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Abstract

This monograph is intended as a self-contained introduction to optimal transport.
After a brief introductory section, we discuss the optimal transport problem and prove

the existence of optimal transport maps, both for the quadratic cost and for more general
costs on Euclidean spaces. We then introduce Wasserstein distances and gradient flows,
and we show their connection via the so-called JKO scheme. Then, we develop the Otto’s
calculus and its application to Wasserstein gradient flows. To conclude, we briefly present
a list of references concerning some of the several applications of this beautiful theory.

In the appendix we collect a series of exercises (with solutions) on optimal transport that
may be useful to the reader in order to get more familiar with the topic. A guided proof, in
the form of a series of exercises, of the disintegration theorem is contained in a short second
appendix.

Contents

1 Introduction 1
1.1 Historical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Basics of measure theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Basics of Riemannian geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Transport maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Examples of transport maps . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 An application to isoperimetric inequalities . . . . . . . . . . . . . . . . . . . . . 11
1.6 A Jacobian equation for transport maps . . . . . . . . . . . . . . . . . . . . . . . 12

2 Optimal Transport 14
2.1 Preliminaries in measure theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Monge vs. Kantorovich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Existence of an optimal coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 c-cyclical monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 The case c(x, y) = |x−y|2
2 on X = Y = Rd . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 Cyclical monotonicity and Rockafellar’s Theorem . . . . . . . . . . . . . . 24
2.5.2 Kantorovich Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.3 Brenier’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.4 An application to Euler equations . . . . . . . . . . . . . . . . . . . . . . 32

2.6 General cost functions: Kantorovich duality . . . . . . . . . . . . . . . . . . . . . 37
2.6.1 c-convexity and c-cyclical monotonicity . . . . . . . . . . . . . . . . . . . 37
2.6.2 A general Kantorovich duality . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 General cost functions: existence and uniqueness of optimal transport maps . . . 40

3 Wasserstein Distances and Gradient Flows 44
3.1 p-Wasserstein distances and geodesics . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 Construction of geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 An informal introduction to gradient flows in Hilbert spaces . . . . . . . . . . . . 49
3.3 Heat equation and optimal transport: the JKO scheme . . . . . . . . . . . . . . . 53

4 Differential viewpoint of optimal transport 62
4.1 The continuity equation and Benamou-Brenier formula . . . . . . . . . . . . . . . 62
4.2 Otto’s calculus: from Benamou-Brenier to a Riemannian structure . . . . . . . . 64
4.3 Displacement convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 An excursion into the linear Fokker-Planck equation . . . . . . . . . . . . . . . . 69

2



1 Introduction

In this introductory section we first give a brief historical review about optimal transport.
Then we recall some basic definitions and facts from measure theory and Riemannian geometry,
and finally we present three examples of (non-necessarily optimal) transport maps, with an
application to the Euclidean isoperimetric inequality.

1.1 Historical Overview

1781 - Monge. In his celebrated work, Gaspard Monge introduced the concept of transport
maps starting from the following practical question: “Assume one extract soil from the ground
to build fortifications. How to transport the soil int he cheapest possible way?” To rigorously
formulate this question, one needs to specify the transportation cost, namely how much one
pays to move a unit of mass from a point x to a point y. In Monge’s case, the ambient space
was R3, and the cost was the Euclidean distance c(x, y) := |x− y|.

1940’s - Kantorovich. After 150 years, Leonid Kantorovich revisited Monge’s problem from
a different view point. To explain this, consider N bakeries located at positions (xi)i=1,...,N ,
and M coffee shops located at (yj)j=1,...,M . Assume that the i-th bakery produces an amount
αi ≥ 0 of bread, and that the j-th coffee shop needs an amount βj ≥ 0. Also, assume that
demand=request, and normalize them to be equal to 1: in other words

∑
i αi =

∑
j βj = 1.

In Monge’s formulation, the transport is deterministic: the mass located at x can be sent
to a unique destination T (x). Unfortunately this formulation is incompatible with the problem
above, since one bakery may supply bread to multiple coffee shops, and one coffee shop may buy
bread from multiple bakeries. For this reason Kantorovich introduced a new formulation: given
c(xi, yj) the cost to move one unit of mass from xi to yj , he looked for matrices (γij) i=1,...,N

j=1,...,M

such that:

(i) γij ≥ 0 (the amount of bread going from xi to yj is a nonnegative quantity);

(ii) ∀ i : αi =
∑M

j=1 γij (the total amount of bread sent to the different coffee shops is equal to
the production);

(iii) ∀ j : βj =
∑N

i=1 γij (the total amount of bread bought from the different bakeries is equal
to the demand);

(iv) γij minimize the cost
∑d

i,j=1 γijc(xi, yj) (the total transportation cost is minimized).

It is interesting to observe that constraint (i) is convex, constraints (ii) and (iii) are linear, and
the objective function in (iv) is also linear (all with respect to γij). In other words, Kantorovich’s
formulation corresponds to minimizing a linear function with convex/linear constraints.

Applications. Optimal transport has been a topic of high interest in the last 30 years due to
its connection to several areas of mathematics. The properties and the applications of optimal
transport depend heavily of the choice of the cost function c(x, y), representing the cost of
moving a unit of mass from x to y. Let us mention some important choices:

- c(x, y) = |x − y|2 in Rd – It is connected to: Euler equations; Isoperimetric and Sobolev
inequalities; evolution PDEs such as ∂tu = ∆u, ∂tu = ∆(um), and ∂tu = div(∇W ∗ uu).

- c(x, y) = |x− y| in Rd – Appears in probability and kinetic theory.

- c(x, y) = d(x, y)2 on a Riemannian manifold, with d( · , · ) denoting the Riemannian dis-
tance – Has connections and applications to the study of Ricci curvature.

1



In this monograph we mostly focus on the Euclidean quadratic cost |x− y|2, and we shall give
references for further applications in Section 5.

1.2 Basics of measure theory

For simplicity, throughout this book we shall always work on locally compact, separable and
complete metric spaces, that will be usually denoted by X (the space where the source measure
lives) and Y (the space where the target measure lives). These assumptions are not optimal
but simplify some of the proofs in the next chapter (see also Remark 2.1.1). Still, the reader
who is not interested in such a level of generality can always think that X = Y = Rd.

Remark 1.2.1. All measures under consideration are Borel measures, and all maps are Borel
(i.e., if S : X → Y , then S−1(A) is Borel for all A ⊂ Y Borel). The set of probability measures
over a space X will be denoted by P(X), and the class of Borel-measurable sets by B(X). Also,
1A denotes the indicator function of a set:

1A(x) :=

{
1 if x ∈ A ,
0 if x 6∈ A .

Definition 1.2.2. Take a map T : X → Y and a probability measure µ ∈ P(X). We define the
image measure (or push-forward measure) T#µ ∈ P(Y ) as

(T#µ)(A) := µ(T−1(A)) for any A ∈ B(Y ).

Lemma 1.2.3. T#µ is a probability measure on Y .

Proof. The proof consists in checking that T#µ is nonnegative, has total mass 1, gives no mass
to the empty set, and is σ-additive on disjoint sets.

1. (T#µ)(∅) = µ(T−1(∅)) = µ(∅) = 0;

2. (T#µ)(Y ) = µ(T−1(Y )) = µ(X) = 1;

3. (T#µ)(A) = µ(T−1(A)) ≥ 0 for all A ∈ B(X);

4. Let (Ai)i∈I ⊂ Y be a countable family of disjoint sets. We claim first that (T−1(Ai))i∈I are
disjoint. Indeed, if that was not the case and x ∈ T−1(Ai)∩T−1(Aj), then T (x) ∈ Ai∩Aj ,
which is a contradiction. Thanks to this fact, using that µ is a measure (and thus σ-
additive on disjoint sets) we get

T#µ
(⋃
i∈I

Ai

)
= µ

(
T−1

(⋃
i∈I

Ai
))

= µ
(⋃
i∈I

T−1(Ai)
)

=
∑
i∈I

µ(T−1(Ai)) =
∑
i∈I

T#µ(Ai) .

Remark 1.2.4. One might also be tempted to define the “pull-back measure” S#ν(E) :=
ν(S(E)) for S : X → Y and ν ∈ P(Y ). However, this construction does not work in general.
Indeed, since the image of two disjoint sets might coincide (consider for instance the case when
S is a constant map), S#ν may not be additive on disjoint sets.

Lemma 1.2.5. Let T : X → Y , µ ∈ P(X), and ν ∈ P(Y ). Then

ν = T#µ

if and only if, for any ϕ : Y → R Borel and bounded, we have
ˆ
Y
ϕ(y) dν(y) =

ˆ
X
ϕ(T (x)) dµ(x). (1.1)
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Proof. The implication (1.1) =⇒ ν = T#µ follows choosing ϕ = 1A with A ∈ B(Y ). We now
focus on the other implication.

For any Borel subset A ⊂ Y , it holds

ˆ
Y
1A dν = ν(A) = µ(T−1(A)) =

ˆ
X
1T−1(A) dµ =

ˆ
X
1A ◦ T dµ .

Thus, by linearity of the integral, we immediately deduce

ˆ
Y
ϕdν =

ˆ
X
ϕ ◦ T dµ

for any simple function ϕ : Y → R, i.e., for any ϕ of the form
∑

i∈I λi1Ai where I is a finite set,
(Ai)i∈I are Borel subsets, and (λi)i∈I are real values.

In order to deduce the desired result, fix a bounded Borel function ϕ : Y → R. Since
any bounded Borel function can be approximated uniformly by simple functions1, there is a
sequence of simple functions (ϕk)k∈N such that ‖ϕk − ϕ‖∞ → 0 as k →∞. Therefore we have

ˆ
Y
ϕdν = lim

k→∞

ˆ
Y
ϕk dν = lim

k→∞

ˆ
X
ϕk ◦ T dµ =

ˆ
X
ϕdµ ,

that is the desired identity.

An immediate consequence of the previous lemma is the following:

Corollary 1.2.6. For any function ϕ : Y → R Borel and bounded it holds

ˆ
Y
ϕ d(T#µ) =

ˆ
X
ϕ ◦ T dµ.

Then next lemma shows the relation between composition and push-forward.

Lemma 1.2.7. Let T : X → Y and S : Y → Z be measurable, then

(S ◦ T )#µ = S#(T#µ).

Proof. Thanks to Corollary 1.2.6, for any ϕ : Z → R Borel and bounded we have

ˆ
Z
ϕd(S ◦ T )#µ =

ˆ
X
ϕ ◦ (S ◦ T ) dµ =

ˆ
X

(ϕ ◦ S) ◦ T dµ

=

ˆ
Y
ϕ ◦ S dT#µ =

ˆ
Z
ϕdS#(T#µ).

The result follows from Lemma 1.2.5.

1To prove this, given ϕ : Y → R a bounded Borel function, fix ε > 0 and for any i ∈ Z consider the set
Ai := {εi ≤ ϕ < ε(i+ 1)}. Then, define ϕε :=

∑
i∈Z εi1Ai . Since ϕ is bounded we have Ai = ∅ for |i| � 1, hence

ϕε is a simple function. Also

‖ϕ− ϕε‖L∞ = max
i∈Z
‖ϕ− ϕε‖L∞(Ai)

≤ ε.
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1.3 Basics of Riemannian geometry

Even though we are not going to work with Riemannian manifolds, some of the results we
present (namely Arnold’s Theorem, geodesics in the Wasserstein space, and the differential
structure of the Wasserstein space) are heavily inspired by classical concepts in Riemannian
geometry. Hence, we provide a very short introduction to the subject, with an emphasis on
those facts and structures that may help the reader to fully appreciate the content of this book.

First, for embedded submanifolds, we recall the definitions of tangent space, Riemannian
distance, (minimizing) geodesic, and gradient. Then we briefly explain how these definitions
can be generalized to the (more abstract) case of a (non necessarily embedded) Riemannian
manifold.

Our presentation of the subject is quick and superficial, but should be sufficient to under-
stand the related topics in this book. This material, and much more, may be found in any
introductory text on Riemannian Geometry (see, for example, [Cha93; GHL04; Lee97; Pet06]).
The reader who has already some experience with the subject may skip this section.

Embedded Submanifolds. Let M be a compact d-dimensional smooth manifold embedded
in RD. We are going to show how the Euclidean scalar product of the ambient RD induces
a distance –the Riemannian distance– on M , and how this gives rise to a number of related
concepts (gradients, minimizing geodesics, and geodesics).

In what follows, we implicitly assume that all curves are C1.
Let us begin with the definition of tangent space. Notice that, for its definition, we are not

going to use the Euclidean scalar product of the ambient.

Definition 1.3.1 (Tangent space). Given a point p ∈ M , the tangent space TpM ⊂ RD of M
at p is defined as

TpM := {γ̇(0) | γ : (−1, 1)→M, γ(0) = p} .

Intuitively, the tangent space contains all the directions tangent to M at p. One can show
that TpM is a d-dimensional subspace of RD.

We now give the definition of gradient of a function, which is a convenient representation of
its differential.

Definition 1.3.2 (Gradient). Let F : M → R be a smooth function. Its gradient ∇F : M →
RD is defined as the unique tangent vector field on M , that is ∇F (x) ∈ TxM for all x ∈ M ,
such that the following holds: for any curve γ : (−1, 1)→M ,

〈∇F (γ(0)), γ̇(0)〉 =
d

dt

∣∣∣
t=0

F (γ(t)) .

For the definition of the gradient we are using that the Euclidean scalar product endows the
tangent spaces of a scalar product (i.e., the restriction of the ambient scalar product).

Given a curve γ : [a, b]→M , its length is given by the formula

ˆ b

a
|γ̇(t)| dt .

Notice that the length of a curve is invariant under reparametrization. Notice also that, to
define the length of a curve, we need to compute the Euclidean norm only of vectors tangent to
M .

Once one knows how to measure the length of a curve, the following definition of (Rieman-
nian) distance is fairly natural.
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Definition 1.3.3 (Riemannian distance). Given two points x, y ∈ M , their Riemannian dis-
tance dM (x, y) is defined as

dM (x, y) := inf
{ˆ b

a
|γ̇(t)| dt | γ : [a, b]→M, γ(a) = x, γ(b) = y

}
.

The Riemannian distance is indeed a distance onM , that is, it satisfies the triangle inequality
(besides dM (x, y) = dM (y, x), and dM (x, y) = 0 if and only if x = y).

Since any curve can be reparametrized to have constant speed, one can show that an equiv-
alent definition of the Riemannian distance is given by

dM (x, y)2 = inf
{ˆ 1

0
|γ̇(t)|2 dt | γ : [0, 1]→M, γ(0) = x, γ(1) = y

}
. (1.2)

It turns out that there is always a (non necessarily unique) curve achieving the infimum in
the definition of the Riemannian distance (this follows from the compactness of M or, more in
general, from its completeness).

Definition 1.3.4 (Minimizing geodesic). A curve γ : [a, b] → M with constant speed (i.e., |γ̇|
is constant) such that γ(a) = x, γ(b) = y, and whose length is equal to dM (x, y), is called a
minimizing geodesic.

The restriction of a minimizing geodesic on a smaller interval is still a minimizing geodesic.
Moreover any minimizing geodesic is smooth.

One may think of minimizing geodesics as “straight lines in a curved space”. Indeed, since
a minimizing geodesic has constant speed and achieves the minimum also in (1.2), it can be
proven (with a variational argument, as a consequence of the minimality) that

γ̈(t) ⊥ Tγ(t)M (1.3)

for all t ∈ [0, 1]. In other words, apart from the distortion induced by M , minimizing geodesics
go “as straight as possible”.

Definition 1.3.5 (Geodesic). A (non necessarily minimizing) geodesic is a curve γ : [a, b]→M
that satisfies (1.3).

It can be readily checked that a geodesic has constant speed; indeed

d

dt
|γ̇|2 = 2〈γ̇, γ̈〉 = 0 ,

where we have used that γ̈ ⊥ TγM 3 γ̇.
Moreover, any geodesic is locally minimizing. More precisely, if γ : [a, b]→M satisfies (1.3),

then for any t0 ∈ (a, b) there is ε > 0 such that γ restricted on [t0 − ε, t0 + ε] is a minimizing
geodesic.

Abstract Riemannian Manifolds. In the previous paragraph we described how a subman-
ifold of RD inherits a number of structures (tangent space, gradient, distance, geodesics) from
the ambient. Let us briefly explain what is necessary for an abstract manifold to have such
structures.

Given a compact d-dimensional smooth manifoldM , there is an intrinsic definition of tangent
space TpM (as an appropriate quotient of the curves through p, where two curves are identified
if “they have the same derivative at p”). To proceed further and talk about gradients, lengths,
etc., we need to endow our manifold M of an additional structure, that is, a Riemannian metric.
A Riemannian metric is a (symmetric and positive definite) scalar product gx : TxM ×TxM →
R defined on each tangent space, that varies continuously with respect to x ∈ M . If M is
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endowed with a Riemannian metric g = (gx)x∈M , we say that (M, g) is a Riemannian manifold.
On a Riemannian manifold, all the definitions given previously (gradient, length, Riemannian
distance, and minimizing geodesic) make perfect sense (for example, the length of a curve is´ b
a gγ(γ̇, γ̇)

1
2 ), and all the facts we have stated remain true.

It is more delicate to generalize (1.3) to this more abstract setting, and thus to define what
a (non necessarily minimizing) geodesic is. We prefer not to delve into this topic, as it goes
beyond the basic understanding of Riemannian geometry that is necessary to appreciate the
rest of this book.

