at P.

□

III.6.1. The discriminant ideal. Let us recall that a field extension K/Q of degree d is
separable if and only if

– The trace linear form trK/Q : K → Q is non-zero (hence onto) or equivalently,
– The trace bilinear form

⟨•, •⟩K/Q :
K ×K 7→ Q
(x, y) 7→ trK/Q(xy)

is non-degenerate or equivalently,
– For any Q-basis z⃗ = (z1, · · · , zd)

det(⟨zi, zj⟩K/Q)i,j⩽d) ̸= 0.

Definition III.17. Let A ⊂ Q ⊂ K be a Dedekind ring and B ⊂ K its integral closure in
a separable extension K/Q. The discriminant ideal is the ideal generated by the discriminants of
d-tuples in B:

DB/A = ⟨{discK/Q(z⃗) : z⃗ = (z1, · · · , zd) ∈ Bd}⟩ ⊂ A.

Observe that DB/A ⊂ A because for z⃗ = (z1, · · · , zd) ∈ Bd, the discriminant is a (multivariate)
polynomial evaluated at the points {trK/Q(zizj) : 1 ⩽ i, j ⩽ d}, which are coefficients of characteristic
polynomials of elements in K integral over A. Moreover, DB/A is a non-zero ideal: we have seen
that B contains a Q-basis of K, say z⃗ and, since K/Q is separable, the trace is non-degenerate and
therefore discK/Q(z1, · · · , zd) ̸= 0.

Our main goal in this section is the proof of the following

Theorem III.7 (Discriminant criterion of ramification). If p ∈ Spec(A) is ramified, then
p|DB/A. In particular the set of ramified primes is finite.
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III.6.1.1. The discriminant ideal for a PID. In this section we assume that A is a PID: for
instance A = Z or Fq[T ] or A is the localisation at a prime of a Dedekind ring (see above).

We recall that this implies that B (and any B-ideal) is a free A-module of rank d and the
discriminant ideal DB/A ⊂ A is principal.

Proposition III.6.2. For any A-basis (z1, · · · , zd) ∈ Bd of B, one has

DB/A = discK/Q(z1, · · · , zd).A.

Proof. Let (z1, · · · , zd) be an A-basis of B then

disc(z1, · · · , zd).A ⊂ DB/A.

Let (z′1, · · · , z′d) ∈ Bd be any other d-tuple. We have

z′i =

d∑
j=1

aijzj , aij ∈ A

and setting

M = (aij)i,j⩽d ∈Md(A)

we have

disc(z′1, · · · , z′d) = (detM)2disc(z1, · · · , zd)

and since detM ∈ A it follows that

disc(z′1, · · · , z′d) ∈ disc(z1, · · · , zd).A

and therefore

DB/A = disc(z1, · · · , zd).A.

□

Remark III.11. If (z1, · · · , zd), (z′1, · · · , z′d) ∈ Bd are A-bases of B, then the matrixM ∈Md(A)
is invertible and its inverse M−1 is also in Md(A), therefore

det(M) ∈ A×

and disc(z′1, · · · , z′d) and disc(z1, · · · , zd) differ by det(M)2, the square of a unit in A. In particular,
if A = Z, (Z×)2 = {1} and

disc(z′1, · · · , z′d) = disc(z1, · · · , zd),

therefore when A = Z the discriminant can be defined as the common value of the discriminant of
any basis.

For the proof we will need a few properties of the discriminant ideal.
III.6.1.2. Invariance under localisation.

Lemma III.6.3. Let p be a prime and Ap and Bp be the localisations of A and B at p. We have

DB/A,p = DBp/Ap

where DB/A,p is the localization of the discriminant ideal DB/A.

Proof. Exercise. □
The advantage of this lemma is that one can compute the discriminant ideal via localizations

at various primes and the main benefit of localizing is that Ap is a PID. This leads us to the next
section.
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III.6.1.3. Proof of Theorem III.7. Observe that for any prime p, the residual algebra Kp satisifes

Kp = B/p.B ≃ Bp/p.Bp.

So in order to determine whether p is ramified or not, it is sufficient to determine whether the
algebra Bp/p.Bp is reduced or not. We will use the trace criterion. Given z ∈ Bp we denote by

z = z (mod p.Bp) ∈ Bp/p.Bp

the image under the reduction modulo p.Bp-map.
Since Ap is a PID, Bp is free of rank d. Let (z1, · · · , zd) ∈ Bp be an Ap-basis. Then

(z1, · · · , zd) =
(
z1 (mod p.Bp), · · · , zd (mod p.Bp)

)
is a kp-basis of Kp; cf. the proof of Lemma III.5.4. For any z ∈ Bp we have

[×z]K/QBp ⊂ Bp, [×z]K/Q(p.Bp) ⊂ p.Bp.

In particular the matrix of [×z]K/Q in the basis (z1, · · · , zd) has coefficients in Ap. Moreover,
if z ∈ p.Bp, then [×z]K/Q(Bp) ⊂ p.Bp and the matrix of [×z]K/Q in the basis (z1, · · · , zd) has
coefficients in p.Ap = mp. It follows that the kp-linear map [×z]Kp/kp given by multiplication by z
in Kp is induced by the restriction to Bp of [×z]K/Q: for x = x (mod p.Bp) ∈ Kp we have

[×z]Kp/kp(x) = zx = zx = zx (mod p.Bp) = [×z]K/Q(x) (mod p.Bp)

and that the matrix of [×z]Kp/kp in the basis (z1, · · · , zd) is simply the reduction modulo mp of the
matrix of [×z]K/Q; in particular we have

trKp/kp(z) = trK/Q(z) (modmp)

and
discKp/kp(z1, · · · , zd) = discK/Q(z1, · · · , zd) (modmp).

Suppose that Kp/kp is non-reduced, then any non-zero nilpotent element in this algebra is
contained in the kernel of the dual map for the trace bilinear form ⟨•, •⟩Kp/kp : if [×z] is nilpotent
then for any z′, [×zz′] is also nilpotent and so

⟨z, z′⟩Kp/kp = trKp/kp(zz
′) = 0;

therefore the trace is degenerate and

discKp/kp(z1, · · · , zd) = 0kp = discK/Q(z1, · · · , zd) (modmp).

This implies that
p.Ap|DBp/Ap

= DB/A,p

(by Lemma III.6.3) and therefore that
p|DB/A.

□
For the converse we need a further assumption.

Hypothesis III.1. The residue fields kp for all p ∈ Spec(A) are perfect: any finite extension of
kp is separable.

Theorem III.8. Assume that Hypothesis III.1 holds. A prime p ∈ Spec(A) is ramified iff
p|DB/A.

Proof. We need to show that if p|DB/A then Kp/kp is not reduced. We have p.Ap|DBp/Ap

and therefore
DKp/kp = {0} ∈ kp,

so the trace form is degenerate on Kp/kp. Since

Kp/kp ≃
∏
P|p

BP/P
eP|p ,
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the discriminant is the product of the discriminants of the kp-algebras BP/P
eP and one of them

must be 0, say for P. If eP|p = 1, then BP/P
eP|p is the residue field kP and by Hypothesis III.1 is

a separable extension of kp. By the trace criterion for separability the discriminant is non zero; we
must therefore have eP|p > 1 and BP/P

eP|p is not reduced. □

III.7. The Dedekind recipe, I

The Dedekind recipe is a systematic method to compute prime decompositions.
We consider the usual setting: A ⊂ Q a Dedekind ring and B ⊂ K its integral closure in a

separable extension. Let DB/A ⊂ A be the discriminant ideal. Let z ∈ B be such that K = Q[z],
let Pz(X) ∈ A[X] be the minimal polynomial of z, and let

disc(z) = discK/Q(1, · · · , zd−1) ∈ A− {0}
be its discriminant. We have

DB/A|(disc(z)) ̸= 0.

Let p be a prime ideal. In many cases one can read the prime decomposition of p from the decom-
position of Pz (mod p) ∈ kp[X] into irreducible polynomials.

Theorem III.9. Assume that p is such that

vp(disc(z)) = vp(DB/A). (III.2)

We have the equality of localized rings and ideals

(disc(z))p = DB/A,p

and

Bp = Ap[z] ≃ Ap[X]/(Pz), (Pz) = Pz.Ap[X].

Set Pz = Pz (mod p) ∈ kp[X] for the reduction of Pz modulo p and let

Pz =
∏
i

P
ei
i

be the decomposition of the latter into irreducible factors in kp[X]; for any such factor P i we choose

a lifting Pi ∈ A[X] of P i, i.e., Pi (mod p) = P i.
The map

P i 7→ Pi,p := p.Bp + Pi(z)Bp 7→ (p.Bp + Pi(z)Bp) ∩B = Pi

is a bijection

{P i, i} ≃ Spec(Bp) ≃ Specp(B)

between the set of irreducible factors of P , the set of prime ideals of Bp, and the set of prime ideals
in B above p. Moreover in this bijection we have

fPi/p = degPi, ePi/p = ei

Remark III.12. Observe that for any prime p and any z ∈ B we have

vp(disc(z)) ⩾ vp(DB/A) ⩾ 0.

In particular, (III.2) holds as soon as vp(disc(z)) = 0, that is p ̸ |disc(z), which is the case for all but
finitely many p. In the exercices we will see other sufficient conditions for (III.2) to hold.

Remark III.13. In some cases, there exists z ∈ B such that

B = A[z].

One says that B is a monogenic extension of A. In such a situation

DB/A = discK/Q(z).A

and (III.2) is true for every p.
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For instance, the ring of integers OK of a quadratic field K/Q is monogenic; this is also the case
for the ring of integers of the n-th cyclotomic field

K = Q(ζn), ζn = exp

(
2πi

n

)
.



CHAPTER IV

Galois extensions

Let A be a Dedekind domain with field of fraction Q, K a finite separable field extension of
degree d and B the integral closure of A in K. We also assume that Hypothesis III.1 holds: for
every p and P ∈ Specp(B), the residual extension KP/kp is separable.

In this chapter we consider the case where K/Q is a Galois extension with Galois group denoted

G = Gal(K/Q).

The field automorphisms in the Galois group preserve algebraic and integral structures and
in particular integrality properties and prime ideals; we will investigate how these extra Galois
symmetries influence the structure of rings of integers and the prime factorisation. We refer to §A.6
for the basics of Galois theory for fields.

IV.1. The decomposition and inertia subgroups

We recall that given φ ∈ G we have
φ|Q = IdQ

and in particular φ is the identity on A. Also we recall that for any z ∈ K we have

Pchar,z,K/Q(X) =
∏
φ∈G

(X − φ(z)), trK/Q(z) =
∑
φ∈G

φ(z), NrK/Q(z) =
∏
φ∈G

φ(z).

We first make the following observations:

Lemma IV.1.1. For any φ ∈ G, we have

φ(B) = B

and for any prime p ∈ Spec(A) and P ∈ Specp(B),

φ(P) ∈ Specp(B).

In other terms the group G acts on B and on Specp(B).

Proof. For any z ∈ B, let Pchar,z,K/Q ∈ K[X] be its characteristic polynomial. Since z ∈ B,
then Pchar,z,K/Q has coefficients in A and since A is invariant under φ, φ(z) is a also root of
Pchar,z,K/Q hence belongs to B; we recall the argument for the claim

0 = φ(P (z)) = φ(P )(φ(z)) = P (φ(z)).

Let P be a prime ideal above p, since φ is an automorphism, we have

B/P ≃ φ(B)/φ(P) = B/φ(P)

which is a field since B/P is a field so φ(P) ∈ Spec(B). Moreover

φ(P) ∩A = φ(P ∩A) = φ(p) = p

so
φ(P) ∈ Specp(B).

□

Theorem IV.1. The action G↷ Specp(B) is transitive.

47
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Proof. Given P ∈ Specp(B), suppose that there exists P′ ∈ Specp(B) such that φ(P′) ̸= P
for any φ ∈ G. By the Chinese remainder theorem, there exists x ∈ P such that for any φ ∈ G we
have x ̸∈ φ(P′) and therefore φ(x) ̸∈ P′. We have

NrK/Q(x) =
∏
φ

φ(x) = x
∏
φ̸=Id

φ(x) ̸∈ P′

but

NrK/Q(x) ∈ A ∩P = p ⊂ P

contradiction. □

Corollary IV.1.1. The functions P→ eP/p and P→ fP/p are constant and noted ep and fp
and we have

d = ep.fp.|Specp(B)|.

Definition IV.1. The decomposition group of P, DP ⊂ G is the stabilizer of the ideal P. Since
the action is transitive all the decomposition subgroups DP of the primes above p are conjugate to
one another.

Observe that by the orbit-stabilizer Theorem we have

d/|DP| = |Specp(B)| = d/(ep.fp)

and therefore

|DP| = ep.fp.

Exercise IV.1. Let P ∈ Spec(B) non-zero, p = P ∩A. Prove the following equivalences.

(1) DP = {1} ⇐⇒ p is totally split in B, i.e., |Specp(B)| = [K : Q].
(2) DP = G ⇐⇒ p is totally ramified in B, i.e., |Specp(B)| = 1.

IV.1.1. The residual action of the decomposition subgroup. Since the decomposition
subgroup fixes P, it acts on kP = B/P:

φ(z +P) = φ(z) + φ(P) = φ(z) +P.

This action leaves kp invariant.
We have therefore a map (of reduction modulo P):

•P :
DP 7→ Homkp(kP, kP)
φ 7→ φP

(IV.1)

where

φP(z (modP)) := φ(z) (modP).

Definition IV.2. The kernel of the map •P is called the inertia subgroup at P and is denoted

IP = {φ ∈ DP, ∀z ∈ B, φ(z) ≡ z (modP)}.

This is a normal subgroup of DP and all the inertia subgroups at the primes P above p are conjugate
to one another.

Theorem IV.2. We assume that for every p ∈ Spec(A) the residue field kp is perfect.
The extension kP/kp is Galois, i.e.

Homkp(kP, kP) = Homkp(kP, kP) = Gal(kP/kp)

and •P induces an isomorphism

DP/IP ≃ Gal(kP/kp). (IV.2)

In particular we have

|IP| = ep.
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Recall that p is ramified iff

∃P ∈ Specp(B), eP > 1⇐⇒ p|DB/A

and since
∀P ∈ Specp(B), eP = ep = |IP|

we have

Corollary IV.1.2. The prime p is unramified if and only if for one (and hence any) P|p, the
inertia subgroup IP is trivial. In that case we have an isomorphism

•P : DP ≃ Gal(kP/kp).

Before starting the proof of Theorem IV.2 it will be convenient to introduce
IV.1.1.1. The decomposition subfield.

Definition IV.3. Let P ∈ Spec(B) non-zero. The decomposition field ZP of P is the fixed
field of the decomposition group of P, i.e.,

ZP = {x ∈ K : ∀φ ∈ DP, φ(x) = x}.
By the Galois correspondence K/ZP is Galois with Galois group DP.

Let
BZP

:= B ∩ ZP;

this is the integral closure of A in ZP and we can use the relative theory to study the prime ideals
of BZP

.

Theorem IV.3. Let P ∈ Spec(B) non-zero, p = P∩A, and PZ = P∩BZP
∈ Spec(BZP

)−{(0)}.
We have therefore p|PZ |P. Let ePZ |p and fPZ |p denote the ramification index and inertia degree
for the extention BZP

/A.
We have

(1) SpecPZ
(B) = {P}, i.e., PZ is totally ramified in B.

(2) ePZ
= ep and fPZ

= fp and ePZ |p = fPZ |p = 1.

In particular we have
kPZ

= kp.

Proof. Exercise. □
IV.1.1.2. Proof of Theorem IV.2. By Hypothesis III.1 kP/kp is separable. It is sufficient to show

that kP/kp is normal and that the map (IV.1) is surjective.
In what follows, we denote by A ⊂ B′ ⊂ B the integral closure of A in the decomposition

field ZP of P. Recall that by Theorem IV.3 we have

kPZ
= kp.

Let z ∈ kP be a primitive element for the separable extension kP/kPZ
= kP/kp and z ∈ B a lifting

of z, i.e., z (modP) = z. Let

Pmin,z,ZP
= Xr + ar−1X

r−1 + · · ·+ a0 ∈ B′[X],

be its minimal polynomial.1 Its roots are the φ(z) as φ varies over Dp.
We may therefore consider its reduction modulo PZ :

Pmin,z,ZP
(modPZ) ∈ kPZ

[X] = kp[X].

Its roots are the reduction modulo P, of the φ(z) as φ varies over Dp:

φ(z) (modP) = φP(z) ∈ kP.

1The integral closure of B′ in K is B because this is already the integral closure of A. Hence z is integral
over B′. This was proven as part of the proof of Lemma III.4.1
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Since z is a primitive element of kP/kp whose conjugates (over kp) are all in kP, the field
extension kP/kp is normal hence Galois.

Moreover any automorphism η ∈ Gal(kP/kp) is completely determined by the value η(z) which
are roots of Pmin,z,ZP

(modPZ) and we have seen that any such root is of the shape φP(z) for
some φ ∈ DP; this implies that η = φP and the map •P is surjective.

Since |DP| = ep.fp and |Gal(kP/kp)| = fp it follows that

|IP| = eP.

□

IV.2. The case of finite residual fields

We make the following additional assumption:

Hypothesis IV.1. For any prime p ∈ Spec(A) the residual field kp = A/p is finite. In particular
for P ∈ Specp(B) the extension kP/kp is automatically separable (and even Galois).

Example IV.1. This hypothesis is satisfied if A = Z (Q = Q) or A = Fq[T ] (Q = Fq(T )) for Fq
a finite field: in the first case kp = Z/pZ = Fp and in the second case

p = (P ) = P.Fq[T ], P (T ) ∈ Fq[T ] irreducible and kp = Fq[T ]/(P ) ≃ Fdq , d = degP.

Of course other cases are given by the integral closure of either of these rings in separable extensions
of Q.

Let us recall that in this case the residual Galois group Gal(kP/kp) is cyclic and generated by
the Frobenius:

Gal(kP/kp) = frobZq ,

where q = |kp| and

frobq :
kP 7→ kP
x 7→ xq

.

Definition IV.4. Given p ∈ Spec(A) and P ∈ Specp(B), the Frobenius at P, denoted

(P,K/Q) ∈ DP/IP,

is the preimage in DP/IP of frobq under the isomorphism (IV.2).
In particular, if p is unramified, IP is trivial and the Frobenius element

(P,K/Q) ∈ DP ⊂ Gal(K/Q)

belongs to the Galois group.
This element (if p is unramified) is the unique element φ of Dp such that

∀z ∈ B, φ(z) ≡ zq (modP). (IV.3)

Exercise IV.2. Prove that if φ ∈ Gal(K/Q) satisfies, for some P ∈ Spec(B) − {(0)} which is
unramified

∀z ∈ B, φ(z) ≡ zq (modP). (IV.4)

(for q = |kp| and p = A ∩P) then

φ = (P,K/Q).

The next Lemma describes the action of the Galois group on Frobenius elements.

Lemma IV.2.1. For all φ ∈ G we have

Ad(φ)(P,K/Q) = φ(P,K/Q)φ−1 = (φ(P),K/Q)
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Proof. Exercise. □

This lemma and the transitivity of the action G ↷ Specp(B) implies that the set of Frobenius
elements at the primes above p

{(P,K/Q), P|p}
form a single conjugacy class in G. This class bears a name:

Definition IV.5. Let G = Gal(K/Q) and p unramified. The Frobenius at p (or the Artin
symbol at p) is the conjugacy class

frobp :=

(
K/Q

p

)
:= Ad(G)(P,K/Q) = {(P,K/Q), P|p} ⊂ G.

Remark IV.1. If G is abelian, all conjugacy classes are composed of a single element; in partic-
ular all the elements (P,K/Q), P|p in the Frobenius conjugacy class are equal. Abusing notations,
we will write this element

frobp = (p,K/Q) = (P,K/Q) =

(
K/Q

p

)
.

The importance of Frobenius elements is the following Theorem. In later chapters we will discuss
more precise versions of it:

Theorem IV.4. Suppose that A is either Z or Fq[T ] ( or more generally the integral closure
of either of these rings in separable extension of the field of fractions) and let B be the integral
closure of A in a finite Galois extension of Q = Frac(A). Then the Frobenius elements (P,K/Q),
for P ∈ Spec(B) varying over the unramified prime s, generate Gal(K/Q).

The proof of this result require the introduction of further tools from analysis.

IV.2.1. The Dedekind recipe II: Structure of the Frobenius automorphism. Related
to the discussion in Section III.7 is the following version of Dedekind’s recipe for Galois extensions.

Let A be a Dedekind domain such that its residue field are finite. Let P ∈ A[X] (of degree
d ⩾ 1) be a polynomial with coefficients in A, monic and separable, ie. the roots of P

rootP (Q
alg) = {z1, z2, · · · , zd}

are distinct. In particular, its discriminant

disc(P ) = (−1)p(p−1)/2res(P, P ′) ∈ A− {0}.

Let

K = Q(P ) = Q(z1, z2, · · · , zd) ⊂ Qalg

be the splitting field of P and n = [K : Q] be its degree; The extension K/Q is Galois with Galois
group noted G = Gal(K/Q). Since the roots of P generate K/Q the Galois group G acts faithfully
on rootP (K) and in that way can be identified with a subgroup of

S(rootP (K)) ≃ Sd.

In other words, to φ ∈ G one associates the (unique) permutation σ ∈ S({1, · · · d}) such that

φ(zi) = zσ(i), i = 1, · · · , d.

Theorem IV.5. Let p ∈ Spec(A) be a prime not dividing disc(P ) ∈ A; then p is unramified in
K (in particular p ̸ |DB/A).

Let

P (mod p) =

ip∏
i=1

P i
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be the decomposition of P (mod p) into irreducible factors (the multiplicities ei are all 1 because p
is unramified in Q(z)). For any P above p, the Frobenius at P, (P,K/Q), when identified with an
element of Sd is a product of disjoint cycles of lengths

fi = degPi, i = 1, · · · , ip.

Remark IV.2. Notice that the fi are not necessarily equal; these are the inertia degrees at the
primes ideals above p in the Q-extension E = Q[z1] but we do not necessarily assume that K = E
the fi are not necessarily the inertia degrees of the P ∈ Specp(B). On the other hand we have

fP/p = |DP| = |(P,K/Q)Z| = lcm(fi, i = 1, · · · ip)

Remark IV.3. Notice that if we chose a different P′ above P, the two Frobeniuses are conjugate
to one another, so, as permutations, the lengths of the cycles in their cycle decompositions are the
same.

Proof. Let B = OA(K) be the integral closure of A in K. Observe that since {z1, z2, · · · , zd} ∈
B. Given P|p we set

zi = zi (modP) ∈ kP.
We have the Sylvester factorisation formula for the discriminant

disc(P ) = disc(1, z1, z
2
1 , · · · , zd−1

1 ) =
∏
j>i

(zj − zi). (IV.5)

This is an identify between elements of B which we can reduce modulo P.
Since p ̸ |disc(P ) we have

disc(P ) (modP) =
∏
j>i

(zj − zi) ̸= 0 (modP)

and therefore
∀i ̸= j, zj ̸≡ zi (modP).

Let φ ∈ DP ⊂ G be such that σP = IdkP . This implies that

∀i ⩽ d, φ(zi) = zσ(i) ≡ zi (modP)

but since the zi = zi (modP) are distinct this implies that φ(zi) = zi and that φ = IdK : the map

•P : DP → Galkp(P )

is injective and p is unramified (in particular p ̸ |DB/A).
This also implies that

kP = kp[z1, z2, · · · , zd] = kP(P )

is the splitting field of P .
Moreover the orbits of rootP (kP) under the action Galkp(P ) are the sets of roots of each P i

and the frobenius element frobp acts on rootP (kP) as a product of disjoint cycles of lengths fi =

degP i, i ⩽ ip. Write σP ∈ Sd the corresponding permulation: we have

frobp(zi) = zσP(i).

Since for any i we have

(P,K/Q)(zi) ≡ frobp(zi) (modP) = zσP(i) (modP)

and the zi (modP) are distinct we have

(P,K/Q)(zi) = zσP(i).

□



CHAPTER V

Geometry of numbers

In the sequel we will study specifically two examples of Dedekind rings:

– Number field case: Q = Q, A = Z, K/Q is a finite extension (automatically separable) of
degree n and B is the integral closure of Z in K. The ring B is then called the ring of
algebraic integers of K and is denoted OK :

OK = {z ∈ K : ∃P ∈ Z[X], monic, P (z) = 0}.

– Function field case: Let Fq be a finite field of cardinality q and A = Fq[T ], Q = Fq(T ).
Let K/Fq(T ) be a finite separable extension of degree n and let B = OK be the integral
closure of Fq[T ] in K:

OK = {z ∈ K : ∃P ∈ Fq[T ][X], monic, P (z) = 0}.

In these two cases the ring A is a PID and the residue fields are finite fields:

– Number field case: the prime ideals of Z are the principal ideals (p) = pZ where p is a
prime number so that kp = Fp (and for P ∈ Specp(OK), kP/kp is a finite extension so a
finite field as well).

– Function field case: The prime ideals of Fq[T ] are the principal ideals (P ) = PFq[T ]
generated by an irreducible polynomial P ∈ Fq[T ], hence

kP = Fq[T ]/(P ) ≃ Fqd , d = deg(P ).

(and for P ∈ SpecP (OFq [T ]), kP/kP is a finite extension so a finite field as well).

Let us recall that given a Dedekind ring O the ideal class group Cl(O) is the quotient of the group
of fractional ideals by the principal ones. This is an abelian group which measures the obstruction
to O to be a PID. In this chapter we will study the following finiteness theorem.

Theorem V.1. For OK as above, the ideal class group Cl(OK) is finite.

Remark V.1. A general theorem of Claborn shows that given any abelian group G (possibly
infinite, even possibly uncountable) there exist a Dedekind domain O such that

Cl(O) ≃ G.

Moreover O can even be obtained as a quadratic extension of a PID (Leedham-Green)!

One of the distinguishing feature of the number and function field cases by comparison with the
general case is a finiteness result on ideals.

V.1. The norm of an ideal

Lemma V.1.1. For OK as above, any non-zero ideal a ⊂ OK has finite index in OK .

Proof. Indeed since Z or Fq[T ] are PIDs, a and OK are free A-modules of rank n = [K : Q]
and one has

OK/a ≃
u∏
i=1

A/ai.A

53
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for ai ∈ A− {0}. If A = Z then A/ai.A is finite of order |ai| and OK/a is finite of order

|OK/a| =
∏
i

|ai|.

If A = Fq[T ], ai = ai(T ) ∈ Fq[T ] − {0} is a polynomial and Fq[T ]/ai(T ).Fq[T ] is a Fq-vector space
of dimension deg ai and Fq[T ]/ai(T ).Fq[T ] is finite of order qdeg ai so that

|OK/a| = q
∑

i=1···u deg ai .

□

Definition V.1. For OK as above, the numerical norm of any non-zero ideal a ⊂ OK is defined
as the index

Nr(a) := |OK/a| ∈ N⩾1.

Proposition V.1.2. The norm has the following properties

– Multiplicativity:

Nr(a.b) = Nr(a)Nr(b).

In particular if

a =
∏
P

PvP(a),

then

Nr(a) =
∏
P

Nr(P)vP(a).

– If P is a prime ideal of OK above some prime ideal p (p is either pZ or PFq[T ] for P an
irreducible polynomial), then we have

Nr(P) =

{
|Z/pZ|fP/p = pfP/p if A = Z,
|Fq[T ]/P |fP/P = qdeg(P )fP/P if A = Fq[T ].

(V.1)

Proof. By CRT the we have

Nr(a.b) = Nr(a)Nr(b)

whenever a and b are coprime. It is sufficient to prove that for P ∈ Spec(OK) a prime

Nr(Pv) = Nr(P)v

and that Nr(P) is given by (V.1). The latter is immediate, since kP = OK/P is a vector space of
dimension fP|p over the residue field kp of the underlying base prime ideal p = pZ or PFq[T ]. For

the former, let u be any integer, then Pu/Pu+1 is a kP-vector space of dimension 1 (cf. the Proof
of Thm. III.5). In particular, by the preceding result, |Pu/Pu+1| = Nr(P).

Moreover, we have the exact sequence of Z-modules

0→ Pu/Pu+1 → OK/Pu+1 → OK/Pu → 0

where the second arrow is the canonical projection; therefore

Nr(Pu+1) = |OK/Pu+1| = |OK/Pu|.|Pu/Pu+1| = Nr(Pu)Nr(P).

Thus the claim follows by induction on u. □
One reason for calling this a “norm” is the following

Proposition V.1.3. For any z ∈ OK − {0} we have

Nr(z.OK) = |OK/z.OK | = |A/NrK/Q(z).A|.

Proof. This is a direct consequence of Prop. A.2.2 and of the definitions. □
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Exercise V.1. Given a ⊂ OK an ideal, its ideal norm NrK/Q(a) ⊂ A is the ideal generated by
the norms of the elements of a. Prove that

Nr(a) = |A/NrK/Q(a)|.

Exercise V.2. Let f = a.b−1 be a fractional ideal. We define its norm as a rational number

Nr(f) = Nr(a)/Nr(b)−1.

Show that this is well defined and multiplicative.

The following finiteness result will be crucial.

Proposition V.1.4. For any X ⩾ 1 the number of ideals a ⊂ OK of norm ⩽ X is finite.

Proof. If Nr(a) ⩽ X, then any prime ideal P dividing a has norm ⩽ X. Moreover, since any
prime ideal is proper, i.e., Nr(P) ⩾ 2, one has

vP(a) ⩽ log(X)/2,

so it is sufficient to show that the number of prime ideals of norm ⩽ X is finite. Observe that the
number of prime ideals of the base ring A of norm NrA(p) ⩽ X is finite: for A = Z this number is
bounded by the number if positive integers ⩽ X so is ⩽ X and for Fq[T ] this number is bounded
by the number of monic polynomials with coefficients in Fq and of degree ⩽ logX/ log q so is also
bounded by X. If P is prime in OK of norm Nr(P) ⩽ X then P is above p = P ∩A and we have

NrA(p) = |kp| ⩽ |kP| = Nr(P) ⩽ X

so there are only finitely many possible p and above any such p there are at most d primes P. □

Exercise V.3. Prove that for any m ∈ N⩾1 and any ε > 0

rK(m) := |{a ⊂ OK , Nr(a) = m}| ≪ ε, nmε.

For this, remark that m → rK(m) is a multiplicative function and establish that bound for prime
powers.

Show that as X →∞
|{a ∈ OK : Nr(a) ⩽ X}| ⩽ X1+o(1).

Theorem V.1 is therefore a consequence of the following

Theorem V.2. For OK as above, there is a constant C(OK) such that any ideal class [a]
of Cl(OK) contains an ideal a of norm ⩽ C(OK).

Proof. By the Proposition V.1.5 below, there exists C = C(OK) > 0 s.t. given any ideal
a ⊂ OK , there exists 0 ̸= a ∈ a ⊂ OK , s.t. Nr(a) ⩽ C Nr(a). We have

a|aOK ⇐⇒ aOK = ab, b ⊂ OK
and

Nr(aOK) = Nr(a)Nr(b) ⩽ C Nr(a)

therefore

Nr(b) ⩽ C.

Since aOK = ab we have

[b] = [a]−1.

When a varies, the classes [b] cover all of Cl(OK) and we are done. □

Proposition V.1.5. There exist C = C(OK) ⩾ 0 s.t. for any ideal a ⊂ OK there is a ∈ a−{0}
for which

|Nr(a)| ⩽ C Nr(a).
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Proof. We give the proof when A = Z. Without loss of generality we may assume that the
algebraic closure Q is contained in C. In particular the embeddings

HomQ(K,Q) = {σ1, · · · , σn}
take values in the complex numbers.

Let (z1, · · · , zn) be a Z-basis of OK and m ∈ N ⩾ 1 be the unique integer s.t.

mn ⩽ NrOK
(a) < (m+ 1)n.

Consider the (m+ 1)n elements of OK of the shape
n∑

1=1

λizi, 0 ⩽ λi ⩽ m.

Since (m+ 1)n > NrOK
(a) = |OK/a| there exists (pigeonhole) z ̸= z′ in that set such that

a = z − z′ ∈ a− {0}
We have by Prop. V.1.3

NrOK
(aOK) = |NrK/Q(a)| =

n∏
j=1

|σj(a)|

⩽
∏
j

(
∑
i

|λi − λ′i||σj(zi)|) ⩽ mn(
∏
j

∑
i

|σj(zi)|) ⩽ Cmn ⩽ C NrOK
(a)

where
C =

∏
j

∑
i

|σj(zi)|.

□

Exercise V.4. Prove the above proposition for A = Fq[T ].

In the rest of this section we will provide a precise value for the constant C in the number field
case (A = Z).

V.2. Lattices

Theorem V.3. Let Λ ⊂ Rn a discrete subgroup, then Λ is free of rank r ⩽ n and generated by
r vectors which are R-linearly independent.

Proof. Let us recall that Λ ⊂ Rn is discrete iff either of the two conditions are satisfied:

– For any x ∈ Λ there exists an open set Vx ⊂ Rn such that Vx ∩ Λ = {x}.
– For any compact K ⊂ Rn, K ∩ Λ is finite.

Let B = (x1, · · · , xr) ⊂ Λr a family of R-linearly independent elementis with r maximal and let

PB = P = {x ∈ Rn, x =
∑
i

λixi, λi ∈ [0, 1[}.

Since P is precompact,
P ∩ Λ = {x′1, · · ·x′l}

is finite. For any x ∈ Λ we have

x =
∑
i

λixi, λi ∈ R

and if we set
[x] :=

∑
i

[λi]xi ∈ Λ

we have
x− [x] ∈ P ∩ Λ
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and

x = [x] + x′ix

therefore Λ is generated by B ∪ P ∩ Λ so is of finite type hence free of rank r′ ⩾ r since it contains
the free group of rank r

ΛB =
∑
i

Zxi.

Let us prove that Λ is contained in a free group of rank r: for any x′ ∈ P ∩ Λ we set for j ∈ Z

x′j := jx′ − [jx′] ∈ P ∩ Λ.

Since that later set is finite there exists i ̸= j ∈ Z s.t. x′j = x′i and

(j − i)x′ = [jx′]− [ix′] =⇒ x′ =
1

j − i
([jx′]− [ix′]).

hence any element of P ∩ Λ is a linear combination with rational coefficients of elements of B and
the denominators occuring belong to a finite set. Let d be a common denominator, we have

P ∩ Λ ⊂ 1

d
ΛB =⇒ Λ ⊂ 1

d
ΛB.

□

Definition V.2. A lattice Λ ⊂ Rn is a discrete subgroup of rank n; in particular any Z-basis
is an R-basis of Rn.

V.3. Minkowski theorems

V.3.1. Volume of a lattice.

Definition V.3. Let Λ ⊂ Rn be a lattice with basis B = {x1, · · · , xn}. The fundamental
parallelotope for B is defined as

PB = {x ∈ Rn, x =
∑
i

λixi, λi ∈ [0, 1[}.

This is a fundamental domain for the action of Λ ↷ Rn. The volume of PB is the determinant

vol(PB) = |det((xi,j)i,j=1··· ,n)|

where the xi,j are the coordinates of xi in the canonical basis1

xi = (xi,1, · · · , xi,n), i = 1, · · · , n.

Lemma V.3.1. Let B′ be another basis, er have

vol(PB) = vol(PB′).

Proof. If B′ is another basis the matrix of base change (from B to B′) has integral entries as
does it inverse, therefore its determinant is ±1 and

|det((xi,j)i,j=1··· ,n)| = |det((x′i,j)i,j=1··· ,n)|.

□

Definition V.4. The (co)volume of Λ is the volume of PB for any choice of a Z-basis of Λ:

vol(Λ) := vol(PB).

1or in fact any basis
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Remark V.2. The term “volume” for the volume of Λ is a bit improper: this is rather the
volume of (a fundamental domain of) the quotient space Rn/Λ, so one should rather speak of the
“covolume” of Λ. We will allow ourselves to speak of the volume of Λ and write vol(Λ); notice that
this “volume” is a decreasing function of Λ: if Λ′ ⊂ Λ one has

vol(Λ′) ⩾ vol(Λ).

Proposition V.3.2. If Λ′ ⊂ Λ is a sub-lattice we have

vol(Λ′)/vol(Λ) = |Λ/Λ′|.

Proof. This is a direct application of the adapted basis Thm. □

V.3.2. First Theorem.

Theorem V.4 (Minkowski). Let Λ ⊂ Rn be a lattice and V ⊂ Rn a mesurable set. If

vol(V ) > vol(Λ)

there exists v ̸= v′ ∈ V s.t.

v − v′ ∈ Λ.