1.4 Transport maps

Definition 1.4.1. Given µ ∈ P(X) and ν ∈ P(Y ), a map T : X → Y is called a transport map
from µ to ν if T#µ = ν.

Remark 1.4.2. Given µ and ν, the set {T | T#µ = ν} may be empty. For instance, given
µ = δx0 with x0 ∈ X and a map T : X → Y , we have

ˆ
Y
ϕ(y) d(T#µ)(y) =

ˆ
Y
ϕ ◦ T (x) dµ(x) = ϕ(T (x0)) ∀ϕ : Y → R ⇒ T#µ = δT (x0).

Hence, unless ν is a Dirac delta, for any map T we have T#µ 6= ν and the set {T | T#µ = ν} is
empty.

Definition 1.4.3. We call γ ∈ P(X × Y ) a coupling2 of µ and ν if

(πX)#γ = µ and (πY )#γ = ν,

where
πX(x, y) = x, πY (x, y) = y ∀ (x, y) ∈ X × Y.

This is equivalent to requiring that

ˆ
X×Y

ϕ(x) dγ(x, y) =

ˆ
X×Y

ϕ ◦ πX(x, y) dγ(x, y) =

ˆ
X
ϕ(x) dµ(x)

∀ϕ : X → R Borel and bounded,

and

ˆ
X×Y

ψ(y) dγ(x, y) =

ˆ
X×Y

ψ ◦ πY (x, y) dγ(x, y) =

ˆ
Y
ψ(y) dν(y)

∀ψ : Y → R Borel and bounded.

We denote by Γ(µ, ν) the set of couplings of µ and ν.

Remark 1.4.4. Given µ and ν, the set Γ(µ, ν) is always nonempty. Indeed the product measure
γ = µ ⊗ ν (defined by

´
φ(x, y) dγ(x, y) =

´
φ(x, y) dµ(x) dν(y) for every φ : X × Y → R) is a

coupling:

ˆ
X×Y

ϕ(x) dµ(x) dν(y) =

ˆ
Y
dν(y)

ˆ
X
ϕ(x) dµ(x) = 1 ·

ˆ
X
ϕ(x) dµ(x) =

ˆ
X
ϕ(x) dµ(x),

ˆ
X×Y

ψ(y) dµ(x) dν(y) =

ˆ
X
dµ(x)

ˆ
Y
ψ(y) dν(y) = 1 ·

ˆ
Y
ψ(y) dν(y) =

ˆ
Y
ψ(y) dν(y).

2The terminology “coupling” is common in probability. However, in optimal transport theory, one often uses
the expression transport plan in place of coupling.
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Remark 1.4.5 (Transport map vs. Coupling). Let T : X → Y satisfy T#µ = ν. Consider the
map Id× T : X → X × Y , i.e., x 7→ (x, T (x)), and define

γT := (Id× T )#µ ∈ P(X × Y ).

We claim that γT ∈ Γ(µ, ν). Indeed, recalling Lemma 1.2.7, we have

(πX)#γT = (πX)#(Id× T )#µ = (πX ◦ (Id× T ))#µ = Id#µ = µ,

(πY )#γT = (πY )#(Id× T )#µ = (πY ◦ (Id× T ))#µ = T#µ = ν.

This proves that any transport map T induces a coupling γT .

1.4.1 Examples of transport maps

We now discuss three examples of transport maps: the measurable transport, the one-dimensional
monotone rearrangement, and the Knothe’s map.

Measurable transport. The following result can be found in [BBP16, Theorem 11.25]:

Theorem 1.4.6. Let µ ∈ P(X) be a probability measure such that µ has no atoms (i.e.,
µ({x}) = 0 for any x ∈ X). Then there exists Tµ : X → R such that Tµ is injective µ-a.e. and

(Tµ)#µ = dx|[0,1].

Moreover T−1
µ : [0, 1]→ X exists Lebesgue-a.e., and (T−1

µ )#dx = µ.

In other words, given µ ∈ P(X) and ν ∈ P(Y ) without atoms, this abstract theorem tells
us that we can always transport one onto the other by simply considering T−1

ν ◦ Tµ (this is a
transport map from µ to ν) or T−1

µ ◦ Tν = (T−1
ν ◦ Tµ)−1 (this is a transport map from ν to µ).

Unfortunately these maps have no structure, so they have little interest in concrete applications
in analysis/geometry. Indeed, as we shall see in this book, a very important feature of optimal
transport maps are their structural properties (for instance, optimal maps for the quadratic
cost are gradients of convex functions, see Theorem 2.5.9).

Monotone rearrangement. Given µ, ν ∈ P(R), set

F (x) :=

ˆ x

−∞
dµ(t), G(y) :=

ˆ y

−∞
dν(t).

Note that these maps are not well defined at points where measures have atoms, since one needs
to decide whether the mass of the atom is included in the value of the integral or not. We adopt
the convention that the mass of the atoms are included, so that both maps are continuous from
the right. More precisely, we set

F (x) := lim
ε→0+

ˆ x+ε

−∞
dµ(t) = µ

(
(−∞, x]

)
, G(y) := lim

ε→0+

ˆ y+ε

−∞
dν(t) = ν

(
(−∞, y]

)
.

Note that F and G are nondecreasing. If G was strictly increasing, it would be injective and
we could naturally consider its inverse G−1. However, G may be constant in some regions, so
we need to define a “pseudo-inverse” as follows:

G−1(y) := inf{t ∈ R | G(t) > y}.

Note that also G−1 is continuous from the right.
With these definitions, we define the nondecreasing map T := G−1 ◦F : R→ R and we want

to prove that it transports µ to ν. Of course this cannot be true in general, since the set of
transport maps may be empty (recall Remark 1.4.2). The following result shows that this is
the case if µ has no atoms:
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Theorem 1.4.7. If µ has no atoms, then T#µ = ν.

To prove this theorem, we need some preliminary results.

Lemma 1.4.8. If µ has no atoms, then for all t ∈ [0, 1] we have

µ
(
F−1([0, t])

)
= t.

Proof. The statement is easily seen to be true for t = 0 and t = 1.
Also, since µ has no atoms,

|F (tk)− F (t)| =
∣∣∣∣ˆ tk

t
dµ

∣∣∣∣ −−−→tk→t
0 ∀ t ∈ R,

thus F ∈ C0(R,R). Since F (t)→ 0 as t→ −∞ and F (t)→ 1 as t→ +∞, by the intermediate
value theorem it follows that F is surjective on (0, 1).

Given t ∈ (0, 1), consider the largest value x ∈ R such that F (x) = t (this point exists by
the continuity of F ). With this choice of x, we have

µ
(
F−1([0, t])

)
=

ˆ
F−1([0,t])

dµ =

ˆ x

−∞
dµ = t,

as desired.

Corollary 1.4.9. If µ has no atoms, then for all t ∈ [0, 1] we have

µ
(
F−1([0, t))

)
= t.

Proof. We apply Lemma 1.4.8 to the intervals [0, t] and [0, t− ε] with ε > 0:

t = µ
(
F−1([0, t])

)
≥ µ

(
F−1([0, t))

)
≥ µ

(
F−1([0, t− ε])

)
= t− ε −−−−→

ε→0+
t.

Proof of Theorem 1.4.7. We split the proof into five steps.

1. Let A = (−∞, a] with a ∈ R. Applying Corollary 1.4.9, we have

T#µ(A) = µ(T−1(A)) = µ
(
F−1 ◦G((−∞, a])

)
= µ

(
F−1([0, G(a)])

)
= G(a) = ν((−∞, a]) = ν(A).

2. Let A = (a, b] = (−∞, b] \ (−∞, a]. Applying Step 1, we have

T#µ(A) = T#µ((−∞, b])− T#µ((−∞, a]) = ν((−∞, b])− ν((−∞, a]) = ν(A).

3. Let A = (a, b), and consider Aε := (a, b−ε]. Thanks to Step 2 and monotone convergence,
we have

ν(A)↖ ν(Aε) = T#µ(Aε)↗ T#µ(A) as ε→ 0+.

4. Let A ⊂ R be an open set. We can write A =
⋃
i∈I(ai, bi) with

(
(ai, bi)

)
i∈I disjoint and

countable. Thus, by Step 3, we get

ν(A) =
∑
i∈I

ν((ai, bi)) =
∑
i∈I

T#µ((ai, bi)) = T#µ(A).

5. Since open sets are generators of the Borel σ-algebra, Step 4 proves that T#µ = ν.
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Knothe’s map. We are going to build a transport map, known as the Knothe’s map [Kno57],
that is a multidimensional generalization of monotone rearrangement. First, we need to state the
disintegration theorem (for a proof of this result, see Appendix B at the end of these lectures).

Theorem 1.4.10 (Disintegration Theorem). Let µ ∈ P(R2) and set µ1 := (π1)#µ ∈ P(R),
where π1 : R2 → R is defined as π1(x1, x2) := x1. Then there exists a family of probability
measures (µx1)x1∈R ⊂ P(R) such that

µ(dx1, dx2) = µx1(dx2)⊗ µ1(dx1),

that is, for any ϕ : R2 → R continuous and bounded, we have

ˆ
R2

ϕ(x1, x2) dµ(x1, x2) =

ˆ
R

(ˆ
R
ϕ(x1, x2) dµx1(x2)

)
dµ1(x1).

Moreover, the measures µx1 are unique µ1-a.e.

Example 1.4.11. Let µ = f(x1, x2) dx1 dx2 with
´
R2 f dx1 dx2 = 1, and set

µ1 := (π1)#µ, F1(x1) :=

ˆ
R
f(x1, x2) dx2.

We claim that µ1 = F1dx1. Indeed, given any test function ϕ : R→ R,

ˆ
R
ϕ(x1) dµ1(x1) =

ˆ
R2

ϕ(x1) dµ(x1, x2) =

ˆ
R2

ϕ(x1)f(x1, x2) dx1, dx2

=︸︷︷︸
Fubini

ˆ
R
ϕ(x1)

( ˆ
R
f(x1, x2) dx2

)
dx1 =

ˆ
R
ϕ(x1)F1(x1) dx1,

as desired.
Also, let µx1(dx2) be the disintegration provided by the previous theorem. Then

ˆ
R

(ˆ
R
ϕ(x1, x2) dµx1(x2)

)
dµ1(x1) =

ˆ
R2

ϕ(x1, x2) dµ(x1, x2)

=

ˆ
R2

ϕ(x1, x2)f(x1, x2) dx1dx2

=

ˆ
R

( ˆ
R
ϕ(x1, x2)

f(x1, x2)

F1(x1)
dx2

)
F1(x1) dx1.

Hence, by uniqueness of the disintegration, we deduce that

µx1(dx2) =
f(x1, x2)

F1(x1)
dx2 µ1 − a.e.

Note that µx1 are indeed probability measures:

ˆ
R
dµx1(x2) =

1

F1(x1)

ˆ
R
f(x1, x2) dx1 =

1

F1(x1)
F1(x1) = 1.

Remark 1.4.12 (An absolutely continuous measure lives where its density is positive). Note
that F1 > 0 µ1-a.e. Indeed

ˆ
{F1=0}

dµ1 =

ˆ
{F1=0}

F1 dx1 =

ˆ
{F1=0}

0 dx1 = 0.

9



Construction of Knothe’s map. Take two absolutely continuous measures on R2, namely

µ(x1, x2) = f(x1, x2) dx1dx2 =
f(x1, x2)

F1(x1)
dx2 ⊗ F1(x1) dx1,

ν(y1, y2) = g(y1, y2)dy1dy2 =
g(y1, y2)

G1(y1)
dy2 ⊗G1(y1)dy1,

where

F1(x1) =

ˆ
R
f(x1, x2) dx2 and G1(y1) =

ˆ
R
g(y1, y2) dy2.

Using Theorem 1.4.7, the monotone rearrangement provides us with a map T1 : R→ R such that
T1#(F1dx1) = G1dy1. Then, for F1dx1-a.e. x1 ∈ R, we consider the monotone rearrangement
T2(x1, ·) : R→ R such that

T2(x1, ·)#

(
f(x1, ·)
F1(x1)

dx2

)
=
g(T1(x1), ·)
G1(T1(x1))

dy2. (1.4)

In other words, for each fixed x1, F (x1, ·) is a map that sends the disintegration of µ at the
point x1 onto the disintegration of ν and the point T (x1).

Theorem 1.4.13. The Knothe’s map T (x1, x2) := (T1(x1), T2(x1, x2)) transports µ to ν.

Proof. For ϕ : R2 → R Borel and bounded, we have

ˆ
R2

ϕ(y1, y2)g(y1, y2) dy1dy2 =

ˆ
R

( ˆ
R
ϕ(y1, y2)

g(y1, y2)

G1(y1)
dy2

)
︸ ︷︷ ︸

Ψ(y1)

G(y1) dy1

(T1)#(F1dx1)=G1dy1
=

ˆ
R

Ψ(T1(x1))F1(x1) dx1

=

ˆ
R

( ˆ
R
ϕ(T1(x1), y2)

g(T1(x1), y2)

G1(T1(x1))
dy2

)
F1(x1) dx1

(1.4)
=

ˆ
R

(ˆ
R
ϕ(T1(x1), T2(x1, x2))

f(x1, x2)

F1(x1)
dx2

)
F1(x1) dx1

=

ˆ
R

ˆ
R
ϕ(T1(x1), T2(x1, x2))f(x1, x2) dx2 dx1

=

ˆ
R2

(ϕ ◦ T )(x1, x2) dµ(x1, x2).

Remark 1.4.14. Since monotone rearrangement is an increasing function, we have (under the
assumption that the map T (x1, x2) = (T1(x1), T1(x1, x2)) is smooth)

∇T =

(
∂1T1 ≥ 0 ∗

0 ∂2T2 ≥ 0

)
One can use the previous construction of the Knothe’s map in R2 and iterate it to obtain a

Knothe’s map on Rd. Let

µ(x1, . . . , xd) = f(x1, . . . , xd) dx1 · · · dxd, ν(y1, . . . , yd) = g(y1, . . . , yd) dy1 · · · dyd

be absolutely continuous measures. Using monotone rearrangement, we get a map T1 : R → R
such that T1#(F1dx1) = G1dy1, where F1(x1) =

´
f dx2 . . . dxd and G1(y1) =

´
g dy2 . . . dyd.
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Also, the analogues of Theorem 1.4.10 and Example 1.4.11 in Rd, yield probability measures on
Rd−1 given by

µx1(x2, . . . , xd) =
f(x1, x2, . . . , xd)

F1(x1)
dx2 · · · dxd

and

νy1(y2, . . . , yd) =
g(y1, y2, . . . , yd)

G1(y1)
dy2 · · · dyd,

such that µ = µx1 ⊗ F1dx1 and ν = νy1 ⊗G1dy1.
By induction on the dimension, there exists a Knothe map Tx1 : Rd−1 → Rd−1 sending µx1

onto νT1(x1), and then we obtain a Knothe’s map in Rd as

T (x1, . . . , xd) := (T1(x1), Tx1(x2, . . . , xd)).

Remark 1.4.15. Suppose again that the map T is smooth. Then

∇T =


∂1T1 ∗ ∗ ∗ ∗

0 ∂2T2 ∗ ∗ ∗

0 0
. . . ∗ ∗

0 0 0
. . . ∗

0 0 0 0 ∂dTd

 .

Note that this is an upper triangular matrix and that all the values on the diagonal are non-
negative. This will be important for the next section.

Remark 1.4.16. Although we call it the Knothe’s map, the map itself is by no means unique.
Indeed, by fixing a basis in Rd but changing the order of integration, one obtains a different
Knothe’s map. Even more, changing the basis of Rd yields in general a different map.

1.5 An application to isoperimetric inequalities

The following is the classical (sharp) isoperimetric inequality in Rd.

Theorem 1.5.1. Let E ⊂ Rd be a bounded set with smooth boundary. Then

Area(∂E) ≥ d|B1|
1
d |E|

d−1
d ,

where |B1| is the volume of the unit ball.

To prove this result, consider the probability measures µ = 1E
|E| dx and ν =

1B1
|B1|dy.

Proposition 1.5.2. Let T be a Knothe’s map from µ to ν, and assume it to be smooth3. Then:

1. For any x ∈ E, it holds |T (x)| ≤ 1.

2. det∇T = |B1|
|E| in E.

3. div T ≥ d (det∇T )
1
d .

Proof. We prove the three properties.

3The smoothness assumption can be dropped with some fine analytic arguments. To obtain a rigorous proof
one can also work with the optimal transport map (instead of the Knothe’s map) and use the theory of functions
with bounded variation, as done in [FMP10].
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1. If x ∈ E, then T (x) ∈ B1 and thus |T (x)| ≤ 1.

2. Let A ⊂ B1, so that T−1(A) ⊂ E. Since T#µ = ν, we have

ν(A) = µ(T−1(A)) =

ˆ
T−1(A)

dx

|E|
.

On the other hand, by the change of variable formulas, setting y = T (x) we have dy =
|det∇T |dx, therefore

ν(A) =

ˆ
A

dy

|B1|
=

ˆ
T−1(A)

1

|B1|
|det∇T (x)| dx.

Furthermore, since ∇T is upper triangular and its diagonal elements are nonnegative (see
Remark 1.4.15), it follows that det∇T ≥ 0, hence

ˆ
T−1(A)

dx

|E|
= ν(A) =

ˆ
T−1(A)

1

|B1|
det∇T (x) dx.

Since A ⊂ B1 is arbitrary, we obtain

det∇T
|B1|

=
1

|E|
inside E.

3. Note that, since the matrix ∇T is upper-triangular (see Remark 1.4.15), its determinant
is given by the product of its diagonal elements. Hence

div T (x) =
d∑
i=1

∂iTi(x) = d

(
1

d

d∑
i=1

∂iTi(x)

)
≥d
( d∏
i=1

∂iTi(x)

) 1
d

= d
(
det∇T (x)

) 1
d ,

where the inequality follows from the fact that the arithmetic mean of the nonnegative
numbers ∂iTi(x) is greater than the geometric one.

Proof of Theorem 1.5.1. Thanks to the properties in Proposition 1.5.2, denoting by νE the outer
unit normal to ∂E, and by dσ the surface measure on ∂E, we have

Area(∂E) =

ˆ
∂E

1 dσ
1.
≥
ˆ
∂E
|T | dσ ≥

ˆ
∂E
T · νE dσ

†
=

ˆ
E

div T dx
3.
≥ d

ˆ
E

(
det∇T

) 1
ddx

2.
= d

ˆ
E

(
|B1|
|E|

) 1
d

dx = d|B1|
1
d |E|

d−1
d ,

where the equality in † follows from Stokes’ Theorem.

1.6 A Jacobian equation for transport maps

Let T : Rd → Rd be a smooth diffeomorphism with det∇T > 0, and assume that T#(f dx) =
g dy, where f and g are probability densities.

First of all, by the definition of push-forward measure, for any bounded Borel function
ζ : Rd → R we have

ˆ
Rd
ζ(y)g(y) dy =

ˆ
Rd
ζ(T (x))f(x) dx.
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On the other hand, using the change of variables y = T (x) we have dy = det∇T (x) dx, therefore

ˆ
Rd
ζ(y)g(y) dy =

ˆ
Rd
ζ(T (x))g(T (x)) det∇T (x) dx.

Comparing the two equations above, since ζ is arbitrary we deduce that T satisfies

g(T (x)) det∇T (x) = f(x).

Note that the transport maps we are going to construct in the next sections (and also the
Knothe’s map we have just studied) are not smooth diffeomorphisms in general, thus proving
that the validity (in a suitable sense) of this Jacobian equation would require some additional
work.
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2 Optimal Transport

This section contains what is usually considered to be the core of optimal transport theory: the
solution of Kantorovich’s problem for general costs (i.e., the existence of an optimal transport
plan), the duality theory, and the solution of Monge’s problem (i.e., the existence of an optimal
transport map) for suitable costs. We will also present a couple of classical applications of the
theory: the polar decomposition, and an application to the Euler equations of fluid-dynamics.

In order to pursue our plan we will need some preliminaries in measure theory; hence we
shall devote the first subsection to these preliminaries.

2.1 Preliminaries in measure theory

In this section, X will be a locally compact, separable and complete metric space. Again, the
model case is X = Rd. Every measure here will be in P(X) (i.e., a probability measure).

Remark 2.1.1. The assumptions in this book are far from being sharp, as our goal is to
emphasize the main ideas of the theory. In particular, the existence of optimal transport plans
(Theorem 2.3.2) and the duality theorem (Theorem 2.6.6) hold in arbitrary separable metric
spaces. The interested reader may look at [AGS08, Chapters 5.1-5.4 and 6.1].

Remark 2.1.2. By the Riesz representation Theorem (see [BBP16, Theorem 7.7]) we have the
following equalities (recall that, given a Banach space E , the notation E∗ denotes its dual):

M(X) := {finite signed measures on X}
∼= Cc(X)∗ := {continuous compactly supported functions}∗
∼= C0(X)∗ := {continuous functions vanishing at ∞}∗.

Remark 2.1.3. Note that Cc(X) is not closed if X is not compact. E.g., for X = R, if
ψn : R→ [0, 1] are continuous functions such that ψn(x) = 1 for x ∈ [−n, n] and ψn(x) = 0 for
x 6∈ [−n− 1, n+ 1], then the sequence of functions

fn(x) :=
1

1 + x2
ψn(x),

converges towards f(x) = 1
1+x2 6∈ Cc(R).

Let (µk)k∈N be a sequence of probability measures. Then µk(X) = 1 and therefore the whole
sequence (µk)k∈N is uniformly bounded inM(X). Thus, thanks to Banach-Alaoglu’s Theorem,
there exists a subsequence (µkj )j∈N that weakly-∗ converges to a measure µ ∈M(X):

µkj
∗
⇀ µ ∈M(X) ,

i.e., ˆ
X
ϕdµkj →

ˆ
X
ϕdµ for any ϕ ∈ Cc(X).

Note that, since µk ≥ 0 (by assumption) we have that µ ≥ 0. On the other hand, even if µk
are all probability measures, µ may not be a probability measure, as shown in the following
example.

Example 2.1.4. Let X = R and µk = δk for k ∈ Z. Then, for any ϕ ∈ Cc(R),ˆ
R
ϕdµk = ϕ(k)

k→∞−−−→ 0.

Hence µk
∗
⇀ 0. This shows that, in general, the weak-∗ limit of probability measures may not

be a probability measure.
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To resolve that issue, we need to introduce a stronger notion of convergence.

Definition 2.1.5. Let Cb(X) be the set of continuous bounded functions. We say that µk
converges to µ narrowly if

ˆ
X
ϕdµk →

ˆ
X
ϕdµ for any ϕ ∈ Cb(X).

We denote this convergence by µk ⇀ µ.

Remark 2.1.6. The narrow convergence is particularly useful in our context, as it guarantees
that limits of probability measures are still probability measures. Indeed, assume that µk ∈
P(X) and µk ⇀ µ. Then, taking ϕ ≡ 1 yields

µk(X) =

ˆ
X

1 dµk →
ˆ
X

1 dµ = µ(X).

Hence µ ∈ P(X).

Example 2.1.7. Take X = Rd and µk = (1− 1
k )δ0+ 1

kδxk for some xk ∈ Rd. Then, if ϕ ∈ Cb(Rd),
we have ˆ

R
ϕdµk =

(
1− 1

k

)
ϕ(0) +

1

k
ϕ(xk)

k→∞−−−→ ϕ(0),

so µk ⇀ µ := δ0.

The difference with respect to the case when µk
∗
⇀ µ is that, in the weak-∗ convergence,

some mass of µk may escape to ∞. To avoid this, one needs to guarantee that almost all the
mass of µk remain in a fixed compact set. This motivates the following:

Definition 2.1.8. Let A ⊂ P(X) be a family of probability measures. We say that A is tight
if for any ε > 0 there exists a compact set Kε ⊂ X such that µ(X \Kε) ≤ ε for any µ ∈ A.

We are going to see that the tightness of a family is equivalent to its compactness with
respect to the narrow topology. But before proving such a result, let us present the following
fundamental lemma regarding the exhaustion of a measure by compact sets and compactly
supported functions.

Lemma 2.1.9. Given a probability measure µ ∈ P(X), the following statements hold:

(a) For any ε > 0, there is a compact set Kε ⊂ X such that µ(Kε) ≥ 1− ε.

(b) For any ε > 0, there is ηε ∈ Cc(X) with 0 ≤ ηε ≤ 1 such that
´
ηε dµ ≥ 1− ε.

Proof. (a) Since X is separable, there is a countable sequence of points (xn)n∈N that is dense
in X. Hence, for any r > 0, we have⋃

n∈N
B(xn, r) = X .

Therefore, given ε > 0, for any k ∈ N there exists nk,ε ∈ N such that

µ
( ⋃

1≤n≤nk,ε

B(xn, k−1)
)
≥ 1− ε

2k
. (2.1)

Let us consider the subset Kε ⊂ X defined as

Kε :=
⋂
k∈N

⋃
1≤n≤nk,ε

B(xn, k−1) . (2.2)
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Being the intersection of finite unions of closed balls, Kε is closed. Also, by construction,
the set Kε is also totally bounded. Hence, since X is complete, we deduce that Kε is
compact [Wil70, Theorem 39.9]. Finally, (2.1) implies that

µ(X \Kε) ≤
∑
k∈N

µ

(
X \

⋃
1≤n≤nk,ε

B(xn, k−1)

)
≤
∑
k∈N

ε

2k
= ε,

thus µ(Kε) ≥ 1− ε, as desired.

(b) Let Kε be the compact set provided by the previous step. Since X is locally compact,
there exists a compact set Hε such that Kε ⊂ H̊ε. Thus, Tietze’s extension Theorem
[Wil70, p. 15.8] guarantees the existence of a function ηε ∈ C(X) such that ηε ≡ 1 in Kε,
ηε ≡ 0 in X \ Hε, and 0 ≤ ηε ≤ 1. This function satisfies all the requirements in the
statement.

Remark 2.1.10. Notice that (a) of Lemma 2.1.9 implies that the singleton {µ} constitutes a
tight family.

We are now ready to prove that tightness is a necessary and sufficient condition for com-
pactness with respect to the narrow convergence.

Theorem 2.1.11 (Prokhorov). A family A ⊂ P(X) is tight if and only if A is relatively compact
for the narrow convergence, i.e., for any sequence (µk)k∈N ⊂ A there exists a subsequence
(µkj )j∈N and a probability measure µ ∈ P(X) such that

µkj ⇀ µ .

Proof. We prove only the implication “tightness implies compactness” (see Remark 2.1.12 be-
low); for the other implication, we refer the interested reader to the proof of [Bog07, Theorem
8.6.2].

Since the family is tight, there is a sequence of compact sets (Kn)n∈N such that

µ(X \Kn) ≤ n−1 ∀µ ∈ A. (2.3)

Since the space X is locally compact, up to enlarging inductively each compact set, we may
assume Kn ⊂ K̊n+1 for any n ∈ N.

Given a sequence (µk)k∈N ⊂ A, by Banach-Alaoglu’s Theorem the restricted measures
µk|Kn

4 converge weakly-∗, up to subsequence, to a measure µ(n) ∈ M (X). Therefore, by a

diagonal argument, there exists a subsequence {kj}j∈N such that

µkj |Kn
∗
⇀ µ(n) ∈M (X) ∀n ∈ N. (2.4)

Note that µ(n) vanishes outside Kn and µ(n)(X \Km) ≤ m−1 for any m ∈ N (recall (2.3)).
Testing (2.4) against functions compactly supported in K̊n, we deduce that µ(n+1)|K̊n =

µ(n)|K̊n . By construction we have µ(n+1) ≥ µ(n) and thus

µ̂ := sup
n∈N

µ(n)

is a well-defined measure satisfying µ̂(X \ Kn) ≤ n−1 and µ̂|K̊n = µ(n)|K̊n for every n ∈ N.

Therefore, recalling (2.4), we have

µkj |K̊n
∗
⇀ µ̂|K̊n ∀n ∈ N.

4That is, µk|Kn(E) := µk(E ∩Kn) for any E ⊂ X Borel.
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Since K̊n is the subset of a compact set (that is Kn), the latter weak-∗ convergence is equivalent
to the narrow convergence

µkj |K̊n ⇀ µ̂|K̊n ∀n ∈ N. (2.5)

Thus, recalling that µ(n)(X \Kn) ≤ n−1 and µ̂(X \Kn) ≤ n−1, and Kn−1 ⊂ K̊n, it follows
from (2.5) that, for any ϕ ∈ Cb(X),

lim sup
j→∞

∣∣∣∣ˆ
X
ϕdµkj −

ˆ
X
ϕdµ̂

∣∣∣∣
≤ lim sup

n→∞
lim sup
j→∞

∣∣∣∣∣
ˆ
X\K̊n

ϕdµkj

∣∣∣∣∣+

∣∣∣∣∣
ˆ
X\K̊n

ϕdµ̂

∣∣∣∣∣+

∣∣∣∣ˆ
X
ϕdµkj |K̊n −

ˆ
X
ϕdµ|K̊n

∣∣∣∣
= lim sup

n→∞
‖ϕ‖∞(n− 1)−1 + ‖ϕ‖∞(n− 1)−1 = 0 .

Since ϕ is arbitrary, we have shown that µk ⇀ µ̂ narrowly and in particular µ̂ ∈ P(X).

Remark 2.1.12. For us, the important implication will be that a tight family is relatively
compact with respect to the narrow convergence.

In the next lemma we show that if a sequence of probability measures converges weakly-∗
to a probability measure (so, we are assuming that the limit has still mass 1), then in fact the
convergence is narrow.

Lemma 2.1.13 (weak-∗ convergence + mass conservation = narrow convergence). Let (µk)k∈N ⊂
P(X), and assume that µk

∗
⇀ µ for some µ ∈ P(X). Then the family {µk : k ∈ N} is tight and

µk ⇀ µ.

Proof. Choose ε > 0. Thanks to Lemma 2.1.9 there is a compactly supported function ηε ∈
Cc(X) such that 0 ≤ ηε ≤ 1 and

ˆ
X
ηε dµ ≥ 1− ε.

Since µk
∗
⇀ µ and ηε ∈ Cc(X), we have

ˆ
X
ηε dµk →

ˆ
X
ηε dµ ≥ 1− ε as k →∞.

Therefore there exists kε such that, for any k ≥ kε,

µk(supp(ηε)) ≥
ˆ
X
ηε dµk ≥ 1− 2ε.

Also, for each k < kε, applying Lemma 2.1.9 again, we can find a compact set Kε,k such that

µk(Kε,k) ≥ 1− 2ε.

Set K̂ε := supp(ηε) ∪
⋃kε
k=1Kε,k. Since it is a finite union of compact sets, K̂ε is compact and

it holds µk(K̂ε) ≥ 1 − 2ε for all k ∈ N (or equivalently µk(X \ K̂ε) ≤ 2ε), thus the family
{µk : k ∈ N} is tight.

Hence, given any subsequence µkj , Theorem 2.1.11 implies the existence of a subsequence

µkj` such that µkj` ⇀ ν ∈ P(X). On the other hand, since µk
∗
⇀ µ, we also have µkj`

∗
⇀ µ.

Therefore, for any ϕ ∈ Cc(X) we have
ˆ
X
ϕdν ←

ˆ
X
ϕdµkj` →

ˆ
X
ϕdµ.
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The arbitrariness of ϕ implies that µ = ν.
In other words, we proved that for any narrowly converging subsequence of µk, the limit is

independent of the choice of the subsequence and coincides with µ. This implies that the whole
sequence µk narrowly converges to µ, as desired.

The next result shows the lower semicontinuity of the map µ 7→
´
ϕdµ under weak-∗ con-

vergence, whenever the integrand ϕ is nonnegative and lower semicontinuous. Since the narrow
topology is stronger than the weak-∗ topology (i.e., narrow convergence implies weak-∗ conver-
gence), this result implies also the lower semicontinuity of the map µ 7→

´
ϕdµ under narrow

convergence.

Lemma 2.1.14 (lower semicontinuity of integrals). Let µk
∗
⇀ µ, and let ϕ : X → [0,+∞] be a

lower semicontinuous function.5 Then

lim inf
k→∞

ˆ
X
ϕdµk ≥

ˆ
X
ϕdµ .

Proof. If ϕ ≡ +∞ then the statement is trivial, hence we assume that this is not the case.
Given λ ≥ 0, define

ϕλ(x) := inf
y∈X

{
ϕ(y) + λ d(x, y)

}
,

where d : X ×X → R denotes the distance function on X.
We claim that the functions ϕλ satisfy the following properties:

(a) If λ < λ′ then ϕλ ≤ ϕλ′ ≤ ϕ;

(b) ϕλ is λ-Lipschitz;

(c) For each x ∈ X it holds ϕλ(x)↗ ϕ(x) as λ→∞.

Let us prove the mentioned properties.

(a) For any y ∈ X we have ϕλ(x) ≤ ϕ(y) + λ d(x, y) ≤ ϕ(y) + λ′ d(x, y). Taking the infimum
over y ∈ X shows that ϕλ ≤ ϕλ′ . Also, taking y = x in the definition of ϕλ′ proves that
ϕλ′ ≤ ϕ.

(b) Let x, x′ ∈ X. Then, by the triangle inequality,

ϕλ(x′) ≤ ϕ(y) + λ d(x′, y) ≤ ϕ(y) + λ d(x, y) + λ d(x, x′) ∀ y ∈ X.

Taking the infimum over y yields ϕλ(x′) ≤ ϕλ(x) + λ d(x, x′). Since the argument is
symmetric in x and x′, this proves that

|ϕλ(x)− ϕλ(x′)| ≤ λ d(x, x′).

(c) Fix x ∈ X. Since ϕ is lower semicontinuous, for all ε > 0 there exists a δ > 0 such that
ϕ(y) ≥ min

{
ϕ(x)− ε, 1

ε

}
for all y ∈ X with d(x, y) ≤ δ.6 Thus, recalling that ϕ ≥ 0, we

have {
ϕ(y) + λ d(x, y) ≥ min

{
ϕ(x)− ε, 1

ε

}
if d(x, y) ≤ δ

ϕ(y) + λ d(x, y) ≥ λ δ if d(x, y) > δ

5Recall that a function ϕ is lower semicontinuous if lim infk→∞ ϕ(xk) ≥ ϕ(x) as xk → x.
6Indeed, we know that lim infk→∞ ϕ(xk) ≥ ϕ(x) if xk → x. Hence:

- If ϕ(x) ∈ R, then for any ε > 0 there exists δ > 0 such that ϕ(y) ≥ ϕ(x)− ε for d(x, y) ≤ δ.
- If ϕ(x) = +∞, then for any ε > 0 there exists δ > 0 such that ϕ(y) ≥ 1

ε
for d(x, y) ≤ δ.
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from which it follows that

ϕλ(x) ≥ min

{
ϕ(x)− ε, 1

ε
, λ δ

}
.