Proof. Consider some fundamental parallelotope P. The set {x+ P, x ∈ Λ} is a measurable
partition of Rn so we have a measurable partition of V

V =
⊔
x∈Λ

V ∩ (x+ P)

so that

vol(V ) =
∑
x

vol(V ∩ (x+ P)).

Observe that by translation invariance we have

vol(V ∩ (x+ P) = (−x+ V ) ∩ P.

We have ∑
x∈Λ

(−x+ V ) ∩ P ⊂ P

and ∑
x∈Λ

vol((−x+ V ) ∩ P) =
∑
x∈Λ

vol(V ∩ (x+ P)) = vol(V ) > vol(P)

so there exists x ̸= x′ ∈ Λ such that

(−x+ V ) ∩ P ∩ (−x′ + V ) ∩ P ̸= ∅;

This means, there exists v, v′ ∈ V s.t.

−x+ v = −x′ + v′ ⇐⇒ v − v′ = x− x′ ∈ Λ− {0}.

□

V.3.3. Second Theorem.

Theorem V.5 (Minkowski). Let Λ ⊂ Rn a lattice and V ⊂ Rn a set which is compact, convex
(v, v′ ∈ V ⇐⇒ [v, v′] ∈ V ) symetric w.r.t. 0 (v ∈ V ⇐⇒ −v ∈ V ). If

vol(V ) ⩾ 2nvol(Λ)

then V contains a non-zero element of Λ:

V ∩ Λ− {0} ≠ ∅.
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Proof. Let us assume that vol(V ) > 2nvol(Λ). By the first Theorem the set 1
2V contains v ̸= v′

s.t.

x = v − v′ ∈ Λ− {0}.
We have w = −v′ ∈ 1

2V by symmetry and 2v, 2w ∈ V ; therefore

x =
1

2
(2v + 2w) ∈ V

since V is convex.
Suppose that vol(V ) = 2nvol(Λ); for any 0 < ε ⩽ 1 there is xε ∈ (1 + ε)V ∩ Λ − {0}; since for

all ε > 0 the intersection (1 + ε)V ∩Λ− {0} is finite, there exists a subsequence ε→ 0 such that xε
is constant.

□

V.4. Archimedean embeddings

Let Q ⊂ C be the subfield of algebraic numbers C. In the sequel, all the finite extensions of Q
we will consider are included in Q so are fields of complex numbers.

Let K/Q a finite extension of degree n. This is therefore a subfield of C and for any σ ∈
Hom(K,Q), σ(K) is another subfield isomorphic to K and contained in C and the set of all such
subfields is precisely

σ(K), σ ∈ HomQ(K,Q).

Remark V.3. Since K/Q is separable, |HomQ(K,Q)| = n.

Definition V.5. Given σ ∈ HomQ(K,Q) an embedding of K in C. If σ(K) ⊂ R, σ is a real
embedding and complex if σ(K) ̸⊂ R.

We denote the complex conjugation

σC(•) = • : z ∈ C→ z ∈ C.

The group {Id, σC} acts on HomQ(K,Q): the real embeddings are the fixed points for this action
and the complex ones decompose into pairs of complex conjugate embeddings. In particular the
number of complex embedding is even. The number of real embeddings is denoted r1 = r1(K) and
the number of complex ones is denoted 2r2 = 2r2(K) so that

r1 + 2r2 = n.

Remark V.4. This can be considered as an archimedean version of the degree formula.

Set

r = r1 + r2

and

{σ1, · · · , σr1 , σr1+1, · · · , σr}
a choice of representatives of the various orbits of HomQ(K,Q) under the action of {Id, σC}: such a
choice is called a type for K (there are 2r2 possible types). In other terms given a type as above

{σ1, · · · , σr1} = HomQ(K,R)

is the set of real embeddings and

{σr1+1, · · · , σr1+r2 , σr1+1, · · · , σr1+r2} = HomQ(K,C)−HomQ(K,R).

is the set of complex ones.
Let K∞ be the R-algebra

K∞ := Rr1 × Cr2 =

r1+r2∏
i=1

Ki
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with

Ki =

{
R i ⩽ r1

C i = r1 + 1, · · · , r2.
We have

K∞ ≃ Rn

where we have identified C with R2 via the usual R-linear map

z = x+ iy ∈ C→ (x, y) ∈ R2.

Given a type, let

σ∞ :
K 7→ K∞
z 7→ σ∞(z) = (σ1(z), · · · , σr(z))

.

This is an injective morphism of Q-algebra called the archimedean embedding associated to the type.
In the sequel the type is fixed once and for all.

Theorem V.6. When K∞ = Rr1 × Cr2 ≃ Rn is endowed with the usual topology, the subgroup
σ∞(K) is dense and the subgroup

σ∞(OK) ⊂ K∞

is a lattice (is discrete of rank n). Let (z1, · · · , zn) be a Z-basis of OK , then (σ∞(z1), · · · , σ∞(zn))
is an R-basis of K∞. More generally the image by σ∞ of any fractional ideal is a lattice in K∞.

Proof. We start by showing that σ∞(OK) is a lattice. For discreteness, it is sufficient to show
that 0 is isolated in σ∞(OK). Let (zk)k⩾0 be a sequence of elements of OK such that

σ∞(zk)→ 0.

The sequence of characteristic polynomials converges

PK/Q,car,zk(X) =
∏

σ∈HomQ(K,C)

(
X−σ(zk)

)
=

r1∏
i=1

(
X−σi(zk)

) r1+r2∏
i=r1+1

(
X−σi(zk)

)(
X−σi(zk)

)
→ Xn

but the coefficients of the PK/Q,car,zk(X) are integers so must be 0 for k large enough (except for
the degree n coefficient).

To see that σ∞(OK) has full rank, let (z1, · · · , zn) be a Z-basis of OK ; we will see that
(σ∞(z1), · · · , σ∞(zn)) is an R-basis of K∞ and compute the volume of σ∞(OK). For i = 1, · · · , n
we set

σj(zi) =: xi,j ∈ R for j = 1 · · · r1,
σj(zi) =: xi,j + iyi,j ∈ C for j = r1 + 1 · · · r1 + r2.

Let
ui,j = xi,j , j = 1, · · · , r1 + r2, ui,j = yi,j , j = r2 + 1, · · · , 2r2.

It suffices to show that
|det((ui,j)i,j=1,··· ,n)| ≠ 0.

We have

xi,j =
σj(zi) + σj(zi)

2
, yi,j =

σj(zi)− σj(zi)
2i

and therefore
|det((ui,j)i,j=1,··· ,n)| = 2−r2 |det((σj(zi))i,j⩽n)|.

But let us recall that

disc(OK) = discK/Q(z1, · · · , zn) = det((trK/Q(zizj))i,j) = det((

n∑
k=1

σk(zizj)))i,j)

= det((

n∑
k=1

σk(zi)σk(zj)))i,j) = det((σk(zi))i,k⩽n)
2
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Since disc(OK) ̸= 0, |det((ui,j)i,j=1,··· ,n)| ≠ 0 and (σ∞(z1), · · · , σ∞(zn)) is an R-basis of K∞ there-
fore σ∞(OK) ⊂ K∞ is a lattice.

More generally for any fractional ideal a ⊂ K there exists N ⩾ 1 such that NOK ⊂ a ⊂ N−1OK
which proves that σ∞(a) is a lattice.

Density of σ∞(K) follows from the fact that for any basis of a finite dimensional real vector
space the Q-linear hull forms a dense subset. □

The (co)volume of these lattices are given by the following formula

Proposition V.4.1. We have

vol(σ∞(OK)) = 2−r2 |disc(OK)|1/2

and for any fractional ideal a, we have

vol(σ∞(a)) = 2−r2 |disc(a)|1/2

and if a ⊂ OK we have

vol(σ∞(a))/vol(σ∞(OK)) = (|disc(a)|/|disc(OK)|)1/2 = [OK : a] = NrOK
(a).

Remark V.5. In the sequel and to simplify notation we will identify K with its image σ∞(K) ⊂
K∞ and an ideal a with the corresponding lattice σ∞(a).

V.5. A precise form of the finiteness of the class group

Proposition V.5.1. There exists C = C(r1, r2) > 0 such that for any ideal a ⊂ OK there is
a ∈ a− {0} such

|NrK/Q(a)| ⩽ C|disc(OK)|1/2 Nr(a).

Proof. For t > 0, let

Bt =

{
(x1, · · · , z1, · · · , zr2) ∈ K∞ :

∑
i

|xi|+ 2
∑
i

|zi| ⩽ t

}
.

This is a compact, convex and symetric set. We have

vol(Bt) = vol(B1)t
n = V tn.

Let t be such that

vol(Bt) = V tn = 2nvol(σ∞(a)) = 2n−r2 |disc(OK)|1/2 NrOK
(a).

By Minkowski’s second theorem there exists a ∈ a− {0} s.t.
a ∈ Bt.

We have therefore (by the arithmetic-geometric mean inequality)

|NrK/Q(a)| =

r1∏
i=1

|σi(a)|
r1+r2∏
i=r1

|σi(a)|2 ⩽

[
1

n

(∑
i

|σi(a)|+ 2
∑
i

|σi(a)|

)]n

⩽
tn

nn
=

2n−r2

V nn
|disc(OK)|1/2 Nr(a).

□
To compute C(r1, r2) it suffices to compute V = vol(B1):

Proposition V.5.2. Let

B1 =

{
(x1, · · · , z1, · · · , zr2) ∈ K∞ :

∑
i

|xi|+ 2
∑
i

|zi| ⩽ 1

}
.

We have

vol(B1) =
2r1(π2 )

r2

n!
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and therefore

C(r1, r2) =
( 4
π

)r2 n!
nn
.

The argument leading to the finiteness of the ideal class group that we have seen before can be
formalized as follows:

Lemma V.5.3. Given a ⊂ OK a non zero ideal, there is a bijection

(a− {0})/O×
K ←→ b ⊂ OK , [b] = [a−1]

satisfying the following relation on the norms

|NrK/Q(a)|/Nr(a) = Nr(b).

Proof. The bijection is induced by the map

a ∈ a− {0} 7→ (a) = a.OK = a.b

and

a ∈ a− {0} ⇔ a|(a)⇔ (a) = a.b

and we have

[a].[b] = [(a)] = [OK ]

and for the norms

Nr((a)) = Nr(a)Nr(b) = |NrK/Q(a)|
by multiplicativity of the norm and the computation of the norm of principal ideals. □

Corollary V.5.1. Any ideal class [a] ∈ Cl(OK) contains a representative whose norm is

Nr(a) ⩽
( 4
π

)r2 n!
nn
|disc(OK)|1/2.

Remark V.6. In particular we have as |disc(OK)| → ∞

|Cl(OK)| ⩽ |disc(OK)|1/2+on(1).

Theorem V.7 (Hermite-Minkowski). Let K be a number field of degree n. We have

|disc(OK)| ⩾ π

3

(3π
4

)n−1

.

In particular, if K ̸= Q one has

|disc(OK)| > 1.

In other terms, a number field which is not the field of rational numbers is always ramified at some
prime.

Proof. Exercise. □

Remark V.7. This Theorem is often used the other way around: you have a finite extension
K/Q which you can prove is everywhere unramified and from there you conclude that K = Q. For
instance this kind of argument occurs in A. Wiles proof of FLT.

Theorem V.8 (Hermite). Given d ∈ Z− {0}. In C there are only finitely many number fields
K such that

disc(OK) = d.

Proof. By the previous inequality the degree of K is bounded in terms of |d|. In particular
wlog we may assume that the the degree and the signature (r1, r2) are given.

Given X,Y > 1 we consider the subset

B(X,Y ) = {(ui)i⩽r1+r2 ∈ K∞ : |u1|1 ⩽ X, |ui|i ⩽ 1/Y, i ⩾ 2}



V.6. THE GROUP OF UNITS 63

if r1 > 0 and

B(X,Y ) = {(ui)i⩽r1+r2 ∈ K∞ : |ℜu1|1 ⩽ 1, |Imu1| ⩽ X, |ui|i ⩽ 1/Y, i ⩾ 2}

if r1 = 0, where | • |i is either the usual absolute value if Ki = R or the usual complex modulus
if Ki = C. This is a product of r1 intervals/rectangles and r2 disks and there exists a constant
C = C(r1, r2) > 0 such that

vol(B(X,Y )) =

{
CX(1/Y )n−1 if r1 ⩾ 1,

CX(1/Y )n−2 otherwise.

Let X,Y > 1 be such that

vol(B(X,Y )) ⩾ 2nvol(σ∞(OK)).

By Minkowski’s second Theorem, there exists z ∈ OK − {0} such that

(σ1(z), · · · , σr1+r2(z)) ∈ B(X,Y )

and since X > 1 and 1/Y < 1,

σ1(z) ̸= σi(z), σi(z), i ⩾ 2.

This implies that z is a primitive element, i.e.

Q(z) = K.

Indeed if one conjugate σ1(z) is distinct from all the others conjugates σi(z), i = 2, · · · , n, then
all conjugates are distinct (because the Galois group of any finite Galois extension containing the
{σi(z) : i ⩽ n} acts transitively on that set and therefore Q(z) ⊂ K has degree n over Q so it equal
to K.

Since z is an algebraic integer, the coefficients of its minimal polynomial (which is of degree n
since z generates K) are integers and bounded by a constant which depends only on r1, r2, X, Y
(since the coefficients are given by symmetric homogeneous polynomials of degree ⩽ n in the roots
{σi(z) : i = 1, · · · , n}) so that there are only finitely many such possible z and therefore only finitely
many fields generated by these numbers. □

V.6. The group of units

Another very important finiteness theorem concerns the structure of the group of units O×
K .

Theorem V.9 (Dirichlet). Set r := r1 + r2. The abelian group of units O×
K is of finite type of

rank r − 1. Its torsion subgroup

O×
K,tors = µK = {z ∈ K : ∃k ⩾ 1, zk = 1}

(the group of roots of unity contained in K) is finite. In other terms one has an isomorphism

O×
K ≃ µK × Zr−1

Example V.1. For n = 2, we have two cases:

– r1 = 0, 2r2 = 2: the field K is called imaginary quadratic. We have r1 + r2 − 1 = 0 and
therefore O×

K = µK and has order 2, 4 or 6.
– r1 = 2, r2 = 0: the field K is called real quadratic. We have r1 + r2 − 1 = 1 and
O×
K = µK × εZK with µK = {±1} and wlg wma that the generator εK is positve. This

(unique) positive generator is called the fundamental unit of OK . This special case of
Dirichlet’s unit Theorem is due to Pell.

The proof of this theorem and of more elaborate versions is by studying the action of O×
K on

K× and on K×
∞ (when O×

K is viewed as a subgroup of K×
∞ via the archimedean embedding σ∞).
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V.6.1. The logarithmic embedding. The group of units is a multiplicative commutative
group and it will be very useful to pass to additive groups. This is done via the following group
homomorphism called the logarithmic embedding:

Log :
K×

∞ 7→ Rr
(z1, · · · , zr) 7→ (di log |zi|)i

where

di =

{
1 i = 1, · · · , r1,
2, i = r1 + 1, · · · , r1 + r2.

This is a surjective map whose kernel is

ker(Log) = {z ∈ K×
∞ : ∀i = 1, · · · , r, |zi| = 1} ≃ {±1}r1 × (C1)r2 , C1 = {z ∈ C× : |z| = 1}.

Remark V.8. The term “embedding” is somewhat improper as the kernel is not trivial (but at
least it is compact).

Definition V.6. The logarithmic embedding (of K×) is the compositum

Log∞ = Log ◦σ∞ : K× 7→ Rr

that is for z ∈ K×,

Log∞(z) = (log |σ1(z)|, · · · , log |σr1(z)|, 2 log |σr1+1(z)|, · · · , 2 log |σr(z)|).

Remark V.9. To ease notations we will usually write Log for Log∞.

We consider the restriction of the “embedding” to O×
K :

Proposition V.6.1. The kernel ker(Log∞|O×
K
) is finite and its image Log(O×

K) is a discrete

subgroup of the hyperplane

H(R) := ker(T ) = {(l1, · · · , lr) ∈ Rr : T (l1, · · · , lr) =
r∑
i=1

li = 0}.

Proof. Given z ∈ O×
K we have

NrK/Q(z) =

r1∏
j=1

σj(z)

r1+r2∏
j=r1+1

σj(z)σj(z) = ±1

therefore

0 = log |NrK/Q(z)| = log
∏
j

|σj(z)|dj =

r∑
j=1

dj log |σj(z)| = T (Log∞(z))

Let B ⊂ H(R) be compact and let z ∈ O×
K be such that

Log∞(z) ∈ B.

The positive real numbers |zj | = |σj(z)|, j = 1, · · · , n are bounded depending on B, so are the
coefficients of PK/Q,car,z; since these are integers there are only finitely many such polynomials and
therefore finitely many such z.

It follows that Log∞(O×
K) ⊂ H(R) is discrete of rank r′ ⩽ r − 1 = dimH(R). Moreover

ker(Log∞|O×
K
) = {z ∈ O×

K : Log(z) = 0}

is also finite. It follows that O×
K is of finite type since

O×
K/ ker(Log∞|O×

K
) ≃ Log∞(O×

K)

is of finite type. □
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Proposition V.6.2. The finite group ker(Log∞|O×
K
) is the group of roots of unity contained in

K:

ker(Log∞|O×
K
) = O×

K,tors = {z ∈ O
×
K : ∃n ∈ Z− {0}, zn = 1} = µK .

Proof. We leave it to the reader to check that O×
K,tors = µK . It remains to prove that

ker(Log∞|O×
K
) = O×

K,tors.

Let z ∈ O×
K,tors, then there is m ⩾ 1 such that zm = 1 and, therefore, |σ(z)|m = |σ(zm)| = 1 for

all σ ∈ HomQ(K,C). It follows that |σ(z)| = 1 for all σ ∈ HomQ(K,C) and, hence,

O×
K,tors ⊆ ker(Log∞|O×

K
).

For the opposite inclusion, we recall that H = ker(Log∞|O×
K
) is finite, hence H < K× is a finite

subgroup. In particular, for all z ∈ H we have z|H| = 1 by Lagrange’s theorem. In particular, we
obtain that H < µK = O×

K,tors. □
Let us compute the rank of the free part

Proposition V.6.3. We have

r′ = r1 + r2 − 1.