Letting λ → ∞, this implies that lim infλ→∞ ϕλ(x) ≥ min{ϕ(x) − ε, 1
ε}. Since ε is

arbitrary, this proves that lim infλ→∞ ϕλ(x) ≥ ϕ(x). Because (a) yields the converse
inequality, we conclude that

lim
λ→∞

ϕλ(x) = ϕ(x).

Note that since ϕ ≥ 0, we have ϕλ ≥ 0. Consider the family of compactly supported functions
(ηε)ε>0 constructed in Lemma 2.1.9. We may assume that η 1

i
≤ η 1

i+1
for any i ∈ N, and

therefore η 1
i
↗ 1 µ-almost everywhere as i→∞. Then, we define

ψi(x) := ϕi(x) η 1
i
(x).

Note that ψi is continuous and compactly supported. Thus, given that ψi ≤ ϕ (by property (a)
above, since ψi ≤ ϕi), by the weak-∗ convergence of µk to µ we getˆ

X
ψi dµ = lim

k→∞

ˆ
X
ψi dµk ≤ lim inf

k→∞

ˆ
X
ϕdµk.

Since ψi ↗ ϕ µ-almost everywhere, we conclude by monotone convergence:ˆ
X
ϕdµ = lim

i→∞

ˆ
X
ψi dµ ≤ lim inf

k→∞

ˆ
X
ϕdµk.

2.2 Monge vs. Kantorovich

Fix µ ∈ P(X), ν ∈ P(Y ), and c : X × Y → [0,+∞] lower semicontinuous. The Monge and the
Kantorovich’s problems can be stated as follows (recall Definition 1.4.3):

CM (µ, ν) := inf
{ˆ

X
c(x, T (x)) dµ(x) | T#µ = ν

}
. (M)

CK(µ, ν) := inf
{ˆ

X×Y
c(x, y) dγ(x, y) | γ ∈ Γ(µ, ν)

}
. (K)

In other words, Monge’s problem (M) consists in minimizing the transportation cost among
all transport maps, while Kantorovich’s problem (K) consists in minimizing the transportation
cost among all couplings.

Remark 2.2.1. Recall that if T#µ = ν, then γT := (Id× T )#µ ∈ Γ(µ, ν). Alsoˆ
X
c(x, T (x)) dµ(x) =

ˆ
X
c ◦ (Id× T )(x) dµ(x) =

ˆ
X×Y

c(x, y) dγT (x, y).

In other words, any transport map T induces a coupling γT with the same cost. Thanks to this
fact, we deduce that

CM (µ, ν) ≥ CK(µ, ν).

Remark 2.2.2. Let γ ∈ Γ(µ, ν) and assume that γ = (Id × S)#µ for some map S : X → Y.
Then

ν = (πY )#γ = (πY )#(Id× S)#µ = (πY ◦ (Id× S))#µ = S#µ,

thus S is a transport map from µ to ν. In other words, if we have a coupling with the structure
of a graph, this yields a transport map.

19



2.3 Existence of an optimal coupling

Lemma 2.3.1. The set Γ(µ, ν) ⊂ P(X × Y ) is tight and closed under narrow convergence.

Proof. We split the proof in two steps: we first prove tightness and then closedness.

• Γ(µ, ν) is tight. Thanks to Lemma 2.1.9, for all ε > 0, there exists a set Kε ⊂ X such that
µ(X \Kε) ≤ ε

2 . Analogously for ν, there exists a set K̃ε ⊂ Y such that ν(Y \ K̃ε) ≤ ε
2 .

Define the compact set K̄ε := Kε × K̃ε ⊂ X × Y . Then, for any γ ∈ Γ(µ, ν), we have

γ((X × Y ) \ K̄ε) = γ((X \Kε)× Y ∪X × (Y \ K̃ε))

≤ γ((X \Kε)× Y ) + γ(X × (Y \ K̃ε))

=

ˆ
X×Y

1X\Kε(x) dγ(x, y) +

ˆ
X×Y

1Y \K̃ε(y) dγ(x, y)

=

ˆ
X
1X\Kε(x) dµ(x) +

ˆ
Y
1Y \K̃ε(y) dν(y)

= µ(X \Kε) + ν(Y \ K̃ε)

≤ ε

2
+
ε

2
= ε.

Thus Γ(µ, ν) is tight.

• Γ(µ, ν) is closed under narrow convergence. Take a sequence (γk)k∈N ⊂ Γ(µ, ν), and
assume that γk ⇀ γ ∈ P(X × Y ). Then, for any ϕ ∈ Cb(X) we have

ˆ
X
ϕ(x) dµ(x) =

ˆ
X×Y

ϕ(x) dγk(x, y)→
ˆ
X×Y

ϕ(x) dγ(x, y),

hence (πX)#γ = µ. Analogously (πY )#γ = ν.

Theorem 2.3.2. Let c : X × Y → [0,+∞] be lower semicontinuous, µ ∈ P(X), and ν ∈ P(Y ).
Then there exists a coupling γ̄ ∈ Γ(µ, ν) which is a minimizer for (K).

Proof. Without loss of generality α := infγ∈Γ(µ,ν)

´
X×Y c dγ < +∞ (if infγ∈Γ(µ,ν)

´
X×Y c dγ =

+∞, then the statement is trivial since every γ ∈ Γ(µ, ν) is a minimizer).
Let (γk)k∈N ⊂ Γ(µ, ν) be a minimizing sequence, namely

ˆ
X×Y

c dγk → α as k →∞.

Since {γk} ⊂ Γ(µ, ν) is tight, by Theorem 2.1.11 there exists a subsequence (γkj )j∈N such that
γkj ⇀ γ̄. Since c is nonnegative and lower semicontinuous, it follows from Lemma 2.1.14 that

inf
γ∈Γ(µ,ν)

ˆ
X×Y

c dγ = α = lim inf
j→∞

ˆ
X×Y

c dγkj ≥
ˆ
X×Y

c dγ̄.

Since γ̄ ∈ Γ(µ, ν) (thanks to Lemma 2.3.1), we clearly have
´
X×Y c dγ̄ ≥ α. This proves that´

X×Y c dγ̄ = α, thus γ̄ is a minimizer.

In other words, under very general assumptions on the cost function, an optimal coupling
always exists.

Remark 2.3.3. Note that, up to replacing c(x, y) with c(x, y) + C for some constant C ∈ R,
all results proved in this book still hold for costs c bounded from below.
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The natural questions that now arise are the following:

1. Is the minimizer γ unique?

2. Is it given by a transport map?

In order to get an intuition on these two important questions, let us consider two examples.

Example 2.3.4. Let µ = δx0 and ν = 1
2δy0 + 1

2δy1 . Then there exists a unique element in
Γ(µ, ν), given by the coupling γ := 1

2δ(x0,y0) + 1
2δ(x0,y1). So the minimizer is unique (for every

cost), but it is not induced by a transport map.

Example 2.3.5. Let X = Y = R2, let c(x, y) = |x− y|2, consider the points in R2 given by

x1 := (0, 0), x2 := (1, 1), y1 := (1, 0), y2 := (0, 1),

and define the measures

µ =
1

2
δx1 +

1

2
δx2 , ν =

1

2
δy1 +

1

2
δy2 .

In this case the set of all couplings from µ to ν is obtained by sending an amount α ∈
[
0, 1

2

]
from x1 to y1, the remaining amount 1

2 − α from x1 to y2, then an amount β ∈
[
0, 1

2

]
from x2

to y2, and finally the remaining amount 1
2 − β from x2 to y1.

In other words, the set Γ(µ, ν) is given by:

γα,β = αδ(x1,y1) +

(
1

2
− α

)
δ(x1,y2) +

(
1

2
− β

)
δ(x2,y1) + βδ(x2,y2), α, β ∈

[
0,

1

2

]
.

Note that, for all α, β ∈
[
0, 1

2

]
,

ˆ
X×Y

c dγα,β = α|x1 − y1|2 +

(
1

2
− α

)
|x1 − y2|2 +

(
1

2
− β

)
|x2 − y1|2 + β|x2 − y2|2 = 1.

Hence all couplings γα,β are optimal, ruling out the uniqueness of the optimal plan without
further assumptions.

2.4 c-cyclical monotonicity

Let us recall the definition of support of a measure.

Definition 2.4.1. Given a measure µ ∈M(X), its support is defined as

supp(µ) := {x ∈ X | ∀ε > 0: µ(Bε(x)) > 0} .

We want to investigate the properties of the support of an optimal coupling.
Given an optimal coupling γ̄ ∈ Γ(µ, ν) with finite cost (i.e.,

´
X×Y c dγ̄ = infγ∈Γ(µ,ν)

´
X×Y c dγ <

+∞), its support is

supp(γ̄) = {(x, y) ∈ X × Y | ∀ ε > 0: γ̄(Bε(x)×Bε(y)) > 0} .

So, morally speaking, a pair of points (x, y) belongs to the support if some mass goes from x
to y.
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To understand how to exploit the optimality of γ̄, suppose for instance that (xi, yi)i=1,2,3 ∈
supp(γ̄). This means that γ̄ sends mass from xi to yi. Now, consider another transport plan
which takes the mass from x2 to y1, from x3 to y2, and from x1 to y3. Since γ̄ is optimal, this
“re-shuffling” must increase the cost, i.e.,

3∑
i=1

c(xi+1, yi) ≥
3∑
i=1

c(xi, yi),

where we set x4 ≡ x1.7 Since this property needs to hold for any collection of points in the
support of γ̄, this motivates the following definition:

Definition 2.4.2. A set Λ ⊂ X×Y is said to be c-cyclically monotone if for any finite sequence
(xi, yi)i=1,...,N ⊂ Λ, the following holds:

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi+1, yi),

where xN+1 ≡ x1.

The above discussion suggests that optimality implies c-cyclically monotonicity. This is
indeed the case:

Theorem 2.4.3. Let γ̄ be optimal and c : X ×Y → R continuous. Then supp(γ̄) is c-cyclically
monotone.

Remark 2.4.4. We will show later that the above statement is an if and only if, see Theo-
rem 2.6.3.

Proof. By contradiction, suppose supp(γ̄) is not c-cyclically monotone. Then there exist η > 0
and N pairs of points (x1, y1), . . . , (xN , yN ) ∈ supp(γ̄) such that

N∑
i=1

c(xi, yi) ≥
N∑
i=1

c(xi+1, yi) + η. (2.6)

Since c is continuous, there exist open neighbourhoods xi ∈ Ui ⊂ X and yi ∈ Vi ⊂ Y such that

|c(x, y)− c(xi, yi)| ≤
η

4N
∀ (x, y) ∈ Ui × Vi (2.7)

and
|c(x, y)− c(xi+1, yi)| ≤

η

4N
∀ (x, y) ∈ Ui+1 × Vi . (2.8)

Set εi := γ̄(Ui × Vi). Note that all εi are positive, since (xi, yi) belong to the support of γ̄.

Now set ε := mini=1,...,N εi and8 γi :=
γ̄|Ui×Vi
εi

∈ P(X × Y ). Then we define the measures
µi := (πX)#γi ∈ P(X) and νi := (πY )#γi ∈ P(Y ), and we set

γ′ := γ̄ − ε

N

N∑
i=1

γi +
ε

N

N∑
i=1

µi+1 ⊗ νi .

7Of course this argument is not rigorous, since the points (xi, yi) may have zero mass for γ̄. However, as we
shall see later, one can make this argument rigorous by considering some small neighborhoods of (xi, yi).

8Here we are using the notation γ̄|A to denote the restriction of the measure γ̄ to the set A: namely, for any
Borel set E ⊂ X, γ̄|A(E) := γ̄(A ∩ E)).

22



Let us show that γ′ ≥ 0. Since ε ≤ εi, we have

γ′ ≥ γ̄ − ε

N

N∑
i=1

γi = γ̄ − 1

N

N∑
i=1

ε

εi
γ̄|Ui×Vi

≥ γ̄ − 1

N

N∑
i=1

γ̄|Ui×Vi ≥ γ̄ −
1

N

N∑
i=1

γ̄ = 0.

Let us also check that γ′ ∈ Γ(µ, ν). Since (πX)#γ̄ = µ, (πX)#γi = µi, and (πX)#(µi+1 ⊗ νi) =
µi+1, we have

(πX)#γ
′ = µ− ε

N

N∑
i=1

µi +
ε

N

N∑
i=1

µi+1 = µ.

Analogously (πY )#γ
′ = ν.

It remains only to prove
´
X×Y cdγ

′ <
´
X×Y c dγ̄ because this yields the sought contradiction,

since γ̄ was assumed to be optimal. Note that, since µi ∈ P(X) is supported inside Ui and
νi ∈ P(Y ) is supported inside Vi, it follows from (2.8) that

ˆ
X×Y

c(x, y) d(µi+1 ⊗ νi) =

ˆ
Ui+1×Vi

c(x, y) d(µi+1 ⊗ νi)

≤
ˆ
Ui+1×Vi

[
c(xi+1, yi) +

η

4N

]
d(µi+1 ⊗ νi)

= c(xi+1, yi) +
η

4N
.

Analogously, since γi ∈ P(X × Y ) is supported inside Ui × Vi,ˆ
X×Y

c dγi =

ˆ
Ui×Vi

c dγi ≥
ˆ
Ui×Vi

[
c(xi, yi)−

η

4N

]
dγi = c(xi, yi)−

η

4N
.

Then, recalling (2.6), we get

ˆ
X×Y

c dγ̄ −
ˆ
X×Y

c dγ′ =
ε

N

N∑
i=1

[ˆ
X×Y

c dγi −
ˆ
X×Y

c d(µi+1 ⊗ νi)
]

≥ ε

N

N∑
i=1

[
c(xi, yi)−

η

4N
−
(
c(xi+1, yi) +

η

4N

)]

≥ ε

N

N∑
i=1

[c(xi, yi)− c(xi+1, yi)]−
ε

N

η

2

≥ ε

N
η − ε

N

η

2
=

ε

N

η

2
> 0 ,

a contradiction that concludes the proof.

2.5 The case c(x, y) = |x−y|2
2

on X = Y = Rd

Let X = Y = Rd and c(x, y) = |x−y|2
2 . Also, assume that

´
Rd
|x|2
2 dµ +

´
Rd
|y|2
2 dν < +∞. Let

γ ∈ Γ(µ, ν), then

ˆ
Rd×Rd

|x− y|2

2
dγ(x, y) =

ˆ
Rd×Rd

(
|x|2

2
+
|y|2

2
− x · y

)
dγ

=

ˆ
Rd

|x|2

2
dµ+

ˆ
Rd

|y|2

2
dν +

ˆ
Rd×Rd

−x · y dγ.
(2.9)
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Since the first two terms in the last expression are independent of γ, we deduce that γ is optimal

for the cost c(x, y) = |x−y|2
2 if and only if it is optimal for the cost c(x, y) = −x · y.

Hence, in the next section we shall work with the cost function c(x, y) = −x·y, as it simplifies
several definitions and computations.

2.5.1 Cyclical monotonicity and Rockafellar’s Theorem

In the case c(x, y) = −x · y, the condition

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi+1, yi)

is equivalent to

N∑
i=1

〈yi, xi+1 − xi〉 ≤ 0,

where 〈·, ·〉 = · is the canonical scalar product9 on Rd, and by convention xN+1 ≡ x1. Any subset
of Rd × Rd satisfying this last property (for any family of points (x1, y1), (x2, y2), . . . , (xN , yN )
contained in such set) is called a cyclically monotone set.

The goal of this section is to characterize cyclical monotonicity in terms of subdifferential
of convex functions. We first recall the definition.

Definition 2.5.1. Given ϕ : Rd → R ∪ {+∞} convex, we define the subdifferential of ϕ as

∂ϕ(x) :=
{
y ∈ Rd | ∀z ∈ Rd : ϕ(z) ≥ ϕ(x) + 〈y, z − x〉

}
.

Also, we define ∂ϕ :=
⋃
x∈Rd{x} × ∂ϕ(x) ⊂ Rd × Rd.

Theorem 2.5.2 (Rockafellar). A set S ⊂ Rd × Rd is cyclically monotone if and only if there
exists a convex function ϕ : Rd → R ∪ {+∞} such that S ⊂ ∂ϕ.

Proof. First we show that if such a convex function exists then the set S has to be cyclically
monotone. The converse implication will then by proved constructing ϕ explicitly.

⇐ Assume that S ⊂ ∂ϕ, and take a finite set of points (xi, yi)i=1,...,N ⊂ S ⊂ ∂ϕ. Then, for
each i we have that yi ∈ ∂ϕ(xi), and therefore

ϕ(z) ≥ ϕ(xi) + 〈yi, z − xi〉 for any z ∈ Rd.

In particular, choosing z = xi+1 we obtain

ϕ(xi+1) ≥ ϕ(yi) + 〈yi, xi+1 − xi〉,

and summing over i (where we adopt the convention N + 1 ≡ 1) yields

N∑
i=1

ϕ(xi+1) ≥
N∑
i=1

ϕ(xi) +
N∑
i=1

〈yi, xi+1 − xi〉.

Since the two summands containing ϕ are equal, this implies that

0 ≥
N∑
i=1

〈yi, xi+1 − xi〉.

9Throughout this book, we shall use both notation 〈·, ·〉 and · indistinguishably.
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⇒ Fix (x0, y0) ∈ S and define

ϕ(x) := sup
N≥1

{
〈yN , x− xN 〉+ 〈yN−1, xN − xN−1〉+ · · ·+ 〈y0, x1 − x0〉 | (xi, yi)i=1,...,N ⊂ S

}
.

Note that:

(i) ϕ is a supremum of affine functions, thus it is convex.

(ii) Choosing N = 1 and (x1, y1) = (x0, x0) yields

ϕ(x) ≥ 〈y0, x− x0〉,

and in particular ϕ(x0) ≥ 0.

(iii) For any (xi, yi)i=1,...,N ⊂ S, because of cyclic monotonicity, we have

〈yN , x0 − xN 〉+ · · ·+ 〈y0, x1 − x0〉 ≤ 0.

Hence ϕ(x0) ≤ 0, that combined with (ii) implies that ϕ(x0) = 0. In particular
ϕ 6≡ +∞.

We now prove that S ⊂ ∂ϕ.

Take (x̄, ȳ) ∈ S and let α < ϕ(x̄). Then, by the definition of ϕ, there exist N ≥ 1 and a
sequence (xi, yi)i=1,...,N such that

〈yN , x̄− xN 〉+ · · ·+ 〈y0, x1 − x0〉 ≥ α. (2.10)

Consider now the sequence (xi, yi)i=1,...,N+1 obtained by taking (xN+1, yN+1) = (x̄, ȳ).
Since this new sequence is admissible in the definition of ϕ, using (2.10) we deduce that,
for any z ∈ Rd,

ϕ(z) ≥ 〈yN+1︸ ︷︷ ︸
=ȳ

, z −
=x̄︷ ︸︸ ︷
xN+1〉+ 〈yN ,

=x̄︷ ︸︸ ︷
xN+1−xN 〉+ · · ·+ 〈y0, x1 − x0〉 ≥ 〈ȳ, z − x̄〉+ α.

Letting α→ ϕ(x̄), this shows that ϕ(z) ≥ 〈ȳ, z− x̄〉+ϕ(x̄) for all z ∈ Rd, thus ȳ ∈ ∂ϕ(x̄)
(or equivalently (x̄, ȳ) ∈ ∂ϕ), as desired.

2.5.2 Kantorovich Duality

With the use of the Legendre transform, we now want to find a dual problem to the Kantorovich’s
problem. We shall do this in a constructive way. However, the reader familiar with convex
optimization will not be surprised: since Kantorovich’s problem is a linear minimization with
convex constraints, it admits a dual problem by “abstract convex analysis” (see Remark 2.6.8).

Definition 2.5.3. Given ϕ : Rd → R∪{+∞} convex (with ϕ 6≡ +∞), one defines the Legendre
transform of ϕ,

ϕ∗ : Rd → R ∪ {+∞},

as

ϕ∗(y) := sup
x∈Rd
{x · y − ϕ(x)}.

Proposition 2.5.4. The following properties hold:

(a) ϕ(x) + ϕ∗(y) ≥ x · y for all x, y ∈ Rd;
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(b) ϕ(x) + ϕ∗(y) = x · y if and only if y ∈ ∂ϕ(x).

Proof. As we shall see, both properties follow easily from our definitions.

(a) For any x ∈ Rd, it follows by the definition of ϕ∗ that ϕ∗(y) ≥ x ·y−ϕ(x), or equivalently
ϕ∗(y) + ϕ(x) ≥ x · y.

(b) ⇒ Assume that ϕ(x) + ϕ∗(y) = x · y. By (a) we have

ϕ∗(y) ≥ z · y − ϕ(z) ∀ z ∈ Rd.

Since x · y − ϕ(x) = ϕ∗(y), this implies that

ϕ(z) ≥ ϕ(x) + 〈y, z − x〉 ∀ z ∈ Rd,

thus y ∈ ∂ϕ(x).

⇐ If y ∈ ∂ϕ(x), then for any z ∈ Rd we have ϕ(z) ≥ ϕ(x) + 〈y, z − x〉, or equivalently

x · y − ϕ(x) ≥ z · y − ϕ(z) ∀ z ∈ Rd.

By taking the supremum over z ∈ Rd we get

x · y − ϕ(x) ≥ ϕ∗(y),

and by (a) we obtain equality.

In the next theorem, we prove the so-called Kantorovich duality. Note that the existence
of an optimal coupling for the cost function c(x, y) = −x · y does not immediately follow from
our previous results, since we only proved existence of an optimal coupling for nonnegative
cost functions. However, we can use that the cost c(x, y) = −x · y is equivalent to the cost

c′(x, y) := |x−y|2
2 provided that

´ |x|2
2 dµ+

´ |y|2
2 dν < +∞ (see (2.9)). In addition, noticing that

ˆ
Rd×Rd

|x− y|2

2
d(µ⊗ ν)(x, y) ≤

ˆ
Rd×Rd

(
|x|2 + |y|2

)
d(µ⊗ ν)(x, y)

=

ˆ
Rd
|x|2 dµ(x) +

ˆ
Rd
|y|2 dν(y) < +∞,

it follows that infγ∈Γ(µ,ν)

´
X×Y c

′ dγ < +∞ (recall that µ⊗ ν ∈ Γ(µ, ν)).
Hence, we can apply Theorem 2.3.2 to obtain the existence of an optimal coupling for the

cost c′, and then use that this coupling is also optimal for our cost c.

Theorem 2.5.5 (Kantorovich duality). Assume that

ˆ
Rd
|x|2 dµ(x) +

ˆ
Rd
|y|2 dν(y) < +∞.

Then, for any γ ∈ Γ(µ, ν) and ϕ,ψ : Rd → R ∪ {+∞} measurable, it holds

min
γ∈Γ(µ,ν)

ˆ
Rd×Rd

−x · y dγ(x, y) = max
ϕ(x)+ψ(y)≥x·y

ˆ
Rd
−ϕ(x) dµ(x) +

ˆ
Rd
−ψ(y) dν(y).
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Proof. Consider ϕ,ψ : Rd → R ∪ {+∞} such that

ϕ(x) + ψ(y) ≥ x · y ∀x, y ∈ Rd.

Integrating this inequality with respect to an arbitrary coupling γ ∈ Γ(µ, ν) yields10

ˆ
Rd×Rd

−x · y dγ(x, y) ≥
ˆ
Rd×Rd

−ϕ(x) dγ(x, y) +

ˆ
Rd×Rd

−ψ(y) dγ(x, y)

=

ˆ
Rd
−ϕ(x) dµ(x) +

ˆ
Rd
−ψ(y) dν(y).

(2.11)

Note that the left-hand side does not depend on ϕ and ψ, and the right-hand side does not
depend on γ. Thus

inf
γ∈Γ(µ,ν)

ˆ
Rd×Rd

−x · y dγ(x, y) ≥ sup
ϕ(x)+ψ(y)≥x·y

ˆ
Rd
−ϕ(x) dµ(x) +

ˆ
Rd
−ψ(y) dν(y). (2.12)

On the other hand, let γ̄ ∈ Γ(µ, ν) be optimal. Theorem 2.4.3 implies that supp(γ̄) is cyclically
monotone, and so Theorem 2.5.2 yields the existence of a convex map ϕ : Rd → R∪{+∞} such
that supp(γ̄) ⊂ ∂ϕ, that is, y ∈ ∂ϕ(x) for any (x, y) ∈ supp(γ̄). Thanks to Proposition 2.5.4,
this implies that ϕ(x) + ϕ∗(y) = x · y for γ̄-almost every (x, y). Thus we have

ˆ
Rd×Rd

−x · y dγ̄(x, y) =

ˆ
Rd
−ϕ(x) dγ̄(x, y) +

ˆ
Rd
−ϕ∗(y) dγ̄(x, y)

=

ˆ
Rd
−ϕ(x) dµ(x) +

ˆ
Rd
−ϕ∗(y) dν(y).

Hence the triple (γ̄, ϕ, ϕ∗) gives equality in equation (2.11).

Remark 2.5.6. In the proof above, the optimality of γ̄ is only used to deduce that supp(γ̄) ⊂ ∂ϕ
for some convex function ϕ. Hence, the proof actually shows that if supp(γ̄) ⊂ ∂ϕ with ϕ convex,
then ˆ

Rd×Rd
−x · y dγ̄ =

ˆ
Rd
−ϕdµ+

ˆ
Rd
−ϕ∗ dν.

10Here there is a subtle point: to apply Fubini’s Theorem and say that
´
Rd×Rd ϕ(x) dγ(x, y) =

´
Rd ϕ(x) dµ(x),

one would need to make sure that ϕ is integrable (and analogously for ψ). Hence, to justify this identity, we

argue as follows: since ϕ(x) + ψ(y) ≥ x · y ≥ − |x|
2

2
− |y|

2

2
, it means that

ϕ(x) +
|x|2

2
+ ψ(y) +

|y|2

2
≥ 0 ∀x, y ∈ Rd.

Choosing two points x0, y0 ∈ Rd where ϕ and ψ are respectively finite (if these points do not exist it means that
ϕ ≡ +∞ or ψ ≡ +∞, and then (2.11) is trivially true), this implies that

Φ(x) := ϕ(x) +
|x|2

2
≥ −C0 := −ψ(y0)− |y0|2

2
∀x, Ψ(y) := ψ(y) +

|y|2

2
≥ −C1 := −ϕ(x0)− |x0|2

2
∀ y.

Now, since Φ + C0 and Ψ + C1 are nonnegative, we can monotonically approximate them with the Borel and
bounded functions Φk := min{Φ + C0, k} and Ψk := min{Ψ + C1, k}, k ∈ N. Then, applying the definition of
coupling to Φk and Ψk (see Definition 1.4.3) and letting k →∞, by monotone convergence we get
ˆ
Rd×Rd

(
Φ(x) + C0

)
dγ(x, y) =

ˆ
Rd

(
Φ(x) + C0

)
dµ(x),

ˆ
Rd×Rd

(
Ψ(y) + C1

)
dγ(x, y) =

ˆ
Rd

(
Ψ(y) + C1

)
dν(y).

Finally, since
´
|x|2dγ =

´
|x|2dµ < +∞ and

´
|y|2dγ =

´
|y|2dν < +∞, we can subtract |x|

2

2
+ C0 (resp.

|y|2
2

+ C1) from the equation above to deduce that
ˆ
Rd×Rd

ϕ(x) dγ(x, y) =

ˆ
Rd
ϕ(x) dµ(x),

ˆ
Rd×Rd

ψ(y) dγ(x, y) =

ˆ
Rd
ψ(y) dν(y).
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Since the right-hand side is bounded from above by infγ∈Γ(µ,ν)

´
−x · y dγ (thanks to (2.11)),

we conclude that ˆ
Rd×Rd

−x · y dγ̄ ≤ inf
γ∈Γ(µ,ν)

ˆ
−x · y dγ,

thus γ̄ is optimal. So we proved the implication

supp(γ̄) ⊂ ∂ϕ with ϕ convex ⇒ γ̄ is optimal.

As a consequence of this remark, together with Theorems 2.4.3 and 2.5.2, we obtain the
following:

Corollary 2.5.7. Let c(x, y) = |x−y|2
2 (or equivalently c(x, y) = −x · y). The following are

equivalent:

- γ̄ is optimal;

- supp(γ̄) is cyclically monotone;

- there exists a convex map ϕ : Rd → R ∪ {+∞} such that supp(γ̄) ⊂ ∂ϕ.

Remark 2.5.8. These equivalences are particularly useful when proving that a certain transport
map is optimal. Indeed, given a transport map T from µ to ν, γT := (Id × T )#µ is optimal
if and only if there exists a convex map ϕ such that supp(γT ) ⊂ ∂ϕ (recall Remark 2.2.1).
Recalling the definition of ∂ϕ, this is equivalent to asking that

T (x) ∈ ∂ϕ(x) for µ-a.e. x. (2.13)

In particular, given a convex function φ and a measure µ ∈ P(Rd), assume that φ is differentiable
µ-a.e. Then the map T := ∇φ is well defined µ-a.e., and we can consider the measure ν :=
(∇φ)#µ. Since ∂φ(x) = {∇φ(x)} at every differentiability point of φ, the above optimality
condition (2.13) is trivially satisfied and therefore

∇φ is an optimal map from µ onto ν = (∇φ)#µ.

2.5.3 Brenier’s Theorem

We are now ready to state and prove a cornerstone of the optimal transport theory [Bre87].

Theorem 2.5.9 (Brenier’s Theorem). Let X = Y = Rd and c(x, y) = |x−y|2
2 (or equivalently

c(x, y) = −x · y). Suppose that ˆ
Rd
|x|2dµ+

ˆ
Rd
|y|2dν < +∞

and that µ � dx (i.e., µ is absolutely continuous with respect to the Lebesgue measure). Then
there exists a unique optimal plan γ̄. In addition, γ̄ = (Id×T )#µ and T = ∇ϕ for some convex
function ϕ.

Proof. The proof takes four steps: Steps 1-3 for the existence, and Step 4 for the uniqueness.

1. Note that the cost c(x, y) = |x−y|2
2 is nonnegative and continuous. Also, taking µ ⊗ ν ∈

Γ(µ, ν) as coupling, we obtainˆ
Rd×Rd

|x− y|2d(µ⊗ ν) ≤ 2

ˆ
Rd×Rd

(
|x|2 + |y|2

)
d(µ⊗ ν)

= 2

ˆ
Rd
|x|2dµ+ 2

ˆ
Rd
|y|2dν < +∞.

Thus Theorem 2.3.2 ensures the existence of a nontrivial optimal transport plan γ̄.
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2. Since γ̄ is optimal, we know from Corollary 2.5.7 that supp(γ̄) ⊂ ∂ϕ for some convex
ϕ : Rd → R ∪ {+∞}. Also, by Proposition 2.5.4,

ϕ(x) + ϕ∗(y) = x · y on ∂ϕ,

where ϕ∗(y) := supz∈Rd{z · y − ϕ(z)}. Therefore

ϕ(x) + ϕ∗(y) = x · y on supp(γ̄).

In particular (ϕ(x), ϕ∗(y)) is finite for γ̄-a.e. (x, y), and thus ϕ(x) is finite at µ-a.e. point
x. Since µ � dx, and convex functions are differentiable a.e. on the region where they
are finite (this follows by Alexandrov’s Theorem, see [Vil09, Theorem 14.25]), we deduce
that ϕ is differentiable µ-a.e.

3. Let A ⊂ Rd, with µ(A) = 0, be such that ϕ is differentiable everywhere in Rd \A.

Fix x̄ ∈ Rd \A and suppose that (x̄, ȳ) ∈ supp(γ̄) ⊂ ∂ϕ. Then

ϕ(x̄) + ϕ∗(ȳ) = x̄ · ȳ,
ϕ(z) + ϕ∗(ȳ) ≥ z · ȳ ∀ z ∈ Rd,

which implies that

Φx̄(z) := ϕ(z)− ϕ(x̄)− 〈ȳ, z − x̄〉 ≥ 0, with equality at z = x̄.

Since ϕ is differentiable at x̄, so is Φx̄. Hence, since Φx̄ has a minimum at x̄, we deduce
that

0 = ∇Φx̄(x̄) = ∇ϕ(x̄)− ȳ.

Therefore, we proved that

ȳ = ∇ϕ(x̄) for all x̄ ∈ Rd \A and (x̄, ȳ) ∈ supp(γ̄),

or, in other words,
supp(γ̄) ∩ [(Rd \A)× Rd] ⊂ graph(∇ϕ).

Since γ̄(A× Rd) = µ(A) = 0, this proves that

(x, y) = (x,∇ϕ(x)) γ̄-a.e. (2.14)

Thus, for any function F ∈ Cb(Rd × Rd) we have

ˆ
Rd×Rd

F (x, y) dγ̄(x, y)
(2.14)

=

ˆ
Rd×Rd

F (x,∇ϕ(x)) dγ̄(x, y)

=

ˆ
Rd
F (x,∇ϕ(x)) dµ(x)

=

ˆ
Rd×Rd

F (x, y) d((Id×∇ϕ)#µ)(x, y),

hence γ̄ = (Id×∇ϕ)#µ, as desired.

4. We now prove uniqueness. Assume that γ̄1 and γ̄2 are optimal. By linearity of the problem
(and convexity of the constraints) also γ̄1+γ̄2

2 is optimal; indeed

ˆ
Rd×Rd

|x− y|2d
(
γ̄1 + γ̄2

2

)
=

1

2

ˆ
Rd×Rd

|x− y|2dγ̄1 +
1

2

ˆ
Rd×Rd

|x− y|2dγ̄2
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and, for any ψ ∈ Cb(Rd), it holds

ˆ
Rd×Rd

ψ(x) d

(
γ̄1 + γ̄2

2

)
=

1

2

ˆ
Rd×Rd

ψ(x) dγ̄1 +
1

2

ˆ
Rd×Rd

ψ(x) dγ̄2 =

ˆ
Rd
ψ dµ,

thus (πX)#( γ̄1+γ̄2

2 ) = µ. Analogously (πY )#( γ̄1+γ̄2

2 ) = ν.

Hence, by Steps 2 and 3 applied to γ̄1, γ̄2,
γ̄1+γ̄2

2 , there exist three convex functions ϕ1, ϕ2, ϕ̄
such that:

(i) γ̄1 = (Id×∇ϕ1)#µ, thus (x, y) = (x,∇ϕ1(x)) γ̄1-a.e.;

(ii) γ̄2 = (Id×∇ϕ2)#µ, thus (x, y) = (x,∇ϕ2(x)) γ̄2-a.e.;

(iii) γ̄1+γ̄2

2 = (Id×∇ϕ̄)#µ, thus (x, y) = (x,∇ϕ̄(x)) γ̄1+γ̄2

2 -a.e.