We need two lemmata

Lemma V.6.4. There exists C = C(K) > 0 s.t. the following holds: for any k ⩽ r and a ̸= 0 ∈
OK , there exists b = bk ∈ OK − {0} satisfying

|NrK/Q(b)| ⩽ C

and

∀i ̸= k, αi > βi.

Here

Log∞(a) := (α1, · · · , αr), Log∞(b) := (β1, · · · , βr)
are the coordinates of the images of a and b under the logarithmic embedding.

Proof. Write Log∞(a) := (α1, · · · , αr). We have

di log |σi(a)| = αi

and therefore

|NrK/Q(a)| =
r∏
i=1

|σi(a)|di = exp
(∑

i

αi

)
.

For any α ∈ R let

Bk(α) := {(z1, · · · , zr) ∈ K∞ : |zi|di ⩽ exp(αi/2) i ̸= k, |zk| ⩽ exp(α/2)} ⊂ K∞.

This is a convex, compact and symetric subset of K∞ (a product of intervals and or disks centered
at the origin) with volume

vol(Bk(α)) = C(r1, r2) exp

(
1

2

(
α+

r∑
i=1
i̸=k

αi

))

for C(r1, r2) > 0 depending only on r1, r2. Suppose that α is chosen such that

vol(Bk(α)) = C(r1, r2) exp

(
1

2

(
α+

r∑
i=1
i ̸=k

αi

))
= 2nvol(OK).
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By Minkowski’s second theorem there exists b ∈ OK − {0} such that b ∈ Bk(α) and Log∞(b) has
the required properties. Moreover, since

di log |σi(b)| = βi

|NrK/Q(b)| =
r∏
i=1

|σi(b)|di = exp(
∑
i

βi) ⩽ exp

(
1

2

(
α+

∑
i̸=k

αi

))
=

2n

C(r1, r2)
vol(OK).

□

Lemma V.6.5. For any k ∈ 1, · · · , r there exists

uk ∈ O×
K

such that, setting
ηk = Log∞(uk) = (ηk,j)j⩽r ∈ H(R),

we have
ηk,j < 0, ∀j ̸= k and ηk,k > 0

Remark V.10. The last inequality ηk,k > 0 follows automatically from the previous ones since
r∑
j=1

ηk,j = 0.

Proof. Given k. By the previous lemma we can find a sequence

a1, · · · , ai, · · · ∈ OK − {0}
such that

|NrK/Q(ai)| ⩽ C(K)

and such that, setting
Log∞(ai) = (αi,j)j=1,··· ,r,

we have for any i ⩾ 1 and any i ̸= k
αi+1,j < αi,j .

The number of principal ideals aiOK as i varies is finite (because all their norms are bounded
by a constant depending only on K) and there exists i < i′ such that aiOK = ai′OK . We have
therefore ai′ = ukai with uk ∈ O×

K and for any j ̸= 0 we have

ηk,j = αi′,j − αi,j < 0

. □
We can conclude with the following

Proposition V.6.6. Given

(uk)k<r = (u1, · · · , ur−1) ∈ O×
K

r−1

an (r − 1)-tuple of units such that for any k, uk is constructed as above. Then
(
Log∞(uk)

)
k<r

is
R-linearly independent.

Proof. It suffices to find, for any non-zero linear form L : H(R) → R, an index k such that
L
(
Log∞(uk)

)
̸= 0. Any linear form on H(R) can be written in the form

L(l1, · · · , lr) =
r−1∑
i=1

λili, λi ∈ R

(since lr = −(l1 + · · · + lr−1) in H(R)). Let k be such that |λk| is maximal among the |λi|. Up to
replacing L by −L wma λk > 0. We claim that

L(ηk) =

r−1∑
i=1

λiηk,i ⩾
r−1∑
i=1

λkηk,i = λk

r−1∑
i=1

ηk,i > 0,
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Indeed
r−1∑
i=1

(λi − λk)ηk,i =
r−1∑
i=1
i ̸=k

(λi − λk)ηk,i ⩾ 0

since λi − λk ⩽ 0 and ηk,i < 0 for i ̸= k by construction and

λk

r−1∑
i=1

ηk,i = λk

r∑
i=1

ηk,i − λkηk,r = 0− λkηk,r > 0

since ηk,r < 0 by construction.
□

Definition V.7. An r − 1-tuple (ε1, · · · , εr−1) ∈ O×
K

r−1
such that

Log∞(ε1, · · · , εr−1) := (Log∞(ε1), · · · ,Log∞(εr−1))

forms a Z-basis of Log∞(O×
K) is called a system of fundamental units.

The regulator of OK (or K) is defined as

reg(OK) := vol
(
ZLog∞(ε1) + · · ·+ ZLog∞(εr−1)

)
,

where the volume on H(R) is computed with respect to an orthonormal basis of H(R) (with respect
to the inner product induced by the usual Euclidean inner product on Rr).

V.7. The class number formula

In fact the finiteness of the class number and Dirichlet’s finiteness theorem for the group of units
can be proved together in a single statement.

We will not do this here but at least the next Theorem shows that both complement one another.
Let us recall that the number of ideals of norm m is denoted

rK(m) = |{a ⊂ OK : Nr(a) = m}|.
We have seen in the exercises that rK(m) is multiplicative (rK(mm′) = rK(m)rK(m′) if (m,m′) = 1)
and that

∀ε > 0, rK(m)≪K,ε m
ε

and therefore the summatory function of rK(m) satisfies∑
m⩽X

rK(m) = |{a ⊂ OK : Nr(a) ⩽ X}| = X1+oK(1), X →∞.

We will prove a much more precise result.

Theorem V.10. [The class number formula] As X → +∞ we have∑
m⩽X

rK(m) =
∑

a⊂OK
Nr(a)⩽X

1 =
2r1(2π)r2h(OK)reg(OK)

wK |disc(OK)|1/2
X +OK(X1−1/n).

In this formula h(OK) = |Cl(OK)| ∈ N>0 is the class number, reg(OK) > 0 is the regulator,
disc(OK) ∈ Z is the discriminant and wK = |µK | is the size of the group of roots of unity in K.

Proof. (Start) We start by splitting our sum along the various ideal classes:

|{a ⊂ OK , Nr(a) ⩽ X}| =
∑

[a]∈Cl(OK)

|{a′ ⊂ OK , Nr(a′) ⩽ X, a′ ∈ [a−1]}| (V.2)

We will now evaluate each term

|{a′ ⊂ OK , Nr(a′) ⩽ X, a′ ∈ [a−1]}|
separately. We have already used the following:
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Lemma V.7.1. The map
a ∈ a− {0} 7→ a′ := a.a−1

induces a bijection between the following two sets

{a ∈ a− {0}, Nr(a) ⩽ X Nr(a)}/O×
K

and
{a′ ∈ [a−1], a′ ⊂ OK , Nr(a′) ⩽ X}

Proof. Given a′ in the first set, we have a′ = a.a−1 for a ∈ K× uniquely defined modulo O×
K .

Moreover
a′ = a.a−1 ⊂ OK ⇐⇒ aOK ⊂ a⇐⇒ a ∈ a

and by multiplicativity of the norm we have

Nr(a′) = Nr(aa−1) = Nr(a)/Nr(a) ⩽ X ⇐⇒ Nr(a) ⩽ X Nr(a).

Moreover for any u ∈ O×
K we have Nr(u.a) = Nr(a) so the constraint Nr(a) ⩽ X Nr(a) is invariant

under the action of O×
K . □

V.7.1. A counting problem. We start with a number of simple observations: let us define
the norm on K×

∞ as the continuous morphism

Nr : z = (x1, · · · , xr1 , zr1+1, · · · , zr1+r2) ∈ K×
∞ 7→

∏
i

|xi|
∏
j

|zj |2 ∈ R>0.

This norm extend the (absolute value) of the norm on K: for any a ∈ K× we have

|NrK/Q(a)| =
r∏
i=1

|σi(a)|di = Nr(σ∞(a)).

In particular for u ∈ O×
K we have

Nr(σ∞(u)) = |NrK/Q(u)| = 1.

This function is homogeneous of degree n: for any x ∈ R>0 we have

Nr(x.z) = xnNr(z).

Given X > 0 we denote by K×
∞,X the X-level set:

K×
∞,X = {z ∈ K×

∞, Nr(z) = X}
and by

K×
∞,⩽X = {z ∈ K×

∞, Nr(z) ⩽ X} =
⋃

0<X′⩽X

K×
∞,X′ .

By homogeneity we have

K×
∞,X = X1/n.K×

∞,1, K
×
∞,⩽X = X1/nK×

∞,⩽1.

We observe that the function Nr is invariant under the multiplication by the subgroup σ∞(O×
K):

∀z ∈ K×
∞, u ∈ O×

K , Nr(σ∞(u)z) = Nr(σ∞(u))Nr(z) = Nr(z).

Therefore O×
K acts on K×

∞,X (through multiplication by σ∞) and on K×
∞,⩽X . Moreover (by ho-

mogeneity) to understand this action, it is sufficient to understand the action on K×
∞,1 and on

K×
∞,⩽1.

We can return to the proof of the class number formula: we are given a lattice σ∞(a) ⊂ K∞
and we wish to evaluate the numbers of (O×

K-orbits of) non-zero points a in σ∞(a) such that

Nr(σ∞(a)) ⩽ X Nr(a).

To perform the counting, we will exhibit a ”nice” precompact fundamental domain

F⩽X Nr(a) ⊂ K×
∞,⩽X Nr(a)
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representing the quotient K×
∞,⩽X Nr(a)/O

×
K and then count the number of points σ∞(a) ∈ σ∞(a)

contained in F⩽X Nr(a).
For this we use

V.7.2. The Lipschitz principle. The general context is the following: let Ω ⊂ Rn be a
compact measurable domain and Λ ⊂ Rn be a lattice. For t > 0, we consider the scaled compact
domain

Ωt := t.Ω

and we would like to count how many lattice points it contains, at least when t is large: we would
like to evaluate

NΩ(t,Λ) = |{λ ∈ Λ, λ ∈ t.Ω}|
as t→∞. It is reasonable to expect that the counting function is proportional to the volume

vol(Ωt) = tnvol(Ω)

and inverse proportional to the covolume of Λ, ie.

NΩ(t,Λ) ∼
vol(Ω)

vol(Λ)
tn, t→∞.

This is true if the boundary ∂Ω is sufficiently ”nice”.
The Lipschitz principle furnishes a sufficient condition for ”niceness”.

Definition V.8. Let φ : X → Y be a map between metric spaces. The map φ is Lipschitz if
there exists c ⩾ 0 such that

∀x, x′ ∈ X, d(φ(x), φ(x′)) ⩽ c.d(x, x′).

Definition V.9. A compact domain Ω ⊂ Rn has Lipschitz boundary if its boundary ∂Ω is the
union of the images of a finite set of Lipschitz maps

φ : [0, 1]n−1 → ∂Ω.

Theorem V.11 (Lipschitz principle). Let Λ be a lattice and Ω compact with Lipschitz boundary.
We have as t→∞

NΩ(t,Λ) =
vol(Ω)

vol(Λ)
tn +OΛ,Ω(t

n−1).

Proof. We choose a coordinate system given by a Z-basis of Λ. In these new coordinates the
boundary is still Lipschitz while the Lebesgue measure is divided by vol(Λ). We may therefore
assume that Λ = Zn. We partition Rn into cubes with integral vertices

Rn =
⊔
λ∈Zn

C(λ), C(λ) =

n∏
i=1

[λi, λi+1[

and
Ωt =

⊔
λ∈Zn

Ωt ∩ C(λ).

We have
|{λ, C(λ) ⊂ Ωt}| ⩽ |Zn ∩ Ωt| ⩽ |{λ, C(λ) ∩ Ωt ̸= ∅}|.

Computing volumes we have

|{λ, C(λ) ⊂ Ωt}| ⩽ vol(Ωt) ⩽ |{λ, C(λ) ∩ Ωt ̸= ∅}|
and to conclude it is sufficient to bound the difference of the left and right most terms and to show
that

|{λ, C(λ) ∩ Ωt ̸= ∅}| − |{λ, C(λ) ⊂ Ωt}| ≪ tn−1.

If
λ ∈ {λ, C(λ) ∩ Ωt ̸= ∅} − {λ, C(λ) ⊂ Ωt}
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then λ is at distance ⩽ diamC(Λ) =
√
n = O(1) from a point in the boundary ∂Ωt.

Let φ1, · · · , φd : [0, 1]n−1 → ∂Ω be Lipschitz maps parametrizing ∂Ω then

t.φ1, · · · , t.φd : [0, 1]n−1 → ∂Ωt

parametrize ∂Ωt = t∂Ω. Let P ⊂ ∂Ωt be the set of points of the shape

t.φ1(η/t), · · · , t.φd(η/t), η ∈ Zn−1 ∩ [0, t[n}.

The cardinality of P is O(tn−1). Any point in the cube [0, 1]n−1 is at distance ⩽ 1/t from a point
η/t and therefore any point of ∂Ωt is at distance ≪ 1 from a point of P. It follows that the number
of λ in the difference is bounded by ≪ tn−1.

□
In the course of the proof we have also obtained a bound on the number of lattice points ON

the boundary:

Corollary V.7.1. Notations and assumptions being as above, we have as t→∞

N∂Ω(t,Λ) = |{λ ∈ Λ, λ ∈ ∂(Ωt)}| = O(tn−1).

Remark V.11. Alternatively we could have just applied the Lipschitz principle directly to ∂Ω:
if the boundary of Ω is Lipschitz it is measurable and vol(∂Ω) = 0.

V.7.3. Counting lattice points in domains. Let us recall that we need to evaluate

|{a ∈ a− {0}, Nr(a) ⩽ X Nr(a)}/O×
K |.

By Dirichlet’s Theorem we have

O×
K = µK × U

where U =
∏r−1
i=1 ε

Z
i is a free abelian group of rank r − 1 (generated by a system of fundamental

units (εi)i=1···r−1.
Setting wK = |µK |, we have obviously

|{a ∈ a− {0}, Nr(a) ⩽ X Nr(a)}/O×
K | =

1

wK
|{a ∈ a− {0}, Nr(a) ⩽ X Nr(a)}/U |. (V.3)

so it is sufficient to evaluate |{a ∈ a− {0}, Nr(a) ⩽ X Nr(a)}/U |.
Let F ⊂ K×

∞ be a fundamental domain for the quotient K×
∞/U then (by homogeneity)

F⩽X = {z ∈ F , Nr(z) ⩽ X} = F ∩K×
∞,⩽X

is a fundamental domain for the quotient K×
∞,⩽X/U .

We will exhibit a domain F⩽X which is precompact and whose boundary

∂F⩽X = F⩽X −F⩽X
◦

is Lipschitz.
Let us recall that Log∞(U) is a lattice in the hyperplane

H(R) = {(l1, · · · , lr) ∈ Rr, T (l1, · · · , lr) = l1 + · · ·+ lr = 0}.

Let

PU =

r−1∑
i=1

[0, 1[Log∞(εi) ⊂ H(R)

be the associated fundamental parallelepiped (a fundamental domain for the action Log∞(U) ↷
H(R)).

The preimage F1 = Log−1(PU ) is a fundamental domain representing the quotient K×
∞,1/U and

(by homogeneity) the cone

F⩽X :=]0, X1/n].F1 = {t.z, t ∈]0, X1/n], z ∈ K×
∞, Log(z) ∈ P} = X1/n.F⩽1
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is a fundamental domain for K×
∞,⩽X/U . This domain is precompact and has Lipschitz boundary

(because the r − 2-dimensional faces of the parallelepiped P are Lipschitz and bounded and the
exponential function is a smooth function). By the Lipschitz principle (and its Corollary), we have
as X →∞

|σ∞(a) ∩ F⩽X | =
vol(F⩽1)

vol(σ∞(a))
X +Oa(X

1−1/n) =
2r2vol(F⩽1)

|disc(OK)|1/2 Nr(a)
X +Oa(X

1−1/n).

Hence

|σ∞(a) ∩ F⩽X Nr(a)| = |{a′ ∈ [a−1], a′ ⊂ OK , Nr(a′) ⩽ X}| = 2r2vol(F⩽1)

|disc(OK)|1/2
X +Oa(X

1−1/n).

From this, (V.3), (V.2) and the finiteness of the class group we obtain the asymptotic formula

|{a ⊂ OK , Nr(a) ⩽ X}| = 2r2vol(F⩽1)h(OK)

wK |disc(OK)|1/2
X +OK(X1−1/n).

It remains to compute the volume of the cone vol(F⩽1): it is useful to write elements z ∈ K×
∞

in ”polar coordinates”: we write

z = (±x1, · · · ,±xr1 , ρ1e(iθ1), · · · , ρr2e(iθr2))

with xi, ρj ∈ R>0, θj ∈ [0, 2π[. Let

|z| = (x1, · · · , xr1 , ρ1, · · · , ρr2)

so that

Nr(z) = Nr(|z|) =
∏
i

xi
∏
j

ρ2j .

Therefore

vol(F⩽1) = 2r1(2π)r2
∫
(∗)
dx1 · · · dxr1ρ1dρ1 · · · ρr2dρr2

where the integral is over the domain of |z| = (x1, · · · , xr1 , ρ1, · · · , ρr2) ∈ Rr>0 satisfying

Log(Nr(|z|)−1/n.|z|) ∈ P, Nr(|z|) ⩽ 1.

We make the change of variable

|z| ∈ Rr>0 7→ l = (l1, · · · , lr) = Log(|z|) ∈ Rr

or in other terms

li = log xi, i ⩽ r1, lr1+j = 2 log ρj , j ⩽ r2.

We have

dxi = elidli i ⩽ r1, ρjdρj =
1

2
elr1+jdlr1+j , j ⩽ r2.

and therefore we have to compute

2−r2
∫
eT (l1,··· ,lr)dl1 · · · dlr

where T denote the linear form

T (l) =
∑
i

li, l = (l1, · · · , lr) ∈ Rr,

and the integration is over the domain

T (l) ⩽ 0, PH(l) ∈ PU
where

PH(l) = (l1, · · · , lr)−
T (l)

n
.(1, · · · , 1)
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is the projection of the vector l on the hyperplane H(R) = ker(T ). Putting τ = T (l) ⩽ 0 we obtain

2−r2
∫
eT (l)dl = vol(PU )

∫ 0

−∞
eτdτ = 2−r2reg(OK)

and

vol(F⩽1) = 2r1−r2(2π)r2reg(OK)

which concludes the proof. □

Remark V.12. In the course of the proof we have obtained that for any ideal class [a] we have

|{a′ ∈ [a], Nr(a′) ⩽ X}| = 2r1(2π)r2reg(OK)

wK |disc(OK)|1/2
X +Oa(X

1−1/n).