In particular, it follows by (iii) that (x, y) = (x,∇ϕ̄(x)) holds γ̄1-a.e., that combined with
(i) yields

(x,∇ϕ1(x)) = (x,∇ϕ̄(x)) γ̄1-a.e. =⇒ ∇ϕ1(x) = ∇ϕ̄(x) µ-a.e.,

where the implication follows from the fact that there is no dependence on y (so a relation
true γ̄1-a.e. is also true µ-a.e.). Analogously, combining (ii) and (iii), we deduce that
∇ϕ2(x) = ∇ϕ̄(x) holds for µ-a.e x ∈ Rd. Thus ∇ϕ1 = ∇ϕ2 µ-a.e., and therefore γ̄1 = γ̄2,
as desired.

Corollary 2.5.10. Under the assumptions of Brenier’s Theorem (Theorem 2.5.9):

1. There exists a unique optimal transport map T : Rd → Rd such that T#µ = ν. Also,
T = ∇ϕ with ϕ : Rd → R ∪ {+∞} convex.

2. If S#µ = ν and S = ∇φ µ-a.e. for some φ : Rd → R∪{+∞} convex, then S is the unique
optimal transport map.

Proof. As we shall see, the proof is an immediate consequence of the previous results.

1. First of all, recall that the infimum in Monge’s problem is bounded from below by the
infimum in Kantorovich’s problem (see Remark 2.2.1):

inf
T#µ=ν

ˆ
Rd
|x− T (x)|2dµ ≥ inf

γ∈Γ(µ,ν)

ˆ
Rd×Rd

|x− y|2dγ(x, y).

Let ϕ be the convex function provided by Theorem 2.5.9, and set γ̄ := (Id×∇ϕ)#µ. With
this choice we haveˆ

Rd
|x−∇ϕ(x)|2dµ =

ˆ
Rd×Rd

|x− y|2dγ̄(x, y) = min
γ∈Γ(µ,ν)

ˆ
|x− y|2dγ(x, y),

so T = ∇ϕ is optimal.

We now show that the solution to the Monge problem is unique. Let T1 and T2 be
optimal for Monge. Then, it follows by the discussion above that γ1 = (Id × T1)#µ and
γ2 = (Id × T2)#µ are optimal for Kantorovich. Because γ1 = γ2 (by Theorem 2.5.9), we
conclude that T1 = T2 µ-a.e.

2. The optimality of S follows directly from Remark 2.5.8, while the uniqueness follows from
the first part of this corollary.
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We conclude this section by proving that, whenever µ and ν are both absolutely continuous,
the optimal transport from µ to ν is invertible, and its inverse is given by the optimal transport
map from ν to µ.

Corollary 2.5.11. Under the assumptions of Brenier’s Theorem (Theorem 2.5.9), assume also
that ν � dx. Let ∇ϕ be the optimal transport map from µ to ν, and let ∇ψ be the optimal
transport map from ν to µ. Then ∇ϕ is invertible µ-a.e., and its inverse is unique ν-a.e. and
given by ∇ψ.

Proof. By Brenier’s Theorem (Theorem 2.5.9), we have two convex maps ϕ and ψ such that

• ∇ϕ is an optimal transport map from µ to ν;

• ∇ψ is an optimal transport map from ν to µ.

Hence ˆ
Rd
|x−∇ϕ(x)|2dµ =

ˆ
Rd×Rd

|x− y|2d((Id×∇ϕ)#µ) = inf
γ∈Γ(µ,ν)

ˆ
Rd×Rd

|x− y|2dγ

and (since the cost is symmetric in x and y)

ˆ
Rd
|∇ψ(y)− y|2dν =

ˆ
Rd×Rd

|x− y|2d((∇ψ × Id)#ν) = inf
γ∈Γ(µ,ν)

ˆ
Rd×Rd

|x− y|2dγ.

This implies that (Id×∇ϕ)#µ and (∇ψ× Id)#ν are both optimal, so they are equal. Thus, for
any test function F : Rd × Rd → R, we have

ˆ
Rd
F (x,∇ϕ(x)) dµ(x) =

ˆ
Rd×Rd

F (x, y) d((Id×∇ϕ)#µ)(x, y)

=

ˆ
Rd×Rd

F (x, y) d((∇ψ × Id)#ν)(x, y) =

ˆ
Rd
F (∇ψ(y), y) dν(y).

Choosing F (x, y) = |x−∇ψ(y)|2, this gives

ˆ
Rd
|x−∇ψ(∇ϕ(x))|2dµ(x) =

ˆ
Rd
|∇ψ(y)−∇ψ(y)|2dν(y) = 0,

thus ∇ψ ◦ ∇ϕ = Id µ-a.e. Similarly, choosing F (x, y) = |∇ϕ(x) − y|2, we get ∇ϕ ◦ ∇ψ = Id
ν-a.e.

Remark 2.5.12. Using the definition of Legendre transform, one can show that

y ∈ ∂ϕ(x) ⇔ x ∈ ∂ϕ∗(y)

and that the map ψ provided by the previous corollary actually coincides with ϕ∗. Since this
will never be used in this book, we shall not prove it, but the interested reader is encouraged
to try to prove this fact.
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2.5.4 An application to Euler equations

Let Ω ⊂ Rd be a bounded open set with smooth boundary, and let ν be the outer unit normal
to ∂Ω. The Euler equations describe the evolution on a time interval [0, T ] of the velocity
v = v(t, x) ∈ Rd of an incompressible fluid. They are given by the following system:

∂tv + (v · ∇)v +∇p = 0 in Ω (Euler equation)

div(v) = 0 in Ω (Incompressibility condition)

v · ν = 0 on ∂Ω (No-flux condition).

Here p = p(t, x) ∈ R denotes the pressure of the fluid at time t and position x.
The notation v · ∇ denotes the differential operator

∑d
j=1 v

j∂xj . Hence, in coordinates

v = (v1, · · · , vd), one reads the Euler equation as

∂tv
i +

d∑
j=1

vj∂xjv
i + ∂xip = 0 ∀ i = 1, . . . , d.

If v is smooth, then

d

dt

ˆ
Ω
|v(t)|2 =

d

dt

ˆ
Ω

d∑
i=1

vi(t)2 = 2

ˆ
Ω

d∑
i=1

vi∂tv
i

= −2

ˆ
Ω

d∑
i,j=1

vivj∂xjv
i − 2

ˆ
Ω

d∑
i=1

vi∂xip

= −
ˆ

Ω

∑
j

vj∂xj

( d∑
i=1

(vi)2

)
− 2

ˆ
Ω

d∑
i=1

vi∂xip

= −
ˆ
∂Ω

∑
j

vjνj
( d∑
i=1

(vi)2

)
+

ˆ
Ω

∑
j

∂xjv
j

( d∑
i=1

(vi)2

)

− 2

ˆ
∂Ω

d∑
i=1

viνip+ 2

ˆ
Ω

d∑
i=1

∂xivi p

= −
ˆ
∂Ω
v · ν |v|2 +

ˆ
Ω

div(v) |v|2 − 2

ˆ
∂Ω
v · ν p+ 2

ˆ
Ω

div(v) p

= 0,

where we used the no-flux and incompressibility conditions.
Also, if v is smooth, we can define its flow g : [0, T ]× Ω→ Ω as{

∂tg(t, x) = v(t, g(t, x));

g(0, x) = x.

Note that g(t, ·) is a map from Ω to Ω, since (thanks to the no-flux condition) the curve
t 7→ g(t, x) never exits Ω. Also, differentiating the ODE for g with respect to x, we get

∂t∇xg = ∇x[v(t, g(t, x))] = ∇xv(t, g(t, x)) · ∇xg(t, x),

(note that ∇xv and ∇xg are d×d matrices, and ∇xv(t, g(t, x)) ·∇xg(t, x) denotes their product,
which is still a d× d matrix). This implies that

∇xg(t+ ε, x) = ∇xg(t, x) + ε∇xv(t, g(t, x)) · ∇xg(t, x) + o(ε).
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Then, since det(AB) = det(A) det(B) and det(Id + εA) = 1 + ε tr(A) + o(ε),

d

dt
det(∇xg(t, x)) = lim

ε→0

det(∇xg(t+ ε, x))− det(∇xg(t, x))

ε

= lim
ε→0

det
(
∇xg(t, x) + ε∇xv(t, g(t, x)) · ∇xg(t, x) + o(ε)

)
− det(∇xg(t, x))

ε

= lim
ε→0

det
(
∇xg(t, x) + ε∇xv(t, g(t, x)) · ∇xg(t, x)

)
− det(∇xg(t, x)) + o(ε)

ε

= lim
ε→0

det
(
Id + ε∇xv(t, g(t, x))

)
det(∇xg(t, x))− det(∇xg(t, x))

ε

= lim
ε→0

[1 + ε tr(∇xv)(t, g(t, x))− 1] det(∇xg(t, x))

ε

= tr(∇xv)(t, g(t, x)) det(∇xg(t, x))

= div(v)(t, g(t, v)) det(∇xg(t, x)) = 0,

(2.15)

where the last equality follows from the incompressibility condition. Hence, since∇xg(0, x) = Id,
we deduce that det(∇xg(t, x)) ≡ 1.

Now, if we differentiate in time the equation for g = (g1, . . . , gd), using the Euler equations
we get

∂ttg
i(t, x) = ∂t(v

i(t, g(t, x))) = ∂tv
i(t, g) +∇vi(t, g) · ∂tg

= ∂tv
i(t, g) + (v(t, g) · ∇)vi(t, g) = −∂xip(t, g).

Thus the Euler equations are equivalent to the following system for a curve t 7→ g(t) of smooth
diffeomorphisms of Ω:

∂ttg = −∇p(t, g) (Euler equation → 2nd order ODE for g)

det∇xg = 1 (Incompressibility → g preserves the Lebesgue measure)

g(0, x) = x (Initial condition),

(2.16)

where p(t) : Ω→ R is some function that represents the pressure.

Arnold’s Theorem. It was observed by Arnold in the 1960’s [Arn66] that, at least for-
mally, the Euler equations for fluids can be seen as a geodesic curve in an appropriate infinite-
dimensional manifold. That the reader can find the definition of geodesic, and a brief presenta-
tion of the concepts necessary to appreciate the following theorem, in Section 1.3.

Theorem 2.5.13 (Arnold’s Theorem). The Euler equations are equivalent to the geodesic equa-
tion on the manifold SDiff(Ω) ⊂ L2(Ω;Rd) defined as

SDiff(Ω) := {h : Ω→ Ω | h measure preserving and orientation preserving diffeomorphism}.

Proof. First of all, we need to identify the tangent space of SDiff(Ω).
Given h̄ ∈ SDiff(Ω), let t 7→ h(t) ∈ SDiff(Ω) be a smooth curve of maps in SDiff(Ω) with

h(0) = h̄, and set w(t) := ∂th(t). By definition of tangent space, w(t) ∈ Th(t)SDiff(Ω).
Since h(t) is a diffeomorphism of Ω, it maps ∂Ω onto itself, and therefore w(t) = ∂th(t)

must be tangent to the boundary. Define w̃(t) := w(t) ◦ h−1(t) so that ∂th(t) = w̃(t, h(t)), and
note that w̃(t) is also tangent to ∂Ω. Since det∇xh(t, x) ≡ 1 (because h(t) ∈ SDiff(Ω)), by the
computations in (2.15) we have

0 =
d

dt
det∇xh(t, x) = div(w̃)(t, h(t, x)) det∇xh(t, x)︸ ︷︷ ︸

≡1

=⇒ div(w̃) = 0.
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Thus, taking t = 0, we deduce that

Th̄SDiff(Ω) ⊂ {w | div(w ◦ h̄−1) = 0, w · ν|∂Ω = 0} = {w̃ ◦ h̄ | div(w̃) = 0, w̃ · ν|∂Ω = 0}.

Viceversa, given a vector field w̃ : Ω→ Rd with div(w̃) = 0 and w̃ · ν|∂Ω = 0, we solve{
∂th(t, x) = w̃(h(t, x)),

h(0, x) = h̄(x),

and using the same computation as in (2.15) we find that d
dt det∇h = 0. Thus h(t) : Ω → Ω

is a curve in SDiff(Ω), and in particular ∂th(0) = w̃ ◦ h̄ is an element of the tangent space of
SDiff(Ω) at h̄.

Hence, we proved that, for any element h̄ ∈ SDiff(Ω),

Th̄SDiff(Ω) = {w̃ ◦ h̄ | div(w̃) = 0, w̃ · ν|∂Ω = 0}.

Let us observe that:

(a) For any measure preserving map h ∈ SDiff(Ω), and any f1, f2 : Ω→ Rd, we have

〈f1 ◦ h, f2 ◦ h〉L2 =

ˆ
Ω
f1 ◦ h(x) · f2 ◦ h(x) dx =

ˆ
Ω
f1(x) · f2(x) dx = 〈f1, f2〉L2 ,

where in the second equality we used that h ∈ SDiff(Ω) (and therefore h#dx = dx).

(b) Every vector field in L2(Ω,Rd) can be written as the sum of a gradient and a divergence-
free vector field, that is

L2(Ω,Rd) := {w : Ω→ Rd | div(w) = 0 and w · ν|∂Ω = 0} ⊕ {∇q | q : Ω→ R}. (2.17)

Note that this decomposition is orthogonal. Indeed

〈w,∇q〉L2 =

ˆ
Ω
w · ∇q dx = −

ˆ
∂Ω
w · ν︸︷︷︸

=0

q −
ˆ

Ω
div(w)︸ ︷︷ ︸

=0

q dx = 0.

This is known as Helmholtz decomposition.

Combining (a) and (b) yields that, for any h ∈ SDiff(Ω), we can decompose L2(Ω,Rd) as

L2(Ω,Rd) := {w ◦ h : Ω→ Rd | div(w) = 0 and w · ν|∂Ω = 0}︸ ︷︷ ︸
=ThSDiff(Ω)

⊕{∇q ◦ h | q : Ω→ R}.

Since this decomposition is orthogonal in L2(Ω,Rd), we conclude that, given h ∈ SDiff(Ω),(
ThSDiff(Ω)

)⊥
= {∇q ◦ h | q : Ω→ Rd} .

Hence, thanks to this characterization and recalling Definition 1.3.5, given a curve t → g(t) ∈
SDiff(Ω), the following are equivalent:

• t→ g(t) is a geodesic;

• ∂ttg ⊥ TgSDiff(Ω);

• ∂ttg(t, x) = ∇q(t, g(t, x)), for some function q(t) : Ω→ Rd.

Recalling (2.16), this proves the result taking p(t) := −q(t).
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A connection between Arnold’s and Brenier’s Theorems. Thanks to Arnold’s The-
orem, we know that the incompressible Euler equations correspond to the geodesic equations
in the space SDiff(Ω). We now recall that minimizing geodesics on manifolds can be found by
considering the minimization problem (1.2). Thus, to find minimizing geodesics in SDiff(Ω),
one could consider the minimization problem

inf

{ˆ 1

0

ˆ
Ω
|∂tg(t, x)|2 dx dt | g(t) ∈ SDiff, g(0) = g0, g(1) = g1

}
,

where g0, g1 ∈ SDiff(Ω) are prescribed.
This minimization problem is very challenging and actually minimizers may fail to exist (see

for instance [DF13]). Thus, we consider a simpler version of the problem. Namely, instead of
searching the minimizing geodesic from g0 to g1, we look for an approximate midpoint between
them.

Recall that, given a d-dimensional manifold M ⊂ RD, and two points x0, x1 ∈ M , a good
approximation of the midpoint between them is found by considering the Euclidean midpoint
x0+x1

2 (note that this point may not belong to M) and then finding the closest point to x0+x1
2

on M , that is projM
(
x0+x1

2

)
. By analogy, given g0, g1 ∈ SDiff(Ω), one looks for the closest

function (with respect to the L2 norm) in SDiff(Ω) to g0+g1

2 . Thus, we want to study the map

projSDiff : L2(Ω,Rd)→ SDiff(Ω)

g0 + g1

2
7→ projSDiff(

g0 + g1

2
).

Even this simpler problem is far from trivial, the main difficulty being that SDiff(Ω) is neither
convex nor closed in L2(Ω,Rd). So, as a first relaxation of the problem, one might want to
consider the L2-closure of SDiff(Ω). This closure is characterized in the next (nontrivial) result
due to Brenier and Gangbo [BG03].

Theorem 2.5.14. Let Ω ⊂ Rd be a bounded set with Lipschitz boundary, and let d ≥ 2. Then

SDiff(Ω)
L2

= S(Ω) := {s : Ω→ Ω | s# dx = dx}.

The next result gives a sufficient condition for the existence and uniqueness of the projection
of a map h ∈ L2(Ω,Rd) in S(Ω).

Theorem 2.5.15 ([Bre87]). Let h ∈ L2(Ω;Rd) satisfy h#(dx|Ω)� dx. Then:

(i) There exists a unique projection s̄ onto S(Ω) (i.e., for any s ∈ S(Ω) it holds ‖h−s̄‖L2(Ω) ≤
‖h− s‖L2(Ω)).

(ii) There exists a convex function ψ such that h = ∇ψ ◦ s̄ (this formula is called polar
decomposition, see Remark 2.5.16).

Proof. We split the proof in three steps: in Steps 1 and 2 we prove (i) (with Step 1 for the
existence, and Step 2 for the uniqueness), and in Step 3 we prove (ii).