Therefore the ideals of large norm are approximately equidistributed amongst the finitely many ideal
classes of OK : the proportion of ideals of large norme belonging to the ideal class [a] is the same
and equal to 1/h(OK).

Such a result might be seen as an analog to the elementary fact that , given q ⩾ 1 some modulus
and a ∈ Z, the number of positive integers n ⩽ X such that n ≡ a (mod q) (ie. contained in the
congruence class a (mod q)) have asymptotically the same size (independently of the congruence class
a (mod q)) as X →∞: indeed

|{n ⩽ X, n ≡ a (mod q)}| = X

q
+O(1)

so the main term X/q does not depend on a (mod q).

V.8. The Dedekind ζ-function

In this section we use the class number formula to investigate the analytic properties of the
analog of Riemann’s zeta function.

Proposition V.8.1. Let s be a complex number with ℜs > 1 the series

ζK(s) :=
∑

a⊂OK

1

Nr(a)s

converges absolutely and defines an holomorphic function in the half-plane ℜs > 1.

Proof. For σ ∈ R consider the series with non-negative terms

ζK(σ) :=
∑

a⊂OK

1

Nr(a)σ
.

It is equal to ∑
m⩾1

rK(m)

mσ

where

rK(m) = |{a ⊂ OK , Nr(a) = m}|.
We have seen in an exercice that for any ε > 0

NK(X) :=
∑
m⩽X

rK(m)≪ε X
1+ε.

By integration by parts (Abel summation) we have∑
m⩽X

rK(m)

mσ
= [x−σNK(X)]X1/2 −

∫ X

1/2

NK(x)(x−σ)′dx



V.8. THE DEDEKIND ζ-FUNCTION 73

= NK(X)/Xσ + σ

∫ X

1/2

NK(x)x−σ−1dx≪ε X
1+ε−σ + σ

∫ X

1/2

xε−σdx

which is bounded as X → ∞ as long as σ > 1 + ε. The series ζK(s) is therefore absolutely
convergent for ℜs > 1 and uniformly convergent in any half-plane ℜs ⩾ 1 + η for η > 0. Therefore
ζK is holomorphic for ℜs > 1 + η. □

Definition V.10. The function s 7→ ζK(s) is the Dedekind ζ function of K.

Remark V.13. When K = Q, ζK(s) = ζ(s) is Riemann’s zeta function so Dedekind’s zeta
function is a version of Riemann zeta function for a number field.

Proposition V.8.2 (Euler product formula). For ℜs > 1 we have the identity of holomorphic
functions

ζK(s) =
∏
p

(1− 1

Nr(p)s
)−1

Proof. We have for ℜs > 1

ζK(s) =
∑
m⩾1

rK(m)

ns
.

Since the function m 7→ rK(m) is multiplicative, we have, in the range of absolute convergence

ζK(s) =
∏
p

(
∑
α⩾0

rK(pα)

pαs
) =

∏
p

ζK,p(s).

For any prime p we have ∑
α⩾0

rK(pα)

pαs
=

∑
a⊂OK

Nr(a)=p−power

1

Nr(a)s
.

The ideals whose norm is a p-power are exactly the ideals whose prime divisors are the prime ideals
above p and therefore

ζK,p(s) =
∑

αp⩾0,p|p

1

Nr(
∏

p|p p
αp)s

=
∑

αp⩾0,p|p

1∏
p|pNr(p)αps

=
∑

αp⩾0,p|p

1∏
p|pNr(p)αps

=
∏
p|p

(
∑
αp⩾0

1∏
p|pNr(p)αps

) =
∏
p|p

(1− 1

Nr(p)s
)−1.

□

Remark V.14. This factorisation is equivalent to the uniqueness of the factorisation of an ideal
into a product of prime ideals just as the Euler product factorisation of Riemann’s zeta function is
equivalent to the fundamental theorem of arithmetic.

Theorem V.12. The Dedekind ζ function admits meromorphic continuation to the half-plane
{s, ℜs > 1− 1/n} with a simple pole at s = 1. We have

ress=1 ζK(s) =
2r1(2π)r2h(OK)reg(OK)

wK |disc(OK)|1/2

where wK = |µK |. In particular ζK(s) ̸= 0 for ℜs > 1.

Remark V.15. When K = Q, r1 = 1, r = 1, h(Z) = 1, reg(OK) = 1, wk = 2, disc(Z) = 1 and
the residue is 1.

We will deduce this result the class number formula:
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Proof. Let

ρ =
2r1(2π)r2h(OK)reg(OK)

wK |disc(OK)|1/2
and

rK,0(m) := rK(m)− ρ.
We have ∑

m⩽X

rK,0(m) = O(X1−1/n).

For σ > 1− 1/n we have by integration by parts∑
m⩽X

rK,0(m)

mσ
= [x−σ

∑
m⩽x

rK,0(m)]X1/2 + σ

∫ X

1/2

x−σ−1(
∑
m⩽x

rK,0(m))dx

= O(1 +X1−1/n−σ) +O(

∫ X

1/2

x−1/n−σdx)

which is bounded as long as σ > 1− 1/n. This implies that for any η > 0 the series∑
m⩾1

rK,0(m)

ms

is absolutely uniformly converging for ℜs > 1 − 1/n + η and is holomorphic in this half-plane. We
have for any X ⩾ 1 the equality of partial sums∑

m⩽X

rK,0(m)

ms
= ζK,X(s)− ρζX(s).

For η > 0 and ℜs > 1 + η, ζX(s) converge uniformly to Riemann’s zeta function ζ. Moreover ζ(s)
admits meromorphic continuation to ℜs > 1 with a simple pole at s = 1 with residue 1. Therefore

ζK(s) = ρζ(s) +
∑
m⩾1

rK,0(m)

ns

admit analytic continuation to ℜs > 1− 1/n with a simple pole at s = 1 with residue ρ. □

Remark V.16. Let us recall the proof of the analytic continuation of ζ(s) to ℜs > 0 with a
simple pole at s = 1 of residue 1: we have for ℜs > 1

ζX(s) = [[x]x−s]X1/2 + s

∫ X

1/2

[x]x−s−1dx

where [x] is the integral part. Writing x = [x] +O(1) we have for ℜs > 0

ζX(s) = X1−s +O(X−s) + s

∫ X

1/2

x−sdx+ s

∫ X

1/2

O(1)x−s−1dx

=
s

s− 1
2s−1 + · · ·

where · · · is converging for ℜs > 0 as X → ∞ with limit defining an holomorphic function in this
domain.



APPENDIX A

Background material on rings, fields, and finite dimensional
algebras over a field

A.1. Basic notions about rings and ideals

Let A be a ring. We will assume throughout that A is not the zero ring. We denote by IA the
set of all non-zero ideals of A and by PA ⊂ IA the subset of non-zero principal ideals, that is, ideals
of the shape

(a) := A.a, a ∈ A− {0A}.
More generally, given a subset S ⊂ A, we denote by (S) the ideal generated by S, i.e.,

(S) =
⋂{

a ∈ IA ∪ {(0)} : S ⊂ a
}
.

An ideal a ⊂ A is proper if a ̸= A.
We have the following basic operation/definitions regarding the set of ideals:

– Given two ideals a, b ⊂ A, we say that a divides b (denoted a|b) if b ⊂ a.
– Given two ideals a, b ⊂ A, we define the following ideals

a+ b =
(
{a+ b, a ∈ a, b ∈ b}

)
,

a ∩ b =
(
{u, u ∈ a, u ∈ b}

)
,

a.b =
(
{a.b, a ∈ a, b ∈ b}

)
⊂ a ∩ b.

– A proper ideal p ⊊ A is prime if A/p is a domain, i.e., for any α, β ∈ A/p

αβ = 0 =⇒ α = 0 or β = 0.

The set of prime ideals is denoted by

Spec(A)

and a typical prime will be denoted p.
– A proper ideal a ⊊ A is maximal if A/a is a field or, equivalently, if a is not strictly
contained in any proper ideal in A. The set of maximal ideals is denoted

Specmax(A).

If A is a domain we denote its field of fractions by

Frac(A) =
{a
b
: a, b ∈ A, b ̸= 0

}
.

In that case, the notion of ideal admit a slight but useful generalisation:

Definition A.1. Let A be a domain with field of fractions Q. A fractional (A-)ideal f ⊂ Q is a
subset for which there exist b ∈ A− {0} such that b.f is an ideal in A. Let A be a domain with field
of fractions Q. We denote by FA the set of non-zero fractional ideals in Q and by PFA the subset
of non-zero principal fractional ideals, i.e., fractional ideals of the form

(f) = A.f, f =
a

b
∈ Q− {0}.

75
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Remark A.1. Note that any fractional A-ideal f ⊂ Frac(A) is an A-submodule, but not every A-
submodule of Frac(A) is necessarily a fractional A-ideal. A fractional A-ideal is an A-module in Q
whose elements admit some “common denominator” b ∈ A− {0}.

In what follows, if the underlying ring A is clear from context, we will call a fractional A-ideal
in Frac(A) just a fractional ideal.

We assume from now on that A is a domain, denote by Q its field of fractions, and we fix once
and for all an algebraic closure Q of Q. Unless specified otherwise, every algebraic extension of Q
will be contained in Q.

A.1.1. Noetherian rings and modules.

Proposition A.1.1. Let A be a ring and let M an A-module. The following are equivalent.

(1) Every increasing sequence of submodules of M is eventually stationary: if

N1 ⊂ · · · ⊂ Nn ⊂ · · · ⊂M,

then Nn = Nn+1 = · · · = N for n large enough.
(2) Every non-empty collection of submodules of M admits a maximal element (relative to

inclusion).
(3) Every submodule of M is of finite type.

Proof. If M is not of finite type, then there exists a sequence of elements (xi)i∈N ∈ M such
that for all i ⩾ 1 we have

i∑
j=1

A.xj ⫋
i+1∑
j=1

A.xj

and therefore we obtain an increasing sequence of submodules that is not eventually stationary.
Now suppose that every submodule of M is of finite type and let C be a non-empty collection

of submodules of M . Assume that c ⊆ C is a linearly ordered by inclusion, i.e., for all N1, N2 ∈ c
we have N1 ⊆ N2 or N2 ⊆ N1. Define

N(c) =
⋃
{N : N ∈ c}.

As c is linearly ordered, it follows that N(c) is a submodule of M and N ⊆ N(c) for every N ∈ c.
Moreover, N(c) is of finite type by assumption, thus there exists a finite subset S ⊆ N(c) such that

N(c) =
∑
x∈S

A.x.

For each x ∈ S fix a submodule Nx ∈ c such that x ∈ Nx. As c is linearly ordered, there is x∗ ∈ S
such that Nx ⊆ Nx∗ for all x ∈ S and therefore N(c) ⊆ Nx∗ . As Nx∗ ⊆ N(c) by construction, we
obtain an equality and thus N(c) = Nx∗ is a maximal element in c. This shows that every linearly
ordered subset of C contains an upper bound. Zorn’s lemma therefore implies that C contains a
maximal element.

Finally, we suppose that every non-empty collection of submodules of M contains a maximal
element. We need to show that every increasing sequence of submodule eventually stabilizes. By
assumption, any such sequence contains a maximal element and therefore the claim follows. □

Definition A.2. An A-module M is Noetherian if it satisfies any of the three equivalent con-
ditions in Proposition A.1.1. The ring A is Noetherian if it is Noetherian as an A-module.

Proposition A.1.2. Let A be noetherian and let M be an A-module of finite type, then every
submodule and every quotient of M is of finite type.

The proof of Proposition A.1.2 relies on (part of) the following Lemma.
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Lemma A.1.3. Let A a ring and suppose that

0 // L
φ // M

ψ // N // 0 (A.1)

is an exact sequence of A-modules, where L and N are of finite type. Then M is of finite type.

Proof. Let x1, . . . , xr ∈ L and z1, . . . , zt ∈ N such that

L = A.x1 + · · ·+A.xr,

N = A.z1 + · · ·+A.zt.

Set y1 = φ(x1), . . . , yr = φ(xr). By exactness, we can find yr+1, . . . , yr+t ∈M such that ψ(yr+j) = zj
for all 1 ⩽ j ⩽ t. Then M is generated by {y1, . . . , yr+t} over A. Indeed, suppose that y ∈ M is
arbitrary and choose ar+1, . . . , ar+t ∈ A such that

ψ(y) =

t∑
j=1

ar+jzj .

It follows that y−ar+1yr+1−· · ·−ar+tyr+t is an element of the kernel of ψ and therefore lies in the
image of φ, i.e., is an A-linear combination of y1, . . . , yr. In particular, y is an A-linear combination
of y1, . . . , yr+t. □

Proof of Proposition A.1.2. The second part is immediate as any generating set for M
projects to a generating set for the quotient.

So we only need to show that M is noetherian. Suppose that M admits a generating set of
cardinality d ∈ N. Then M (and every submodule) is the homomorphic image (of a submodule)
of Ad. Therefore it suffices to show that Ad is noetherian.

If d = 1, then this follows from the assumptions. So suppose that Ad−1 is noetherian with d > 1.
Let now M be a submodule of Ad and consider the maps φ : A→ Ad and ψ : Ad → Ad−1 given

by

φ(a) = (0, . . . , 0, a), ψ(a1, . . . , ad) = (a1, . . . , ad−1).

Then

0 // φ(A) ∩M // M // ψ(M) // 0

is a short exact sequence of A-modules as in (A.2). Indeed, ψ(M) is of finite type as it is a submodule
of Ad−1 and φ(A) ∩M is of finite type as it is a submodule of φ(A) ∼= A. □

Corollary A.1.1. Let A a noetherian ring and suppose that

0 // L
φ // M

ψ // N // 0 (A.2)

is an exact sequence of A-modules. If M is of finite type, then so are L and L.

Proof. By exactness, we know that ψ is surjective and thus any generating set ofM is mapped
onto a generating set of N . Thus N is of finite type.

Using exactness once more, we know that φ is injective and thus L is isomorphic to a submodule
of M . As of Proposition A.1.2, M is noetherian and thus φ(L) is of finite type and thus so is L. □

Corollary A.1.2. Let A be a noetherian ring and R/A a ring extension. Suppose that z ∈ R
is integral over A. Then A[z] is noetherian.

Proof. If z is A-integral, then A[z] is an A-module of finite type (generated by 1, z, · · · zd−1,
where d is the degree of any monic polynomial in A[X] annihilating z) and by Proposition A.1.2,
any A[z]-ideal a ⊂ A[z] is f.t. as an A-module and, a fortiori, as an A[z]-module. □
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A.1.2. Prime factorisation in a PID. Recall that a ring A is noetherian if every ideal is
finitely generated. In what follows, we recall properties of a special class of noetherian rings, namely
the zero-divisor free rings for which every ideal is generated by a single element.

Definition A.3. A Principal Ideal Domain (PID) A is a ring which is a domain, that is,

∀a, b ∈ A a.b = 0A =⇒ a = 0A or b = 0A,

and such that every ideal, i.e., for every ideal a ⊂ A there is m ∈ A such that

a = (m) = m.A.

Theorem A.1 (Factorisation in PIDs). Let A be a PID A.

(1) Every non-zero prime ideal in A is maximal:

Spec(A) \ {(0)} = Specmax(A).

(2) For every ideal a ∈ IA there exists a unique tuple of natural integers (vp(a))p∈Spec(A) such
that

– vp(a) = 0 for all but finitely many p, and
– a can be written as the following (finite) product

a =
∏

p∈Spec(A)

pvp(a),

where we define p0 = A.

Alternatively, if one chooses for every prime ideal p a generator (i.e., an element p ∈ p such
that p = (p)), then by considering the prime factorisation of the principal ideal generated by m

(m) =
∏
p

pvp((m)),

we obtain that any m ∈ A can be written as a product of prime powers:

m = u.
∏
p

pvp(m),

where u ∈ A× and vp(m) = vp
(
(m)

)
. Moreover, given a choice of a generator p for each prime

ideal p, this factorisation of m is unique.

Proof. The proof of both statements relies on the fact that every PID is a unique factorization
domain (UFD), i.e., every element in a PID is a finite product of finitely many irreducible elements
and the irreducible factors are unique up to multiplication by a unit. Moreover, in a PID every
irreducible element is prime. We leave the remainder of the argument to the reader and refer to [1]
for details. □

Definition A.4. Given an ideal a ∈ IA and a prime p ∈ Spec(A), the integer vp(a) is called
the valuation of a at p or the p-adic valuation of a.

Because of this, the standard factorisation properties of Z extend to ideals of a general PID. We
have the following properties

a|b⇐⇒ ∀p, vp(a) ⩽ vp(b).

a.b =
∏
p

pvp(a)+vp(b)

a ∩ b = largest ideal contained in a and b =: [a, b] =
∏
p

pmax(vp(a),vp(b))

a+ b = smallest ideal containing both a and b =: (a, b) =
∏
p

pmin(vp(a),vp(b)).
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or in other terms

vp(a.b) = vp(a) + vp(b),

vp(a ∩ b) = vp([a, b]) = max(vp(a), vp(b))

vp(a+ b) = vp((a, b)) = min(vp(a), vp(b))

In particular two ideals a, b in a PID are coprime (that is a+ b = A) iff their valuation functions

v•(a) : p 7→ vp(a), v•(b) : p 7→ vp(b)

have disjoint support:

(a, b) = A ⇐⇒ ∀p, vp(a).vp(b) = 0.

A.2. Finitely generated modules over a PID

Definition A.5. Let A be a PID and M be an A-module.

– M is of finite type/finitely generated (in short, M is f.t.) if there exists a finite set
{m1, · · · ,mr} ⊂M such that M is generated by {m1, · · · ,mr} as an A-module, i.e.,

M =
∑
i

A.mi =

{∑
i

ai.mi, ai ∈ A

}
.

– M is A-free if there is r ⩾ 0 such that

M ≃A Ar.
In other terms, there exists (an A-basis) {e1, · · · , er} ⊂ M such that any m ∈ M can be
written in a unique way as

m =

r∑
i=1

ai.ei, ai ∈ A.

The integer r is uniquely defined and is called the A-rank of M . It is denoted rkA(M).
– M is A-torsion if there exists a ∈ A− {0A} such that a.m = 0M for all m ∈ M . The set

of such a (plus 0A) is an ideal in A, the annihilating ideal of M :

ann(M) = {a ∈ A : ∀m ∈M a.m = 0M}.

We recall the following special case of Proposition A.1.2.

Proposition A.2.1. Let A be a PID. Suppose we have an exact sequence of A-modules

0→ L→M → N → 0.

– If M is f.t., then so are L and N .
– If L and N are f.t., then so is M .

Theorem A.2. Let A be a PID. Any f.t. A-module M is isomorphic to a direct sum

M ≃Mf ⊕Mt,

where Mf ≃ Ar is free and Mt is torsion. Moreover there exists τ ⩾ 1 and a finite sequence of
(non-zero) elements of A such that

A× ̸∋ aτ |aτ−1| · · · |a1
and

Mt ≃
τ⊕
i=1

A/(ai).

In particular, Mt is annihilated by a1:

∀m ∈Mt a1.m = 0.
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The tuple (r, (a1), · · · , (aτ )) is an invariant of M : if

M ≃ Ar ⊕
τ⊕
i=1

A/(ai) ≃ Ar
′
⊕

τ ′⊕
i=1

A/(a′i)

then r = r′, τ = τ ′ and (ai) = (a′i). The integer r is the A-rank ofM and the ideals (a1)|(a2)| · · · |(aτ )
are called the elementary divisors of M . The ideal (a1) = ann(M) is called the annihilating ideal
of M .

Theorem A.3 (Adapted basis). Suppose that N ⊂M is an inclusion of free A-modules of ranks
r′ and r respectively. Then r ⩾ r′ and there exist an A-basis {e1, · · · , er} of M and (a1, · · · , ar′) ∈
Ar

′
such that {a1e1, · · · , ar′er′} is an A-basis of N .
In particular, if r′ = r, the quotient module is torsion:

M/N ≃
r⊕
i=1

A/(ai).

Remark A.2. The fundamental case is A = Z: a Z-module of finite type is then a finitely
generated abelian group.

Since A is a domain, we write

Q = Frac(A) =
{a
b
: a, b ∈ A, b ̸= 0

}
for its field of fractions.

Proposition A.2.2. Let r ⩾ 1 and let f : Ar → Ar be an A-linear map. We assume that f
extended to a Q-linear map f : Qr → Qr is invertible (det f ̸= 0), then Ar/f(Ar) is torsion and if,
as above, we have

Ar/f(Ar) ≃
r⊕
i=1

A/(ai),

then

(det f) =

r∏
i=1

(ai).

Proof. Let B = {e1, · · · , er} be a basis of Ar adapted to f(Ar) as in Theorem A.3. Then B is
a Q-basis of Qr. Let f(B) = (f(e1), · · · , f(er)). Then f(B) is a basis of f(Ar) and a Q-basis of Qr

by assumption. Let g be the linear map such that g
(
f(ei)

)
= aiei. Then g is an automorphism

of f(Ar), so its matrix in the basis f(B) as well as its inverse have coefficients in A. Therefore det g
and det g−1 = (det g)−1 are both in A; in particular, det g ∈ A×. The matrix of g ◦ f is the diagonal
matrix diag(a1, · · · , ar) and has determinant a1. · · · .ar = det g.det f . Since det g ∈ A× we have

(det f) = (a1. · · · .ar).
□

A.2.1. Lattices in Rr. A case of particular interest to this course is given by the PID Z,
whose field of fractions embeds into R. Under some additional topological assumption (discreteness)
which will always be satisfied in the cases of interest, the theory of finitely generated Z-modules in
Rr admits a very geometric interpretation which we will develop in this section.

Proposition A.2.3. Let r ∈ N and suppose that Γ < Rr is a non-trivial subgroup. The following
are equivalent.

(L1) Γ < Rr is discrete.
(L2) There is ℓ ∈ N and (v1, . . . , vℓ) ∈ (Rr)ℓ linearly independent such that

Γ = Zv1 + · · ·+ Zvℓ.
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Definition A.6. Let 1 ⩽ ℓ ⩽ r and B = (v1, . . . , vℓ) ∈ (Rr)ℓ linearly independent. Let Γ < Rr
a discrete subgroup. We say that B is a Z-basis of Γ if

Γ = Zv1 + · · ·+ Zvℓ.

Proof of Proposition A.2.3. We first prove that (L2) implies (L1). So let’s assume that (L2)
holds. We have to show that there is a neighbourhood U of 0 ∈ Rr such that Γ∩U = {0}. If ℓ < r,
we can find vℓ+1, . . . , vr ∈ R such that B = (v1, . . . , vr) is a basis of R. Define

U = {t1v1 + · · ·+ trvr : |ti| < 1/2}.
Then U is the open ball of radius 1/2 with respect to the sup-norm defined by the basis B, and
therefore a neighbourhood of 0.

Let v ∈ Γ ∩ U . Then there are (n1, . . . , nℓ) ∈ Zℓ and (t1, . . . , tr) ∈ (−1/2, 1/2)r such that

v = n1v1 + · · ·+ nℓvℓ = t1v1 + · · ·+ trvr.

As the representation of v in terms of the elements of B is unique, it follows that for all 1 ⩽ i ⩽ r
we have t1, . . . , tr ∈ Z ∩ (−1/2, 1/2) = {0}. Hence (L1) follows.

We now turn to the proof that (L1) implies (L2). Let V = spanR(Γ) ⊆ Rr be the subspace
spanned by Γ and let n = dim(V ). As Γ is non-trivial, we know that n ⩾ 1. Moreover, V is
homeomorphically isomorphic to Rn and thus we can assume without loss of generality that V = Rr.
We will prove that (L1) implies (L2) by induction on r.

If r = 1, the result is standard, but we repeat it for the sake of completeness. As of (L1), we
know that there is ε > 0 such that (−ε, ε) ∩ Γ = {0}. In particular, there is γ ∈ Γ ∩ (0,∞) such
that v ∈ Γ \ {0} implies |v| ⩾ γ. Note that Zγ < Γ. Therefore it remains to show that Γ ⊆ Zγ.
Suppose that v ∈ Γ. Then there is n ∈ Z such that v − nγ ∈ [0, γ). In particular, |v − nγ| < γ and
therefore v − nγ = 0. As v was arbitrary, it follows that Γ ⊆ Zγ.

Now suppose that r > 1 and (L2) is true for discrete subgroups of Rk with 1 ⩽ k < r. We denote
by ∥·∥2 the Euclidean norm defined with respect to the standard basis on Rr. As Γ is discrete, there
again is a shortest vector in Γ, i.e., we can find γ ∈ Γ \ {0} such that for any v ∈ Γ \ {0} we have

∥v∥2 ⩾ ∥γ∥2.
Let W = γ⊥ denote the orthogonal complement of spanR{γ} in Rr and denote by π : Rr → W the
canonical projection. We claim that π(Γ) < W is a discrete subgroup. To this end, let w ∈ π(Γ)
non-zero. Let v ∈ Γ \ {0} such that w = π(v). Then v = w + tγ for some t ∈ R. Note that for
any n ∈ Z we have v + nγ ∈ Γ and π(v + nγ) = π(v) = w. Thus we can assume without loss of
generality that v = w + tγ for some t ∈ [−1/2, 1/2). As w ⊥ γ, we obtain that

∥w∥22 + t2∥γ∥22 = ∥v∥22 ⩾ ∥γ∥22
and therefore

∥w∥2 ⩾
√

1− t2∥γ∥2 ⩾

√
3

2
∥γ∥2.

This proves discreteness of π(Γ) in W . By induction, there is (w1, . . . , wr−1) ∈ W r−1 linearly
independent such that

π(Γ) = Zw1 + · · ·Zwr−1.

Let v1, . . . , vr−1 ∈ Γ such that π(vi) = wi and let vr = γ. Then (v1, . . . , vr) is linearly independent.
Moreover, given v ∈ Γ there is a unique tuple (n1, . . . , nr−1) ∈ Zr−1 such that

π(v) = n1w1 + · · ·+ nr−1wr−1 = π(n1v1 + · · ·+ nr−1vr−1).

Thus there is t ∈ R such that

v − n1v1 − · · · − nr−1vr−1 = tγ ∈ Γ.

Again, we can write t = nr + τ for some nr ∈ Z and τ ∈ [−1/2, 1/2). Rearranging, we obtain

v − n1v1 − · · · − nrvr = τγ ∈ Γ.
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As ∥τγ∥2 < ∥γ∥2, the choice of γ implies that τ = 0 and therefore we have shown that

v ∈ Zv1 + · · ·+ Zvr.

□

Definition A.7. Let r ∈ N∪{0}. A lattice in Rr is a discrete subgroup Γ < Rr which contains
a basis of Rr, i.e., spanR(Γ) = Rr.

Let Γ < Rr be a discrete subgroup. A fundamental domain for the action of Γ on Rr is a
non-empty Borel measurable set F ⊆ Rr satisfying

Rr =
⊔
γ∈Γ

(F + γ).

Lemma A.2.4. Let r ∈ N ∪ {0} and Γ < Rr a discrete subgroup. Then Γ ↷ Rr admits a
fundamental domain F ⊆ Rr. The volume of F only depends on Γ and F can be chosen to have
compact closure if and only if Γ is a lattice.

Proof. If r = 0, the only non-empty subset of Rr is {0} and necessarily Γ = {0}. We leave it
to the reader to check that F = {0} is a fundamental domain in this case. Moreover, in this case F
is necessarily unique.

Suppose now that r ⩾ 1 and let (v1, . . . , vm) ∈ (Rr)m be a Z-basis of Γ and extend it to a basis
B = (v1, . . . , vr) of Rr. We leave it as an exercise to check that the set

F(B) =
{
t1v1 + · · ·+ trvr : t1, . . . , tm ∈ [0, 1), tm+1, . . . , tr ∈ R

}
is a fundamental domain for Γ ↷ Rr. This implies the existence and clearly it has compact closure
if and only if m = r, i.e., if and only if Γ is a lattice.

It remains to show that the volume of a fundamental domain for Γ ↷ Rr depends only on Γ.
Since the Lebesgue measure is finite on compact sets, this also implies that discrete subgroups which
aren’t lattices don’t admit precompact fundamental domains.

To this end let F1, F2 ⊆ Rr be fundamental domains for Γ ↷ Rr and let vol denote the Lebesgue
measure on Rr. We then have

vol(F1) =
∑
γ∈Γ

vol
(
F1 ∩ (F2 + γ)

)
=
∑
γ∈Γ

vol
(
(F1 − γ) ∩ F2

)
= vol(F2).

Hence the volume of any two fundamental domains agrees, which implies the claim. □

Lemma A.2.4 allows us to make the following definition.

Definition A.8. Let r ∈ N ∪ {0} and let Γ < Rr a lattice. The covolume covol(Γ) of Γ is
defined as follows. Let F ⊆ Rr be any fundamental domain for Γ ↷ Rr, then

covol(Γ) = vol(F ).

Lemma A.2.5. Let r ∈ N and let Γ < Rr a lattice. Then there is g ∈ GLr(R) such that

Γ = Zrg = {vg : v ∈ Zr}

and [0, 1)rg is a fundamental domain for Γ ↷ Rr. In particular, covol(Γ) = |det(g)|.

Proof. Let B = (v1, . . . , vr) ∈ (Rr)r a Z-basis of Γ and define g ∈ Matr(R) to be the matrix
whose i-th row equals vi. If E = (e1, . . . , er) ∈ (Rr)r denotes the standard basis of Rr, then one
has vi = eig and thus

Γ = {n1v1 + · · ·+ nrvr : ni ∈ Z}
= {(n1e1 + · · ·+ nrer)g : ni ∈ Z}
= {vg : v ∈ Zr} = Zrg.
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Moreover, the same manipulations show that, using the notation from the proof of Lemma A.2.4,
we have F(B) = F(E)g and hence

covol(Γ) = vol
(
F(B)

)
= vol

(
F(E)g

)
= vol

(
F(E)

)
|det g| = |det g|,

as F(E) = [0, 1) has unit volume. □

Corollary A.2.1. The map GLr(Z)\GLr(R) given by GLr(Z)g 7→ Zrg is well-defined and gives
a one-to-one correspondence between the set L(Rr) of lattices in Rr and the quotient GLr(Z)\GLr(R).

A.2.2. Q-lattices. In this section we return to Z-modules in Qr and use our understanding of
lattices in Rr to give a concise description.

Definition A.9. Let V a Q-vector space of finite dimension. A Q-lattice Γ ⊆ V in V is a
finitely generated Z-submodule such that spanQ(Γ) = V .

Proposition A.2.6. Let r ∈ N ∪ {0}. The set L(Qr) of Q-lattices in Qr is in one-to-one
correspondence with GLr(Z)\GLr(Q) via the map

GLr(Z)\GLr(Q) 7→ L(Qr)
GLr(Z)g 7→ Zrg .

Proof. Extension of scalars Qr ↪→ Qr ⊗Q R ∼= Rr gives rise to an embedding L(Qr) ↪→ L(Rr),
where a lattice Γ < Rr lies in the image of L(Qr) under the embedding if and only if Γ is contained
in the image of Qr, i.e., the Q-linear hull of E inside Rr. This is the case if and only if Γ = Zrg for
some g ∈ GLr(Q) and hence the claim. □

A.3. Finite dimensional algebras over a field

For the rest of this chapter our main interest concerns the case of torsion modules for the
ring Q[X] of polynomials over a field Q. Since Q[X] is a PID and Q[X]× = Q×, any proper ideal is
generated by a unique monic polynomial. In particular, if V is a finite dimensional Q-vector space
and z ∈ EndQ(V ) is a linear map, then V becomes a torsion Q[X]-module via the map

evz : P ∈ Q[X] 7→ P (z) ∈ EndQ(V )

and the monic generator of the annihilating ideal is the minimal polynomial of z, denoted Pmin,z.

Let Q be a field, Q an algebraic closure, and K a Q-algebra (with unit) of finite dimension as
a Q-vector space. We will assume that K is non-trivial and identify Q with a subfield of K, namely

Q ≃ Q.1K ⊂ K.

We may and will therefore assume that

Q ⊂ K

and hence that 0K = 0Q and 1K = 1Q.
A basic (in general non-commutative) example is the algebra K = EndQ(V ) of endomorphisms

of a finite dimensional Q-vector space V : we have dimQ(K) = d2, where d = dimQ(V ).
Another basic example is K being a field extension of Q of finite Q-dimension.

Definition A.10. Let K/Q be a finite dimensional Q-algebra. Its dimension is also called the
degree of K/Q and is denoted

dimQ(K) = deg(K/Q) = [K : Q].

A.3.1. Polynomials, minimal and characteristic.
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A.3.1.1. Minimal polynomial. Given z ∈ K, the “evaluation at z-map”

evz :
Q[X] 7→ K
P 7→ evz(P ) = P (z)

is a Q-algebra morphism whose kernel is an ideal of Q[X], hence principal. Since

Q[X]/ ker(evz) ≃ Q[z] ⊂ K

and K is finite dimensional, the kernel is non-zero and has a unique monic generator called the
minimal polynomial of z over Q, which is denoted PQ,min,z:

ker(evz) = {P ∈ Q[X] : P (z) = 0K} = PQ,min,z.Q[X] = (PQ,min,z).

As Q[X]/(PQ,min,z) ≃ Q[z], we have that

deg(PQ,min,z) = dimQQ[z] =
[
Q[z] : Q

]
.

The integer

degQ(z) = deg(PQ,min,z)

is called the degree of z over Q.

Remark A.3. If K is a field, then Q[z] ⊂ K is a domain and, since

Q[z] ≃ Q[X]/(PQ,min,z),

the ideal (PQ,min,z) prime and hence is maximal (since Q[X] is a PID): PQ,min,z is an irreducible
polynomial.

A.3.1.2. Characteristic polynomial. To any z ∈ K, we also associate the (Q-linear) “multiplica-
tion by z”-map

[×z]K/Q :
K 7→ K
x 7→ z.x

.

Remark A.4. The index •K/Q is sometimes necessary: for instance, if we have a tower of
algebras Q ⊂ K ⊂ L and z ∈ K, then z acts on K and L but the maps [×z]K/Q and [×z]L/Q
are obvioulsy different. However, if the algebra K/Q on which z acts is clear from context, we will
simply write [×z] instead of [×z]K/Q.

Lemma A.3.1. The map

[×•]K/Q : z ∈ K → [×z]K/Q ∈ EndQ(K)

is injective and K can be identified with a subalgebra of EndQ(K). For any z ∈ K, define the
following annihilating ideals (in Q[X]):

Ann
(
[×z]K/Q

)
= {P ∈ Q[X] : P ([×z]) = 0EndQ(K)},

AnnK/Q(z) = {P ∈ Q[X] : P (z) = 0K}.

Then Ann
(
[×z]K/Q

)
= AnnK/Q(z) and, therefore, the minimal polynomial PK/Q,min,z of the linear

map [×z] is equal to the minimal polynomial PQ,min,z of z over Q.

Proof. Given z ∈ K s.t. [×z] = 0EndQ(K), we have

0K = [×z](1K) = z.1K = z.

This proves injectivity. The equality of the ideals follows from [×•]K/Q being a homomorphism
of Q-algebras, i.e., for any P ∈ Q[X] and for any z ∈ K we have that

[×P (z)]K/Q = P
(
[×z]K/Q

)
.

□
By Cayley-Hamilton we know at least one non-zero element of Ann

(
[×z]K/Q

)
.
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Definition A.11. The characteristic polynomial PK/Q,car,z(X) ∈ Q[X] of z is the characteristic
polynomial of [×z]K/Q: if d = [K : Q] denotes the degree, then we have

PK/Q,car,z(X) = det(X.IdK − [×z]K/Q) = Xd − tr([×z]K/Q)Xd−1 + · · ·+ (−1)d det([×z]K/Q).
It belongs to Ann([×z]K/Q) by the Cayley-Hamilton theorem. In particular, one has

PQ,min,z|PK/Q,car,z.

A.3.2. Norm and trace.

Definition A.12. The d− 1-th coefficient (multiplied by −1) and the constant coefficient (mul-
tiplied by (−1)d) are respectively the trace and the determinant of [×z]K/Q. They are also called
the K/Q-trace and the K/Q-norm of z:

tr([×z]K/Q) =: trK/Q(z), det([×z]K/Q) =: NrK/Q(z).