1. Take h : Ω→ Rd and define µ := h#(dx|Ω)� dx. Note that

ˆ
Rd

dµ =

ˆ
h(Ω)

dµ =

ˆ
Ω
dx = |Ω|.

So, although Brenier’s Theorem (Theorem 2.5.9) holds for probability measures, up to
multiplying both µ and dx|Ω by 1

|Ω| , we can apply it also in this context. Thus, by

Corollary 2.5.11, there exist convex functions ϕ,ψ : Rd → R such that ∇ϕ and ∇ψ are
optimal from µ to dx|Ω and viceversa.
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Let s̄ := ∇ϕ ◦ h : Ω→ Ω. Then, by the optimality of ∇ϕ,

ˆ
Ω
|s̄(x)− h(x)|2dx =

ˆ
Ω
|∇ϕ ◦ h− h|2 dx =

ˆ
Rd
|∇ϕ− Id|2dµ

= min
γ∈Γ(µ,dx|Ω)

ˆ
Rd×Ω

|x− y|2dγ.
(2.18)

We now observe that if s ∈ S(Ω) then γs := (h× s)#(dx|Ω) belongs to Γ(µ, dx|Ω). Indeed,
(πX)#γs = h#(dx|Ω) = µ and (πY )#γs = s#(dx|Ω) = dx|Ω. This implies that

min
γ∈Γ(µ,dx|Ω)

ˆ
Rd×Ω

|x− y|2dγ ≤ min
s∈S(Ω)

ˆ
Rd×Ω

|x− y|2dγs = min
s∈S(Ω)

ˆ
Ω
|h(x)− s(x)|2 dx,

that combined with (2.18) yields

ˆ
Ω
|h(x)− s̄(x)|2dx ≤ min

s∈S(Ω)

ˆ
Ω
|h(x)− s(x)|2 dx,

thus s̄ is a projection.

2. Suppose that ŝ is another projection. Then by the previous step it follows that γs̄ and γŝ
are both optimal couplings. Thus, by uniqueness (see Theorem 2.5.9) the transport plans
are equal, therefore

ˆ
Ω
F (h(x), ŝ(x)) dx =

ˆ
Ω
F (h(x), s̄(x)) dx ∀F ∈ Cb(Rd × Rd).

Choosing F (x, y) = |∇ϕ(x)− y|2 and recalling that s̄ = ∇ϕ ◦ h, we conclude that

0 =

ˆ
Ω
|∇ϕ ◦ h− s̄|2 dx =

ˆ
Ω
|s̄− ŝ|2 dx,

hence ŝ = s̄, as desired.

3. This follows from the fact that s̄ = ∇ϕ ◦ h and ∇ψ = (∇ϕ)−1 (see Corollary 2.5.11).

Remark 2.5.16. The polar decomposition can be seen (at least formally) as a generalization
of some well-known results:

(a) Any matrix M ∈ Rd×d can be decomposed as S ·O, with S symmetric and O orthogonal.
To see this, take h(x) = Mx. Then h = ∇ϕ ◦ s̄, with ϕ(x) = 1

2〈x, Sx〉 and s̄(x) = Ox.

(b) Consider a smooth vector field w : Rd → Rd, and let ht(x) := h(t, x) be the flow of w:{
∂th(t, x) = w(h(t, x)),

h(0, x) = x.

Then

hε(x) = h0(x) + ∂tht(x)|t=0 · ε+ o(ε)

= x+ εw(x) + o(ε).

Also, the polar decomposition of hε yields

hε = ∇ψε ◦ sε.
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At least formally, since hε(x) is a perturbation of x, it looks natural to assume that also
∇ψε and sε are perturbations of the identity map. More precisely, we suppose that

ψε(x) =
|x|2

2
+ ε q(x) + o(ε), sε(x) = x+ ε u(x) + o(ε).

Also, since
det∇sε = det(Id + ε∇u+ o(ε)) = 1 + εdiv(u) + o(ε)

and sε is measure preserving (hence 1 ≡ det∇sε), we deduce that div(u) = 0. Hence,
combining all these equations, we get

x+ εw(x) + o(ε) = hε = ∇ψε ◦ sε
= (x+ ε∇q(x)) ◦ (x+ εu(x)) + o(ε)

= x+ ε(u(x) +∇q(x)) + o(ε),

therefore w = u+∇q. In other words, this formally shows that any vector field w can be
written as the sum of a divergence free vector field and a gradient, which is nothing but
the Helmholtz decomposition (2.17). Thus, morally speaking, Helmholtz decomposition
is the infinitesimal version of the polar decomposition.

2.6 General cost functions: Kantorovich duality

The goal of this section is to repeat, in the case of general costs, what we did in the previous
sections for the case c(x, y) = −x·y on X = Y = Rd. As we shall see, some proofs are essentially
identical provided that one introduces the correct definitions.

2.6.1 c-convexity and c-cyclical monotonicity

First, we need a suitable analogue of the notion of convex function. Note that a possible way
to define convex functions is as supremum of affine functions. Namely, a function φ : Rd →
R ∪ {+∞} is convex if

φ(x) = sup
y∈Rd
{x · y + λy}

for some choice of values {λy}y∈Rd with λy ∈ R ∪ {−∞}.11 Having in mind that before x · y =
−c(x, y), this suggests the following general definition (cp. Definition 2.5.1):

Definition 2.6.1. Given X and Y metric spaces, c : X × Y → R, and ϕ : X → R ∪ {+∞}, we
say that ϕ is c-convex if

ϕ(x) = sup
y∈Y
{−c(x, y) + λy}

for some {λy}y∈Y ⊂ R ∪ {−∞}.
Then, for any x ∈ X, we define the c-subdifferential as

∂cϕ(x) := {y ∈ Y | ∀z ∈ X : ϕ(z) ≥ −c(z, y) + c(x, y) + ϕ(x)}.

Also, we define ∂cϕ :=
⋃
x∈X{x} × ∂cϕ(x) ⊂ X × Y .

11If one wants to avoid setting λy = −∞ for some y, one can instead say that a function ϕ is convex if there
exist A ⊂ Rd and a family {λy}y∈A ⊂ R such that

ϕ(x) = sup
y∈A
{x · y + λy}.

In other words, A corresponds to the set {λy > −∞}.
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Remark 2.6.2. When X = Y is a metric space and the cost is the distance c(x, y) = d(x, y),
it turns out that a function ϕ : X :→ R ∪ {+∞} is c-convex if and only if it is 1-Lipschitz, i.e.,
it holds

|ϕ(x)− ϕ(y)| ≤ d(x, y) ∀x, y ∈ X.

Indeed, if ϕ is 1-Lipschitz, then ϕ(x) ≥ ϕ(y)− d(x, y) with equality for y = x, hence

ϕ(x) = sup
y∈X
{ϕ(y)− d(x, y)} (2.19)

which shows that ϕ is c-convex (with the choice λy = ϕ(y)).
Viceversa, assume that ϕ is c-convex and fix x, y ∈ X. By definition of c-convexity, For any

ε > 0 there exists z ∈ X such that

ϕ(x) ≤ −d(x, z) + λz + ε .

Moreover, once again by definition of c-convexity, we have

ϕ(y) ≥ −d(y, z) + λz .

Combining theSE two inequalities and applying the triangle inequality, we obtain

ϕ(x)− ϕ(y) ≤ d(y, z)− d(x, z) + ε ≤ d(x, y) + ε.

Since ε > 0 can be chosen arbitrarily small, and the role of x and y can be exchanged, this
latter inequality implies that ϕ is 1-Lipschitz.

The following is the analogue of Theorem 2.5.2.

Theorem 2.6.3. A set S ⊂ X×Y is c-cyclically monotone if and only if there exists a c-convex
function ϕ such that S ⊂ ∂cϕ.

Proof. The proof is essentially the same as the one of Theorem 2.5.2, provided one replaces
−x · y with c(x, y). We write the details just for one implication.

⇐ Let (xi, yi)i=1,...,N ⊂ S ⊂ ∂cϕ. Then

ϕ(z) ≥ ϕ(xi)− c(z, yi) + c(xi, yi) ∀ z ∈ X.

Choosing z = xi+1 (with the convention xN+1 = x1) and summing over i, we obtain

N∑
i=1

−c(xi+1, yi) + c(xi, yi) ≤ 0 .

⇒ It suffices to define

ϕ(x) := sup
N≥1
{−c(x, yN ) + c(xN , yN )− c(xN , yN−1) + · · ·+ c(x0, y0) | (xi, yi)i=1,...,N ⊂ S}

and repeat the proof of Theorem 2.5.2 (see [Vil09, pp. 77–78] for the details).
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2.6.2 A general Kantorovich duality

In this section, X and Y are locally compact, separable and complete metric spaces.

Definition 2.6.4. Given a c-convex function ϕ : X → R ∪ {+∞}, we define its c-Legendre
transform ϕc : Y → R ∪ {+∞} as

ϕc(y) := sup
x∈X
{−c(x, y)− ϕ(x)}.

As in the case of the classical Legendre transform, ϕ and ϕc are related by several interesting
properties.

Proposition 2.6.5. The following properties hold:

(a) ϕ(x) + ϕc(y) + c(x, y) ≥ 0 for all x ∈ X, y ∈ Y ;

(b) ϕ(x) + ϕc(y) + c(x, y) = 0 if and only if y ∈ ∂cϕ(x).

Proof. The proof is identical to the one of Proposition 2.5.4 and is left to the interested reader.

One then obtains the following general duality result (recall also Remark 2.3.3).

Theorem 2.6.6 (Kantorovich dualiy: General case). Let c ∈ C0(X×Y ) be bounded from below,
and assume that infγ∈Γ(µ,ν)

´
X×Y c dγ < +∞. Then

min
γ∈Γ(µ,ν)

ˆ
X×Y

c dγ = max
ϕ(x)+ψ(y)+c(x,y)≥0

ˆ
X
−ϕdµ+

ˆ
Y
−ψ dν.

Proof. Again, the steps are the same as in the proof of Theorem 2.5.5, just replacing convexity
with c-convexity, subdifferential with c-subdifferential, etc. We refer the reader to [Vil09, pp. 78–
79] for the details.

Remark 2.6.7. When X = Y is a metric space, and c(x, y) = d(x, y) is the distance function,
then it follows from Remark 2.6.2 that ϕ is c-convex if and only if it is 1-Lipschitz. Also,
using (2.19) with −ϕ in place of ϕ, we deduce that ϕc(y) = −ϕ(y). Combining these facts
with Theorem 2.6.6, we obtain the following the following important duality result relating
1-Lipschitz functions and the Kantorovich problem for the case “cost=distance”:
Let X = Y be a metric space, and let c(x, y) = d(x, y) be the distance function. Assume that
infγ∈Γ(µ,ν)

´
X×X d(x, y) dγ < +∞. Then

min
γ∈Γ(µ,ν)

ˆ
X×X

d(x, y) dγ = max
ϕ 1-Lipschitz

ˆ
X
ϕdµ−

ˆ
X
ϕdν.

Remark 2.6.8. A popular alternative approach to Kantorovich duality is based on general
abstract results in convex analysis, and goes as follows:
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inf
γ∈Γ(µ,ν)

ˆ
X×Y

dγ(x, y)
♥
= inf

γ≥0
sup
ϕ,ψ

{ˆ
X×Y

c(x, y) dγ(x, y) +

Lagrange multiplier for (πX)#γ = µ︷ ︸︸ ︷[ˆ
X×Y

ϕ(x) dγ(x, y)−
ˆ
X
ϕ(x) dµ(x)

]

+

Lagrange multiplier for (πY )#γ = ν︷ ︸︸ ︷[ˆ
X×Y

ψ(y) dγ(x, y)−
ˆ
Y
ψ(y) dν(y)

] }
♣
= sup

ϕ,ψ
inf
γ≥0

{ˆ
X
−ϕdµ+

ˆ
Y
−ψ dν +

ˆ
X×Y

[
c(x, y) + ϕ(x) + ψ(y)

]
dγ

}
= sup

ϕ,ψ

{(ˆ
X
−ϕdµ+

ˆ
Y
−ψ dν

)
+ inf
γ≥0

ˆ
X×Y

[
c(x, y) + ϕ(x) + ψ(y)

]
dγ

}
♦
= sup

ϕ(x)+ψ(y)+c(x,y)≥0

ˆ
X
−ϕdµ+

ˆ
Y
−ψ dν ,

where:

♥ one should note that we do not require γ to be a probability anymore, and we also drop
the coupling constraint, only the sign constraint γ ≥ 0 remains. The other constraints are
“hidden” in the Lagrange multipliers. Indeed the supremum over ϕ is +∞ if (πX)#γ 6= µ
(resp. the supremum over ψ is +∞ if (πY )#γ 6= ν). Note also that once (πX)#γ = µ (or
(πY )#γ = ν) then

´
1dγ =

´
1dµ = 1, which implies that γ ∈ P(X × Y ).

♣ we used [Vil03, Theorem 1.9] to exchange inf and sup.

♦ we have the two following possible situations:

(i) If c(x, y) + ϕ(x) + ψ(y) ≥ 0 for any (x, y), then infγ≥0

´
[. . . ]dγ = 0 (take γ ≡ 0).

(ii) If there exists (x̄, ȳ) such that c(x̄, ȳ) + ϕ(x̄) + ψ(x̄) < 0, then take γ = Mδ(x̄,ȳ) and
let M → +∞. So, unless c(x, y) + ϕ(x) + ψ(y) ≥ 0 for any (x, y), the infimum over
γ is −∞.

We refer the reader to [Vil03, Chapter 1] for a detailed discussion of this approach.

We conclude this section by noticing that, as a consequence of the previous results, we obtain
the following corollary (cf. Corollary 2.5.7):

Corollary 2.6.9. Let c ∈ C0(X×Y ) be bounded from below, and assume infγ∈Γ(µ,ν)

´
X×Y c dγ <

+∞. For a coupling γ̄ ∈ Γ(µ, ν), the following statements are equivalent:

(i) γ̄ is optimal;

(ii) supp(γ̄) is c-cyclically monotone;

(iii) there exists a c-convex function ϕ : X → R ∪ {+∞} such that supp(γ̄) ⊂ ∂cϕ.

2.7 General cost functions: existence and uniqueness of optimal transport
maps

Thanks to the previous results, we can now mimic the proof of Brenier’s Theorem (Theo-
rem 2.5.9) to prove the existence and uniqueness of optimal transport maps. Since the proof of
Theorem 2.5.9 involves taking derivatives, one needs X to have a differentiable structure. For
simplicity we shall prove the result when X = Y = Rd, but the same argument can be gen-
eralized to the case when X is an arbitrary Riemannian manifold and Y has no differentiable
structure. Also, to simplify the argument, we shall assume that supp(ν) is compact. For more
general statements, we refer to [Vil09, Chapters 9-10].
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Theorem 2.7.1. Let X = Y = Rd, µ � dx, and supp(ν) compact. Let c ∈ C0(X × Y ) be
bounded from below, and assume that infγ∈Γ(µ,ν)

´
X×Y c dγ < +∞. Also, suppose that:

- for every y ∈ supp(ν), the map Rd 3 x 7→ c(x, y) is differentiable;
- for every x ∈ Rd, the map supp(ν) 3 y 7→ ∇xc(x, y) ∈ Rd is injective;
- for every y ∈ supp(ν) and R > 0, |∇xc(x, y)| ≤ CR for every x ∈ BR.

Then there exists a unique optimal coupling γ̄, with γ̄ = (Id× T )#µ and T satisfying

∇xc(x, y)|y=T (x) +∇ϕ(x) = ∇xc(x, T (x)) +∇ϕ(x) = 0,

for some c-convex function ϕ : Rd → R ∪ {+∞}.

Remark 2.7.2. For c(x, y) = −x·y we have ∇xc(x, y) = −y, thus the map y 7→ ∇xc(x, y) = −y
is injective. Also, c-convex functions are the same as convex functions, and

∇ϕ(x) +∇xc(x, T (x)) = 0

implies that

∇ϕ(x)− T (x) = 0,

therefore T = ∇ϕ. Hence, Theorem 2.7.1 covers Theorem 2.5.9 (the only extra assumption is
that now supp(ν) is assumed to be compact).

Proof. Let γ̄ be optimal, let ϕ be as in Corollary 2.6.9(iii), and define ϕc as in Definition 2.6.4.
Note that, as a consequence of Corollary 2.6.9(iii) and Proposition 2.6.5(b), it follows that

ϕ(x) + ϕc(x) + c(x, y) = 0 ∀ (x, y) ∈ supp(γ̄). (2.20)

In the proof of Theorem 2.5.9 we used that convex functions are differentiable a.e. Here, in
order to obtain the a.e. differentiability of ϕ, we would like to show that it is locally Lipschitz.
In general this is not clear for ϕ itself, but we can show that we can replace it with another
function ϕ̃ which is locally Lipschitz.

Indeed, define

ϕ̃(x) := sup
y∈supp(ν)

{−c(x, y)−ϕc(y)} = sup
y∈Y
{−c(x, y)+λy}, λy :=

{
−ϕc(y) if y ∈ supp(ν),
−∞ if y 6∈ supp(ν).

Note that ϕ̃ is c-convex. Also, since −c(x, y) − ϕc(y) ≤ ϕ(x) for every x, y (see Proposi-
tion 2.6.5(a)), we have ϕ̃ ≤ ϕ.