Remark A.5. If we factor the characteristic polynomial over Q

PK/Q,car,z(X) =
d∏
i=1

(X − zi)

(the roots zi are the eigenvalues of [×z]), then we obtain the formula

trK/Q(z) = z1 + · · ·+ zd, NrK/Q(z) = z1. · · · .zd.
Remark A.6. For any P ∈ Q[X] we have

trK/Q
(
P (z)

)
= P (z1) + · · ·+ P (zd), NrK/Q

(
P (z)

)
= P (z1). · · · .P (zd)

since, for any P ∈ Q[X],
[×P (z)]K/Q = P

(
[×z]K/Q

)
and the eigenvalues of P

(
[×z]K/Q

)
are the P (zi), i = 1, · · · , d.

Proposition A.3.2. The trace map

trK/Q : z ∈ K → trK/Q(z) ∈ Q
is a Q-linear form and the norm map

NrK/Q : z ∈ K → NrK/Q(z) ∈ Q
is multiplicative:

∀λ ∈ Q, z, z′ ∈ K, trK/Q(λz + z′) = λtrK/Q(z) + trK/Q(z
′),

NrK/Q(z.z
′) = NrK/Q(z).NrK/Q(z

′).

Moreover, for λ ∈ Q, one has

trK/Q(λ) = d.λ, NrK/Q(λ) = λd.

If K is a field, we have
∀z ∈ K, NrK/Q(z) = 0 ⇐⇒ z = 0.

Proof. This is a direct consequence of the linearity of the trace and the multiplicativity of the
determinant and the fact that

z 7→ [×z]K/Q
is a K-algebra morphism. Moreover for λ ∈ Q,

[×λ]K/Q = λIdK .

Finally, if K is a field, using that an injective algebra homomorphism gives an isomorphism between
the group of units and the group of units in the image, we obtain that

z ̸= 0K ⇐⇒ [×z]K/Q is invertible ⇐⇒ det
(
[×z]K/Q

)
̸= 0.

(Note that for z ̸= 0 we have [×z]−1
K/Q = [×z−1]K/Q.) □
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A.3.2.1. Transitivity relation. Consider an inclusion of finite dimensional Q-algebras

Q ⊂ K ⊂ L

and suppose that K is a field, then L is a K-vector space.

Proposition A.3.3 (Transitivity for degree, the trace and the norm). We have for any z ∈ K

PL/Q,car,z(X) = PK/Q,car,z(X)[L:K].

In particular, we have

[L : Q] = [L : K].[K : Q]

and

trL/Q(z) = [L : K].trK/Q(z), NrL/Q(z) = NrK/Q(z)
[L:K].

Proof. Let ℓ = [L : K], d = [K : Q], (e1, · · · , ed) a Q-basis of K and (f1, · · · , fℓ) a K-basis
of L. Then

L =
⊕
j

K.fj =
⊕
i,j

Qei.fj .

Moreover the Q-subspaces K.fj =
⊕

iQei.fj are stable under [×z]L/Q (because z.K ⊂ K). There-
fore, the marix of [×z]L/Q in the basis

(e1.f1, . . . , ed.f1, . . . , e1.fℓ, . . . , ed.fℓ) (A.3)

is block-diagonal with [L : K]-many blocks which are the matrices of [×z]K/Q in the basis (e1, . . . , ed).
Therefore, we have

PL/Q,car,z(X) = PK/Q,car,z(X)[L:K].

□
Regarding the minimal polynomial we have the following Proposition.

Proposition A.3.4. We have

PL/Q,min,z = PK/Q,min,z.

Proof. As we have seen, in the basis (A.3), the matrix of [×z]L/Q is block-diagonal with
diagonal blocks identical to the matrices of [×z]K/Q. Therefore, any polynomial in Q[X] annihi-
lating [×z]K/Q also annihilates [×z]L/Q. On the other hand, if P ∈ Q[X] annihilates [×z]L/Q,
since K ⊂ L is [×z]L/Q-invariant we have

0 = P ([×z]L/Q)|K = P ([×z]L/Q|K) = P ([×z]K/Q)

and thus every polynomial that annihilates [×z]L/Q also annihilates [×z]K/Q. In particular, we have

Ann
(
[×z]L/Q

)
= Ann

(
[×z]K/Q

)
and therefore the claim. □

A.3.2.2. Trace bilinear form.

Definition A.13. The trace bilinear form of the extension K/Q is the form

(z, z′) ∈ K2 7→ ⟨z, z′⟩K/Q := trK/Q(zz
′) ∈ Q.

Recall that a bilinear form is called non-degenerate if the dual map

K 7→ K⋆

z 7→ z⋆ := ⟨z, ·⟩K/Q : z′ 7→ ⟨z, z′⟩K/Q
is bijective.
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A.3.2.3. Discriminant. Let us recall a numerical criterion for a bilinear form to be non-degenerate:
A bilinear form is non-degenrate if and only if its discriminant does not vanish.

Definition A.14. Let K/Q be a finite dimensional Q-algebra and let z = (z1, · · · , zn) ∈ Kn be
an n-tuple; the discriminant of z (with respect to the bilinear trace form) is the determinant of the
matrix (⟨zi, zj⟩K/Q)i,j⩽n:

discK/Q(z) := det
(
(⟨zi, zj⟩K/Q)i,j

)
.

The most interesting case is when (z1, · · · , zn) = B is a Q-basis of K.

Proposition A.3.5. The bilinear trace form ⟨·, ·⟩L/K is non-degenerate if and only if there is
at least one Q-basis B = (e1, · · · , en) of K such that

discK/Q(B) ̸= 0.

In that case for any Q-basis B′ of K one has discK/Q(B′) ̸= 0 and for any tuple z = (z1, · · · , zn) ∈ Kn

one has
discK/Q(z) ̸= 0 ⇐⇒ z is a Q-basis.

Remark A.7. Let us recall that, if z ∈ Kn is an n-tuple and M is the matrix giving the
coordinates of z in the basis B = (e1, · · · , en), then

discK/Q(z) = (detM)2discK/Q(B).
This implies the second part of Proposition A.3.5.

The following definition will be useful.

Definition A.15. Let K/Q be a finite dimensional Q algebra of dimension d and let z ∈ K.
We define the discriminant of z to be

discK/Q(z) = discK/Q(1, z, · · · , zd−1).

Remark A.8. If discK/Q(z) ̸= 0, then (1, z, · · · , zd−1) is a Q-basis of K. In particular, z is
algebraic over Q and K = Q[z] = Q(z) is a field.

A.4. Commutative separable algebras

Given a field Q, we denote by Q its algebraic closure. In particular, whenever we have a finite
dimensional Q-vector space V (which we identify with some Qr by choosing some basis) and a linear
endomorphism f : V → V , we can look at the eigenvalues, eigenvectors, as well as the (generalized)
eigenspaces of f (or the matrix representing f) when we pass to the algebraic closure Q. In more
canonical terms, we look at the spectral properties of f in the Q-vector space V = V ⊗Q Q.

We will apply this to the case where K/Q is a commutative finite dimensional Q-algebra and
to the endomorphisms [×z]K/Q ∈ EndQ(K).

In particular, if we factor the minimal polynomial PQ,min,z in Q, say

PQ,min,z(X) =

d∏
i=1

(X − zi)ei ,

its roots
{zi : i = 1, · · · , d}, d ⩽ degQ(z)

are the eigenvalues of the (matrix of) [×z]K/Q (relative to a(ny) Q-basis of K).

Definition A.16. Let K/Q be a commutative finite dimensional Q-algebra. We say that z ∈ K
is separable (sometimes one says semisimple) if one of the following equivalent conditions is satisfied.

– PQ,min,z has only simple roots (i.e. d = dimQ(z) or equivalently ei = 1 for i = 1, · · · d).
– The matrix of [×z]K/Q (computed in any Q-basis of K) is diagonalisable in Q.

The commutative Q-algebra K/Q is separable if every element in K is separable.
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Remark A.9. Let us observe that a polynomial P ∈ Q[X] has only simple roots (i.e., is sepa-
rable) if and only if

gcd(P, P ′) = 1,

where gcd(P, P ′) is the unique monic generator of the ideal generated by P and P ′.

Let us spell out what diagonalizability means.
Fix a Q-basis B of K. Given T ∈ EndQ(K), we denote by MB,T ∈Md(Q) the matrix represen-

tation of T with respect to the basis B. Then the map

z ∈ K 7→Mz :=MB,[×z]K/Q
∈Md(Q)

identifies K with a commutative algebra of d× d-matrices which we will still denote by K. Then z
is separable if and only if there exists gz ∈ GLd(Q) (the base change matrix) such that

Ad(gz)(Mz) = gz.Mz.g
−1
z ∈Md(Q)

is diagonal.

Theorem A.4. Let K/Q be a finite dimensional commutative Q-algebra. The set

Ksep = {z ∈ K : z is separable} ⊂ K

of separable elements of K/Q is a Q-subalgebra of K and is the maximal separable subalgebra of K.
It is called the separable closure of Q in K.

In particular if K is generated as a Q-algebra by separable elements, then K is separable.

Proof. It suffices to show that for any z1, z2 ∈ K every element of Q[z1, z2] is separable.
Choose a basis B of K/Q and letMz1 andMz2 be the associated matrices of [×z1]K/Q and [×z2]K/Q
respectively. Since z1, z2 commute, the endomorphisms [×z1]K/Q and [×z2]K/Q commute and if they

are both diagonalisable they can be diagonalized simultaneously in a common basis (of Q
d
): this

follows from the fact that the eigenspaces of Mz1 in Q
d
are preserved by Mz2 (because Mz1 and Mz2

commute) and the restriction of a diagonalizable map to a subspace is again diagonalizable. That
is, there exists g ∈ GLd(Q) such that

g.Mz1 .g
−1, g.Mz2 .g

−1 ∈ diagd(Q).

Since the map

Ad(g) : M ∈Md(Q) 7→ g.M.g−1 ∈Md(Q)

is a Q-algebra homomorphism, since the set of diagonal matrices diagd(Q) is a subalgebra ofMd(Q),
and since the map

z ∈ K 7→Mz ∈Md(Q)

is also aQ-algebra homomorphism, for any P (Z1, Z2) ∈ Q[Z1, Z2] the matrix of P ([×z1]K/Q, [×z2]K/Q)
is also diagonalisable: we have

MP ([×z1]K/Q,[×z2]K/Q) = P (Mz1 ,Mz2)

and

Ad(g)
(
P (Mz1 ,Mz2)

)
= P

(
Ad(g)(Mz1),Ad(g)(Mz2)

)
∈ diagd(Q).

The remaining two statements follow immediately from the the first part of the proposition. □

Definition A.17. A commutative algebra K/Q is separable if Ksep = K; equivalently K is
separable if every element of K is separable or if K is generated as a Q-algebra by separable elements.
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A.4.1. Relation with the trace and the norm. Let K/Q be a separable commutative
finite dimensional Q-algebra; since all the matrices Mz, z ∈ K, commute, these matrices can be
simultaneously diagonalized in a common basis: there exists a matrix g ∈ GLd(Q) such that for
every z ∈ K we have

Ad(g)(Mz) = g.Mz.g
−1 ∈ diagd(Q) ≃ Qd.

Since

Ad(g) : Md(Q) 7→Md(Q)

is a Q-algebra automorphism of Md(Q), we have an injective algebra homomorphism

σ = σg : z ∈ K 7→ g.Mz.g
−1 ∈ diagd(Q).

In what follows, we assume implicitly a fixed g as above.
Given z ∈ K, we have

σ(z) = diag
(
σ1(z), · · · , σd(z)

)
and the entry σi(z) is the i-th eigenvalue of the matrix Mz (for the ordering determined by g). Note
that, as σ is a morphism of Q-algebras, for i = 1, · · · , d the maps

σi : z 7→ σi(z) ∈ Q

are Q-algebra morphisms from K to Q. Observe also that the map σ is injective (being the compo-
sition of two injective maps).

Considering the characteristic polynomial, we have that for all z ∈ K

PK/Q,car,z(X) =

d∏
i=1

(
X − σi(z)

)
(A.4)

trK/Q(z) =

d∑
i=1

σi(z), NrK/Q(z) =

d∏
i=1

σi(z). (A.5)

Using these relations, we deduce the following formula for the discriminant of the trace bilinear
form ⟨·, ·⟩K/Q:

Proposition A.4.1. Let K be a finite dimensional commutative separable algebra over Q and
denote by d = [K : Q] its degree. Let (z1, · · · , zd) ∈ Kd be a d-tuple. Then

discK/Q(z1, · · · , zd) = det
(
(trK/Q(zizj))i,j⩽d

)
= det

(
(σk(zi))i,k⩽d

)2
.

Moreover, the trace bilinear form ⟨·, ·⟩K/Q is non-degenerate.

Proof. Since the σi, i = 1, · · · , d, are algebra morphisms, we have the following identities
between d× d matrices over Q:

(
trK/Q(zizj)

)
i,j⩽d

=

(∑
k

σk(zizj)

)
i,j⩽d

=

(∑
k

σk(zi)σk(zj)

)
i,j⩽d

= (σk(zi))i,k⩽d × (σk(zj))k,j⩽d =M × tM

and taking determinants we have

det
(
(trK/Q(zizj)

)
i,j⩽d

) = det(M)2 = det
(
(σk(zi))i,k⩽d

)2
.

□
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A.5. The case of fields

In this section we consider the case whereK is a field containing (and of finite dimension over) Q.
Without loss of generality we may assume that K is a subfield of an algebraic closure of Q:

Q ⊂ K ⊂ Q.

The important difference in comparison to the general case of commutative algebras is that for z ∈ K
the minimal polynomial PQ,min,z(X) is irreducible: indeed the evaluation map

P (X) ∈ Q[X] 7→ evz(P ) = P (z) ∈ K

has for image the domain

Q[z] ≃ Q[X]/(PQ,min,z)

and therefore PQ,min,z is irreducible and Q[z] is a field.

A.5.1. Non-separable elements. The next result shows that if K is a field, most if its
elements are separable unless we are in a very special situation.

Proposition A.5.1. If z ∈ K is not separable, then the characteristic of Q, p say, is non-zero
and there exist k ⩾ 1 and an irreducible polynomial R ∈ Q[X] with only simple roots such that the
minimal polynomial PQ,min,z(X) is of the form

PQ,min,z(X) = R(Xpk).

In particular,

pk deg(R) = [Q[z] : Q]|[K : Q].

Conversely if PQ,min,z is of that shape, then z is not separable.

Proof. Let us recall that z is separable if and only if its minimal polynomial is coprime to its
first derivative:

(PQ,min,z, P
′
Q,min,z) = 1.

However, as K is a field, PQ,min,z is irreducible and thus coplrime to P ′
Q,min,z (and hence z is

separable) unless

P ′
Q,min,z = 0.

Write

PQ,min,z(X) = Xd + ad−1X
d−1 + · · ·+ a0.

We have

P ′
Q,min,z(X) = dXd−1 + ad−1(d− 1)Xd−2 + · · ·+ a1.

As z is non-separable, we have P ′
Q,min,z = 0 and therefore for any k ⩾ 1 with ak ̸= 0 we must

have k.1Q = 0. This can only occur if car(K) = p > 0 and k is a multiple of p. Therefore

PQ,min,z(X) = R1(X
p)

for R1 ∈ Q[X] irreducible. If the roots of R1 are simple we are done. Otherwise, by the same
argument there is an irreducible polynomial R2 ∈ Q[X] such that R1(X) = R2(X

p) and we continue
until we obtain a polynomial with simple roots. □

Corollary A.5.1. A field extension of characteristic zero is separable. A field extension of
degree coprime to the characteristic of Q is separable.

Corollary A.5.2. If Q is a finite field, then any finite degree extension K/Q is separable.

Proof. Write Q = Fq and K = Fqd . Any z ∈ K − {0} is a root of P = Xqd−1 − 1 which has

simple roots since (Xqd−1 − 1)′ = −Xqd−2 which is coprime to Xqd−1 − 1. As PK/Q,min,z|P , z is
separable. □
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A.5.2. Perfect fields.

Definition A.18. A field k is perfect if any algebraic extension of k is separable.

Example A.1. From the previous discussion we know that fields of characteristic 0 and finite
fields are perfect. Obviously algebraically closed fields are perfect.

Exercise A.1. Let Q ⊂ Q be a field of characteristic p and let

Q1/p∞ = {z ∈ Q : zp
k

∈ Q for some k ⩾ 0}
(the set of p-th power roots of elements of Q). Show that Q1/p∞ is a field and that it is perfect.

A.5.3. The primitive element theorem. A fundamental result for separable extensions is

Theorem A.5 (Primitive element). Let K/Q be a finite separable extension. There exists z ∈ K
such that

K = Q[z].

In particular for such z one has

PQ,min,z(X) = PK/Q,car,z(X)

and PK/Q,car,z(X) is irreducible with simple roots.

Proof. If Q is a finite field, then K is finite and K× is cyclic so that K = Q(ζ) where ζ is a
generator of K×.

Suppose now that K is infinite. As K is finitely generated over Q, it is sufficient to show that
if K = Q(x, y) with x, y ∈ K, then K = Q(z) for some z ∈ K. It will turn out that we can find
such z of the shape

zλ = x+ λy

with λ ∈ Q. Set Kλ = Q(zλ). Let P (X) =
∏
i(X − xi) and R(X) =

∏
j(X − yj) be the minimal

polynomials of x and y factorized over Q and assume x = x1, y = y1; since x and y are separable,
the xi are distinct and likewise for the yj . The polynomial Rλ(X) = P (zλ − λX) has coefficients
in Kλ and vanishes at y so R and Rλ have y as a common root. Since K is infinite, we may choose λ
so that y is the only common root: the other roots of R are yj (y1 = y) and the roots of Rλ are

zλ − xi
λ

=
x1 − xi + λy1

λ

for xi running over the roots of P (x = x1).
For such λ we find in particular, that both R and Rλ are divisible by X − y in K[X]. As

they don’t share any further roots, we in fact have that (R,Rλ) = X − y. On the other hand,
we have that (R,Rλ) is invariant under field extension, i.e., (R,Rλ) ∈ Kλ[X]. To this end recall
that the calculation of (R,Rλ) via the Euclidean algorithm only uses arithmetic in the base field
(in this case Kλ). In particular, X − y ∈ Kλ[X] and therefore y ∈ Kλ = Q(zλ). It follows
that x = zλ − λy ∈ Kλ. □

A.5.4. Separability is transitive.

Proposition A.5.2. Consider a tower of finite algebraic extensions Q ⊂ K ⊂ L, then L/Q is
separable iff K/Q and L/K are.

Proof. We may assume that Char(Q) = p > 0. Suppose L/Q separable, then K/Q is obviously
separable and L/K is since for any z ∈ L, PK,min,z divides PQ,min,z which has only simple roots.

Conversely suppose K/Q and L/K separable. Let Lsep be the separable closure of L relative
to Q. By assumption we have K ⊂ Lsep. Since L/K is separable, by the previous discussion L/Lsep

is separable.
We want to deduce that Lsep = L. Given z ∈ L, its minimal polynomial is of the shape R(Xq)

for q = pk, where k is a non-negative (possibly zero) integer and R is irreducible with simple roots
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and coefficients in Q. Recall that z ∈ Lsep if and only if k = 0 and therefore we will show k = 1

(respectively k = 0). Let ρi, i = 1, · · · , r be the simple roots of R in Q. Let ρ
1/q
i ∈ Q be a root of

the polynomial Xq − ρi; there is only one root in fact since

(X − ρ1/qi )q = Xq − ρi
and therefore

PQ,min,z(X) = R(Xq) =
∏
i

(Xq − ρi) =
∏
i

(X − ρ1/qi )q

Suppose z = ρ
1/q
1 , then zq = ρ1 ∈ L and ρ1 is separable over Q since its minimal polynomial is R

which has simple roots. Therefore ρ1 ∈ Lsep. Now PLsep,min,z divides Xq − ρ1, which has only a

single root of order q in Q. Since L/Lsep is separable, we conclude that q = 1 and thus L = Lsep.
□

A.5.5. A trace criterion for separability.

Theorem A.6. Let K/Q be a field extension of degree d. The extension is separable if and only
if the trace bilinear form ⟨·, ·⟩K/Q is non-degenerate.

Proof. If K/Q is separable, then there exists z ∈ K such that

K = Q[z] = Q+Q.z + · · ·+Q.zd−1, d = [K : Q].

Choosing B = {1, · · · , zd−1} as a basis of K/Q, the discriminant formula gives

discK/Q(z) = discK/Q(1, · · · , zd−1) = det
(
(σk(z

i−1)i,k⩽d
)2

= det(
(
σk(z)

i−1)i,k⩽d
)2

since the σk are algebra morphisms.
The determinant det

(
(σk(z)

i−1)i,k⩽d
)
is a Vandermonde determinant and equals

det
(
(σk(z)

i−1)i,k⩽d
)
=
∏
j>i

(σj(z)− σi(z)).

Since z is a generator of K/Q we have

PK/Q,car,z(X) = PK/Q,min,z(X)

and the roots of the latter are the σj(z), j ⩽ d which are all distinct (by definition of separability)
so that

discK/Q(1, · · · , zd−1) = det
(
(σk(z)

i−1)i,k⩽d
)2 ̸= 0.

For the converse we recall a few facts related to (in-)separability.

(1) Let K/L/Q a tower of extensions. Then K/Q is separable if and only if K/L and L/Q
are separable.

(2) Let K/Q be an extension, then

Ksep = {z ∈ K, z is separable over Q}
is a subfield of K.

(3) If K ̸= Ksep, then char(Q) = p ̸= 0 and K/Ksep is purely inseparable, i.e. for all z ∈ K
there is some n ∈ N such that zp

n ∈ Ksep.
(4) If K/Q is not separable, then there exists an intermediate field L such that [K : L] = p

and K is totally inseparable over L. More precisely, there is some ℓ ∈ L such that K is
generated over L by a single root of the irreducible polynomial Xp − ℓ.

So assuming that K/Q is inseparable, one first chooses an intermediate field K/L/Q as in the last
item above and proves that trK/L vanishes on the basis (1, z, . . . , zp−1) of K over L by showing that

the minimal polynomial of zi over L is Xp − ti. Then one uses that given any finite dimensional L-
vector space V , letting VQ denote V viewed as a Q-vector space, we have that

trVQ
= trL/Q ◦ trV .
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Applying this with V = K, it follows that for inseparable K|Q the trace vanishes exactly. In
particular, the trace bilinear form is not non-degenerate.

□
A.5.5.1. The structure of separable algebra. Let K/Q be a commutative finite dimensional Q

algebra. We have the following

Theorem A.7. The algebra K/Q is separable iff either of the two equivalent conditions is
satisfied

– The trace bilinear form ⟨·, ·⟩K/Q is non-degenerate.
– The Q algebra K is isomorphic to a product of separable field extensions of Q.

Proof. (sketch) If K/Q is separable, then all the maps [×z]K/Q are semisimple and commute.
Therefore K decomposes as a direct sum

K ∼=
⊕
i

Vi

of finitely many Q-subspaces which are all invariant under [×z]K/Q. By finite dimensionality of K/Q
we can assume that all the subspaces Vi are maximal with this property. One then shows that the
subspaces Vi are subfields of K which are separable extensions of Q.

If K is a direct sum of separable field extensions of Q, then K/Q is clearly separable over Q.
The equivalence of the two conditions is left as an exercise. □

A.5.6. Embeddings.

Definition A.19. Let Q ⊂ K ⊂ Q be an extension of fields. A field K ′ containing Q and
isomorphic to K as a Q-algebra is called a Q-conjugate of K in Q.

Definition A.20. A ring morphism σ : K → Q is Q-linear if

∀λ ∈ Q, z ∈ K, σ(λz) = λσ(z).

The set of conjugates is parametrized by the following set

HomQ(K,Q) := {σ : K → Q, σ a Q-linear ring morphism}
⊂ Hom(K,Q) = {σ : K → Q ring morphism}.

Observe that since K is a field, and non-zero ring homomorphism σ : K → Q is injective and its
image σ(K) ⊂ Q is a field isomorphic toK. Therefore Hom(K,Q) is also called the set of embeddings
of K into Q and the subset HomQ(K,Q) is the set of Q-linear embeddings or Q-embeddings.

Observe that if σ is a Q-linear embedding, then σ|Q = IdQ so that σ(K) is a field containing Q
and isomorphic to K as a Q-algebra. There is therefore a bijection between the set of Q-conjugates
of K and the set of Q-linear embedding given by

σ 7→ K ′ = σ(K).

We have the following proposition.

Proposition A.5.3. The set of Q-conjugates of K in Q is finite; equivalently, the set of Q-linear
embeddings HomQ(K,Q) is finite. More precisely

|HomQ(K,Q)| ⩽ [K : Q].

Proof. Assume first that K is monogenic, i.e., there is z ∈ K such that K = Q[z]. For any
given σ ∈ HomQ(K,Q), the conjugate σ(z) is a root of the minimal polynomial Pmin,z,K/Q and hence
takes one out of at most [K : Q] values. For general x ∈ K we have x = P (z) for some P ∈ Q[X]
and (by Q-linaearity)

σ(x) = σ(P (z)) = P (σ(z))

so σ is completely determined by σ(z). This prove the theorem in the monogenic case.
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We handle the general case by recurrence on the degree. Given z ∈ K − Q and L = Q[z] the
field generated by z. We may assume L ̸= K and we already know that |HomQ(L,Q)| ⩽ [L : Q].

Given σ ∈ HomQ(K,Q), by recurrence its restriction to L can take at most [L : Q] values. Let us
consider the set

{τ ∈ HomQ(K,Q) : τ|L = σ|L}
of Q-linear embeddings whose restriction to L equals σ|L. It will be sufficient to show that this set is
of size at most [K : L]: given τ, τ ′ in that set and let L′ = σ(L) = τ(L) = τ ′(L), then L′ is contained
in τ(K), τ ′(K) and σ(K). Consider

Ψ = τ ′ ◦ τ−1 : τ(K)→ τ ′(K)

then Ψ is L′-linear so can take at most [τ(K) : L′] by recurrence (since [τ(K) : L′] = [τ(K) : τ(L)] =
[K : L] < [K : Q]) □

During the proof we have also established

Lemma A.5.4. Given Q ⊂ L ⊂ K a tower of finite extensions and σ ∈ HomQ(L,Q), the set of
embeddings extending σ,

{τ ∈ HomQ(K,Q) : τ|L = σ},
is of size at most [K : L].

Lemma A.5.5 (Dedekind). Let L be any field containing Q as a subfield.I needed linear inde-
pendence over C, so I generalized it a bit. The Q-linear embeddings

σi, i = 1, · · · d = |HomQ(K,Q)|
are L-linearly independent.

Proof. Suppose that
d∑
i=1

λiσi = 0

for λi ∈ L not all zero. We assume that the number d′ of i such that λi ̸= 0 is minimal amongst all
non-trivial linear dependence relations. Necessarily d′ ⩾ 2 (because σ1(1) = 1).

Up to permuting the indices we may assume that this relation is of the shape

d′∑
i=1

λiσi = 0

for some 2 ⩽ d′ ⩽ d and with λi ̸= 0 and that d′ is minimal. We have for every z, z′ ∈ K
d′∑
i=1

λiσi(zz
′) = 0

and therefore since σi(z.z
′) = σi(z).σi(z

′) for every z′ ∈ K we have

d′∑
i=1

λiσi(z
′)σi = 0.

Choose j ∈ [1, · · · , d′] and combine two such relations (for z′ and for z′ = 1) we have

0 =

d′∑
i=1

λiσi(z
′)σi − σj(z′)

d′∑
i=1

λiσi =

d′∑
i=1

λi(σi(z
′)− σj(z′))σi =

d′∑
i=1
i̸=j

λi(σi(z
′)− σj(z′))σi.

This is a linear relation amongst the σi with ⩽ d′ − 1 terms; moreover since for i ̸= j σi ̸= σj
one can find z′ such that the σi(z

′) − σj(z′), i ̸= j are not all zero and the relation is non trivial
contradicting the minimality of d′.

□
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A.5.6.1. Conjugates.

Definition A.21. For any z ∈ K the set of (distincts) roots of PQ,min,z,

{z′ ∈ Q : PQ,min,z(z
′) = 0}

is called the set of conjugates of z in Q.

This terminology is justified by the following fact

Proposition A.5.6. The set of conjugates of z in Q is the set

{σ(z) : σ ∈ HomQ(K,Q)}
of images of z under the various Q-linear embeddings.

Proof. Since PQ,min,z has coefficients in Q, and σ is a Q-linear ring morphism, we have

0 = σ(PQ,min,z(z)) = PQ,min,z(σ(z)),

so we have one inclusion. The converse inclusion follows from the following extension lemma applied
to L = Q[z]. □

Lemma A.5.7. Given Q ⊂ L ⊂ K a tower of finite dimensional field extensions. For any
σ ∈ HomQ(L,Q) there exists τ ∈ HomQ(K,Q) such that

τ|K = σ.

We will prove the

Theorem A.8. A finite field extension K/Q is separable if and only if

|HomQ(K,Q)| = [K : Q].

Proof. Suppose K/Q is separable and let z be a primitive element of K,

PQ,min,z = PK/Q,car,z

has degree [K : Q]. By separability, PQ,min,z has [K : Q] distinct roots which is the cardinality of

HomQ(K,Q).
Suppose K/Q is not separable and let z ∈ K be a non separable element. Let L = K[z]. Its

minimal polynomial has degree [L : Q] and is of the shape

PQ,min,z(X) = R(Xq),

where R has r < [L : Q] distinct roots µi, i = 1 . . . , µr and

PQ,min,z(X) =
∏
i

(X − µ1/q
i )q.

Therefore |HomQ(L,Q)| = r and by Lemma A.5.4,

|HomQ(K,Q)| ⩽ r.[K : L] < [K : Q].

□
A.5.6.2. Relation to the eigenvalues. We have seen that if K/Q is separable we have a map of

Q-algebras
σ : K 7→ σ(z) = diag(σ1(z), · · · , σd(z)) ∈ diagd(Q).

Consequently for each i the i-th eigenvalue

σi : z ∈ K 7→ σi(z) ∈ Q
is a Q-linear embedding. Moreover the various embeddings σi, i = 1, · · · d are distinct since, if z
is a generator of K/Q, the σi(z), i = 1, · · · , d are the distinct d roots of the minimal polynomial
PQ,min,z. We have therefore

HomQ(K,Q) = {σi : i = 1, · · · d}.
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In particular we have

∀z ∈ K, PK/Q,car,z(X) =
∏

σ∈HomQ(K,Q)

(X − σ(z))

trK/Q(z) =
∑

σ∈HomQ(K,Q)

σ(z), NrK/Q(z) =
∏

σ∈HomQ(K,Q)

σ(z).

A.6. Galois Theory

Let K/Q be a finite separable field extension and consider the subset of K-valued embeddings

HomQ(K,K) ⊂ HomQ(K,Q).

This is the group of Q-automorphisms of the field K: indeed σ ∈ HomQ(K,K) is K-linear injective,
hence surjective .

Definition A.22. The extension K/Q is normal if and only if

HomQ(K,K) = HomQ(K,Q).

An extension K/Q is Galois if K/Q is normal and separable:

|HomQ(K,K)| = |HomQ(K,Q)| = [K : Q].

The group HomQ(K,K) is called the Galois group of K/Q:

Gal(K/Q) = HomQ(K,K).

Exercise A.2. Show that a finite extension K/Q is Galois if and only if for all z ∈ K the map
[×z]K/Q is diagonalizable over K.

Example A.2. – Any extension K/Q of degree 2 is Galois.
– Any finite extension K/Q of a finite field Q is Galois: we have

Gal(K/Q) = frobZq

where frobq is the Frobenius (q = |Q|)

frobq :
K 7→ K
x 7→ xq

.

Theorem A.9 (Main Theorem of Galois Theory). Let K/Q be a Galois extension and

G = Gal(K/Q) = HomQ(K,K)

be the Galois group.
The map

K• : H ⊂ G 7→ KH = {x ∈ K, ∀σ ∈ H, σ(x) = x} ⊂ K
is a bijection between

– the set of subgroups of G and
– the set of extensions of Q contained in K.

Moreover K/KH is Galois and

Gal(K/KH) = H.

Conversely, for any subextension Q ⊂ K ′ ⊂ K, the extension K/K ′ is Galois. The inverse of
the map K• is

Gal(K/•) : K ′ 7→ Gal(K/K ′) = HomK′(K,K) ⊂ G.
The map K• also induces (by restriction) a bijection between

– the set of normal subgroups of G and
– the set of Galois extensions of Q contained in K (the Q ⊂ K ′ ⊂ K such that K ′/Q is

Galois).
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In addition, for any such H ◁ G we have

Gal(KH/Q) ≃ G/H.

Proof. Given H a subgroup of G, since any σ ∈ H is Q-linear, Q is in the set of fixed points
of σ so Q ⊂ KH . Moreover since σ is a field morphism, the set of fixed point of σ is stable under
addition, product, and inversion. So the set of fixed points of σ is a subfield of K containing Q and
so is KH which is the intersection of the fixed points of σ over all σ ∈ H. The extension K/KH is
separable since K/Q is separable and it is normal since

HomKH (K,Q) ⊂ HomQ(K,Q) = HomQ(K,K)

(because K/Q is normal) so any KH -linear morphism of K into Q maps K to K.
To show that this map is bijective it suffices to show that for any H ⊂ G

Gal(K/KH) = H (A.6)

and that for any Q ⊂ K ′ ⊂ K, K/K ′ is Galois and

KGal(K/K′) = K ′. (A.7)

Indeed this will prove that the maps

H 7→ KH and K ′ 7→ Gal(K/K ′)

are inverse to one another so that both sets are in bijection.
We start with (A.6). Any σ ∈ H is by definition KH -linear so H ⊂ Gal(K/KH). We have

therefore

|H| ⩽ |Gal(K/KH)| = [K : KH ].

We will prove that this is an equality which will imply (A.6).
Assume that |H| < [K : KH ]: there exists x1, · · · , x|H|+1 ∈ K which are KH -linearly indepen-

dent (in particular distinct).
For m ⩽ |H| + 1 we consider the homogenous linear system with |H| equations in m variables

(Y1, · · · , Ym) {
m∑
i=1

σ(xi)Yi = 0, σ ∈ H (A.8)

When m = |H| + 1 this system has more variables than equations so admits a non-trivial solution
(y1, · · · , ym) ∈ Km; let m be minimal with this property.

By minimality wlogwma ym = 1. The system becomes

∀σ ∈ H,σ(xm) = −
m−1∑
i=1

σ(xi)yi.

applying τ ∈ H to this identity we obtain

∀τ, σ ∈ H, τ(σ(xm)) = −
m−1∑
i=1

τ(σ(xi))τ(yi).

Changing variables

∀τ, σ ∈ H, σ(xm) = −
m−1∑
i=1

σ(xi)τ(yi),

and subtracting

∀τ, σ ∈ H, 0 =

m−1∑
i=1

σ(xi)(yi − τ(yi)).

but now

(· · · , yi − τ(yi), · · · ) ∈ Km−1
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is a solution to (A.8) in m− 1 variables. Since m is minimal the solution must be the trivial one:

∀i ⩽ m− 1,∀τ ∈ H, yi − τ(yi) = 0

and yi ∈ KH . Taking σ = IdK we get
m∑
i=1

xiyi = 0,

contradicting (remember that m ⩽ |H|+1) the fact that the {xi} are KH -lineary independent (since
ym = 1 the linear relation is non-trivial). Therefore [K : KH ] ⩽ |H| so |Gal(K/KH)| = [K : KH ] =
|H| and

Gal(K/KH) = H.

Let us prove (A.7): consider Q ⊂ K ′ ⊂ K. Repeating the beginning of the previous argument

the extension K/K ′ is Galois. By definition we have K ′ ⊂ KGal(K/K′) and by the previous argument
applied to H = Gal(K/K ′) we have

[K : K ′] = |Gal(K/K ′)| = [K : KGal(K/K′)],

which by multiplicativity of the degree implies (A.7).
Let us restrict the above map to extensions Q ⊂ K ′ ⊂ K such that K ′/Q is Galois. Let

H = Gal(K/K ′). By the preceding discussion, the group H is the pointwise stabilizer of K ′ in K
and therefore for any σ ∈ Gal(K/Q), σ.H.σ−1 is the stabilizer of σ(K ′). But σ(K ′) = K ′ since
K ′/Q is normal, so σ.H.σ−1 = H and therefore H is a normal subgroup of G. We have

|Gal(K ′/Q)| = [K ′ : Q] = [K : Q]/[K : K ′] = |G|/|H| = |Gal(K/Q)/H|,
so it is sufficient to construct an injective map

Gal(K/Q)/H ↪→ Gal(K ′/Q).

Consider the restriction map

resK′ : σ ∈ Gal(K/Q) 7→ σ|K′ ∈ Gal(K ′/Q).

This is a group homomorphism and the kernel of that map is precisely the pointwise stabilizer of
K ′ which is H and we obtain the required injection. □
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