On the other hand, it follows immediately from the definition of ϕ̃ that

ϕ̃(x) + ϕc(y) + c(x, y) ≥ 0 ∀ (x, y) ∈ Rd × supp(ν). (2.21)

Hence, since supp(γ̄) ⊂ Rd × supp(ν) (because (πY )#γ = ν) and using (2.20), it follows that

0 ≤ ϕ̃(x) + ϕc(x) + c(x, y) ≤ ϕ(x) + ϕc(x) + c(x, y) = 0 ∀ (x, y) ∈ supp(γ̄),

thus

ϕ̃(x) + ϕc(x) + c(x, y) = 0 ∀ (x, y) ∈ supp(γ̄). (2.22)

We now claim that ϕ̃ is locally Lipschitz. Indeed, for each y ∈ supp(ν), consider the map

Rd 3 x 7→ −c(x, y)− ϕc(y).
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The gradient is given by −∇xc(x, y), which (by our assumption) is uniformly bounded by CR
for x ∈ BR. Thus, for any R > 0 the maps

BR 3 x 7→ −c(x, y)− ϕc(y)

are CR-Lipschitz, and therefore also the map ϕ̃ (being their supremum) is CR-Lipschitz inside
BR for any R > 0. This proves the claim.

Since locally Lipschitz maps are differentiable a.e., there exists a set A, with |A| = 0, such
that ϕ̃ is differentiable on R \A. Also, since µ� dx, we have µ(A) = 0.

Now, fix (x, y) ∈ supp(γ̄) with x 6∈ A. Then it follows from (2.21) and (2.22) that the
function

z 7→ ϕ̃(z) + ϕc(y) + c(z, y)

attains its minimum at z = x, therefore

∇ϕ̃(x) +∇xc(x, y) = 0.

Since ∇xc(x, y) is injective, the equation above has at most one solution. Thus y is uniquely
determined in terms of x, and we call this unique point T (x). Hence, we proved that supp(γ̄)∩
[(Rd \ A) × supp(ν)] ⊂ graph(T ). As in the proof of Theorem 2.5.9, since γ̄(A × supp(ν)) ⊂
γ̄(A× Rd) = µ(A) = 0 we conclude that γ̄ = (Id× T )#µ.

Finally, uniqueness follows by the same argument as in Step 4 of the proof of Theorem 2.5.9.
More precisely if γ1 and γ2 are optimal then so is γ1+γ2

2 . Then

graph(T1) ∪ graph(T2)
a.e.
= supp(γ1) ∪ supp(γ2) = supp

(
γ1 + γ2

2

)
a.e.
= graph(T̄ )

for some map T̄ , and this is only possible if T1 = T2 µ-a.e.

Example 2.7.3. Let c(x, y) = |x − y|p, with p > 1. We want to show that Theorem 2.7.1
applies. We only prove that the map y 7→ ∇xc(x, y) is injective, since the other assumptions on
c are easily checked.

To show this, fix x, v ∈ Rd and assume that v = ∇xc(x, y) = p|x − y|p−2(x − y). Since
|x − y|p−2 is positive, we deduce that the vectors v and (x − y) are parallel and point in the
same direction, hence

x− y
|x− y|

=
v

|v|
.

We also know that

|v| = p|x− y|p ⇐⇒ |x− y| =
(
|v|
p

) 1
p−1

.

Combining these two facts, we deduce that that

x− y =
v

|v|
|x− y| = v

|v|

(
|v|
p

) 1
p−1

and therefore y = x− v
|v|

(
|v|
p

) 1
p−1

, which proves that y is unique.

Remark 2.7.4. We note that, for p = 1, the reasoning above fails. Indeed, given x, v ∈ Rd,
the relation

v = ∇xc(x, y) =
x− y
|x− y|
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implies that necessarily |v| = 1, and under this condition the relation is satisfied by every
y = x− tv with t > 0, which shows that y is not unique.

In fact, the previous theorem is false for the cost c(x, y) = |x − y|. To see this, consider
d = 1 and take the measures µ = dx|[0,1] and ν = dx|[1,2]. As shown in [Vil03, Remark 2.19(iii)]
or [San15, Proposition 2.7], the optimal transportation cost between these two densities is given
by ˆ

R
|Fµ(x)− Fν(x)| dx, where Fσ(x) := σ

(
(−∞, x]

)
.

In this particular case, one can check that
´
R |Fµ(x)− Fν(x)| dx = 1.

Noticing that T1(x) := x+ 1 and T2(x) := 2− x satisfy

(Ti)#µ = ν,

ˆ
R
|Ti(x)− x| dµ(x) = 1, i = 1, 2,

we deduce that both maps T1 and T2 are optimal, so we have no uniqueness. In addition, if we
define γi := (Id× Ti)#µ (i = 1, 2), then γ1+γ2

2 is optimal and it is not induced by a graph.

Remark 2.7.5. Consider again the cost c(x, y) = |x−y| on R×R, and let µ, ν ∈ P(R). Assume
that

x ≤ y for all x ∈ supp(µ), y ∈ supp(ν).

Then for any coupling γ (resp., any transport map T ) we have

x ≤ y ∀ (x, y) ∈ supp(γ) (resp. x ≤ T (x) ∀x ∈ supp(µ)).

Hence ˆ
R×R
|y − x| dγ =

ˆ
R×R

(y − x) dγ =

ˆ
R×R

y dγ −
ˆ
R×R

x dγ =

ˆ
R
y dν −

ˆ
R
x dµ ,

and analogously

ˆ
R
|T (x)− x| dµ =

ˆ
R

(T (x)− x) dµ =

ˆ
R
T (x) dµ−

ˆ
R
x dµ =

ˆ
R
y dν −

ˆ
R
x dµ .

In other words the cost is independent of the coupling or of the transport map, and therefore
every coupling/map is optimal.
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3 Wasserstein Distances and Gradient Flows

The goal of this section is to show a surprising connection between optimal transport, gradient
flows, and PDEs. More precisely, after introducing the Wasserstein distances, we will first give
a brief general introduction to gradient flows in Hilbert spaces. Then, following the seminal
approach of Jordan, Kinderlehrer, and Otto [JKO98], we are going to prove that the gradient
flow of the entropy functional in the Wasserstein space coincides with the heat equation.

Our general treatment of gradient flows gives only a glimpse of the theory. We suggest the
expository paper [San17a] for an introduction to the subject and the monograph [AGS08] for a
thorough study of gradient flows, both in the Hilbertian setting and in the vastly more general
metric setting.

3.1 p-Wasserstein distances and geodesics

We are going to introduce the space of measures with finite p-moment and then a distance on
this space induced by optimal transport.

Definition 3.1.1. Let (X, d) be a locally compact and separable metric space. Given 1 ≤ p <
∞, let

Pp(X) :=

{
σ ∈ P(X) |

ˆ
X
d(x, x0)p dσ(x) < +∞ for some x0 ∈ X

}
, (3.1)

be the set of probability measures with finite p-moment.

Remark 3.1.2. Given x1 ∈ X, by the triangle inequality and the convexity of R+ 3 s 7→ sp

we get12

d(x, x1)p ≤ [d(x, x0) + d(x0, x1)]p ≤ 2p−1[d(x, x0)p + d(x0, x1)p].

Hence, if σ ∈ P(X) satisfies
´
X d(x, x0)p dσ(x) < +∞, then also

´
X d(x, x1)p dσ(x) is finite.

This means that the definition of Pp(X) is independent of the basepoint x0.

Definition 3.1.3. Given µ, ν ∈ Pp(X), we define their p-Wasserstein distance as

Wp(µ, ν) :=

[
inf

γ∈Γ(µ,ν)

ˆ
X×X

d(x, y)p dγ(x, y)

] 1
p

.

Remark 3.1.4. If µ, ν ∈ Pp(X) then for all γ ∈ Γ(µ, ν) it holds

ˆ
X×X

d(x, y)p dγ ≤ 2p−1

ˆ
X×X

[d(x, x0)p + d(x0, y)p]dγ

= 2p−1

[ˆ
X
d(x, x0)p dµ+

ˆ
X
d(y, x0)p dν

]
<∞.

Hence Wp is finite on Pp(X)× Pp(X).

To justify the terminology “p-Wasserstein distance”, we now prove the following:

Theorem 3.1.5. Wp is a distance on the space Pp(X).

Proof. As we shall see, the most delicate part of the proof consists in proving the triangle
inequality.

12By convexity, given a, b ≥ 0 we have
(
a+b

2

)p ≤ ap+bp

2
, or equivalently (a+ b)p ≤ 2p−1(ap + bp).

44



1. If Wp(µ, ν) = 0, then (thanks to Theorem 2.3.2) there exists γ̄ such that

ˆ
X×X

d(x, y)p dγ̄(x, y) = 0.

Thus x = y γ̄-a.e., which means that γ is concentrated on the graph of the identity map.
Therefore γ̄ = (Id× Id)#µ, which yields ν = (π2)#γ̄ = µ.

2. We now prove that Wp is symmetric. Indeed, given γ ∈ Γ(µ, ν) optimal, define γ̃ := S#γ,
with S(x, y) := (y, x). Then γ̃ ∈ Γ(ν, µ) and therefore, since d(x, y) = d(y, x), we get

Wp(ν, µ) ≤
ˆ
X×X

d(x, y)p dγ̃ =

ˆ
X×X

d(x, y)p dγ = Wp(µ, ν).

Exchanging the roles of µ and ν proves that Wp(ν, µ) = Wp(µ, ν), as desired.

3. We now prove the triangle inequality. Let µ1, µ2, µ3 ∈ Pp(X), and let γ12 ∈ Γ(µ1, µ2)
and γ23 ∈ Γ(µ2, µ3) be optimal couplings. Applying the disintegration theorem (recall
Theorem 1.4.10) with respect to the variable x2, we can write

γ12(dx1, dx2) = γ12,x2(dx1)⊗ µ2(dx2)

and

γ23(dx2, dx3) = γ23,x2(dx3)⊗ µ2(dx2).

Consider the measure γ̃ ∈ P(X ×X ×X) given by

γ̃(dx1, dx2, dx3) := γ12,x2(dx2)⊗ γ23,x2(dx3)⊗ µ2(dx2).

This measure has the property that

ˆ
X×X×X

ϕ(x1, x2) dγ̃(x1, x2, x3) =

ˆ
X×X

ϕ(x1, x2)γ12,x2(dx1)

[ˆ
X
dγ23(x3)

]
dµ2(x2)

=

ˆ
X×X

ϕ(x1, x2) dγ12(x1, x2).

Similarly

ˆ
X×X×X

ϕ(x2, x3) dγ̃(x1, x2, x3) =

ˆ
X×X

ϕ(x2, x3) dγ23(x2, x3).

In other words, the measure γ̃ allows us to think of the couplings γ12 and γ23 as if they
lived in a common space X ×X ×X, with γ12 that does not depend on the third variable,
and γ23 that does not depend on the first variable.13

Note that we haveˆ
X×X×X

ψ(x1) dγ̃(x1, x2, x3) =

ˆ
X×X

ψ(x1) dγ12(x1, x2) =

ˆ
X
ψ(x1) dµ1(x1) (3.2)

and similarly

ˆ
X×X×X

ψ(x3) dγ̃(x1, x2, x3) =

ˆ
X
ψ(x3) dµ3(x3). (3.3)

13This whole construction above is sometimes called gluing Lemma.

45



Set γ̄13 :=
´
X γ̃(x1, dx2, x3), i.e., integrate x2 out. Then, since

ˆ
X×X

ϕ(x1, x3) dγ̄13 =

ˆ
X×X×X

ϕ(x1, x3) dγ̃(x1, x2, x3),

it follows from (3.2) and (3.3) that γ̄13 ∈ Γ(µ1, µ3).

Thus, by the triangle inequality in Lp(X ×X ×X, γ̃) we have

Wp(µ1, µ3) ≤
[ˆ

X×X
d(x1, x3)p dγ̄13(x1, x3)

] 1
p

=

[ˆ
X×X

d(x1, x3)p dγ̃(x1, x2, x3)

] 1
p

= ‖d(x1, x3)‖Lp(γ̃) ≤ ‖d(x1, x2) + d(x2, x3)‖Lp(γ̃)

≤ ‖d(x1, x2)‖Lp(γ̃) + ‖d(x2, x3)‖Lp(γ̃)

= ‖d(x1, x2)‖Lp(γ12) + ‖d(x2, x3)‖Lp(γ23) = Wp(µ1, µ2) +Wp(µ2, µ3),

where the last equality follows from the optimality of γ12 and γ23. This concludes the
proof.

Being a distance, Wp induces a topology on Pp(X). In the next theorem we show the
connection between the Wasserstein topology and the weak-∗ topology.

Theorem 3.1.6. Fix an exponent 1 ≤ p <∞ and a base point x0 ∈ X. Let (µn)n∈N ⊂ Pp(X) be
a sequence of probability measures, and let µ ∈ Pp(X). The following statements are equivalent:

1. µn
∗
⇀ µ and

´
X d(x0, x)p dµn →

´
X d(x0, x)p dµ.

2. Wp(µn, µ)→ 0.

Proof. We prove the two implications independently.

• 1. ⇒ 2. Fix δ > 0, and define

Mn :=

ˆ
X

(
1 + d(x0, x)p

)
dµn(x), M :=

ˆ
X

(
1 + d(x0, x)p

)
dµ(x).

Since µn and µ are probability measures and
´
X d(x0, x)p dµn →

´
X d(x0, x)p dµ, it follows

that Mn →M as n→∞. Define the probability measures

νn :=
1

Mn

(
1 + d(x0, x)p

)
µn, ν :=

1

M

(
1 + d(x0, x)p

)
µ.

Since µn
∗
⇀ µ and x 7→

(
1 + d(x0, x)p

)
is a continuous function, we easily deduce that

νn
∗
⇀ ν.14 Therefore, Lemma 2.1.13 implies that νn converges narrowly to ν as n → ∞.

Thus, by Theorem 2.1.11, we can find a compact set K ⊆ X such that, for all n ∈ N,

1

Mn

ˆ
X\K

(
1 + d(x0, x)p

)
dµn(x) ≤ δ, 1

M

ˆ
X\K

(
1 + d(x0, x)p

)
dµ(x) ≤ δ.

14Indeed, given ϕ ∈ Cc(X), the function X 3 x 7→
(
1 + d(x0, x)p

)
ϕ(x) is continuous and compactly supported.

Hence, since µn
∗
⇀ µ, it follows that

ˆ
X

ϕdνn =

ˆ
X

(
1 + d(x0, x)p

)
ϕ(x) dµn(x)→

ˆ
X

(
1 + d(x0, x)p

)
ϕ(x) dµ(x) =

ˆ
X

ϕdν as n→∞.

Since ϕ ∈ Cc(X) is arbitrary, this proves that νn
∗
⇀ ν.
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Recalling that Mn →M as n→∞, this implies in particular that
ˆ
X\K

(
1 + d(x0, x)p

)
dµn(x) +

ˆ
X\K

(
1 + d(x0, x)p

)
dµ(x) ≤ 3Mδ ∀n� 1. (3.4)

Now, since by assumption the space X is locally compact, we can find a finite family of
nonnegative functions (ϕi)i∈I ⊂ Cc(X) such that∑

i∈I
ϕi ≤ 1 in X,

∑
i∈I

ϕi(x) = 1 for all x ∈ K, diam(supp(ϕi)) ≤ δ for all i ∈ I. (3.5)

Set

Λn,i :=

ˆ
X
ϕi dµn, Λi :=

ˆ
X
ϕi dµ, λn,i := min

{
Λn,i,Λi

}
,

and define the measures

αn,i :=
λn,i
Λn,i

ϕiµn, βn,i :=
λn,i
Λi

ϕiµ,

αn := µn −
∑
i∈I

αn,i, βn := µ−
∑
i∈I

βn,i

Note that αn,i(X) = βn,i(X) = λn,i, and αn(X) = βn(X) = 1 −
∑

i∈I λn,i. Then, we
define γn ∈ P(X ×X) as

γn :=
∑
i∈I

αn,i ⊗ βn,i
λn,i

+
αn ⊗ βn

1−
∑

i∈I λn,i
.

One can easily check that γn is a transport plan from µn to µ, i.e., γn ∈ Γ(µn, µ). Also,
since diam(supp(ϕi)) ≤ δ,ˆ

X×X
d(x, y)p d

αn,i ⊗ βn,i
λn,i

=

ˆ
supp(ϕi)×supp(ϕi)

d(x, y)p d
αn,i ⊗ βn,i

λn,i
≤ λn,iδp . (3.6)

Recalling that µn
∗
⇀ µ, we also have λn,i → Λi =

´
ϕi dµ as n→∞. Therefore, recalling

(3.5), it follows from (3.4) that∣∣∣∣1−∑
i∈I

λn,i

∣∣∣∣ ≤ 4Mδ for n� 1, αn(K) + βn(K)→ 0 as n→∞.

We now observe thatˆ
X×X

d(x, y)p d
αn ⊗ βn

1−
∑

i∈I λn,i
≤ 2p

ˆ
X×X

[
d(x0, x)p + d(x0, y)p

]
d

αn ⊗ βn
1−

∑
i∈I λn,i

≤ 2p
(ˆ

X
d(x0, x)p dαn(x) +

ˆ
X
d(x0, x)p dβn(x)

)
.

(3.7)

Since αn ≤ µn, βn ≤ µ, and αn(K)→ 0, βn(K)→ 0, (3.4) implies that
ˆ
X
d(x0, x)p dαn(x) +

ˆ
X
d(x0, x)p dβn(x) ≤ 4Mδ for n� 1. (3.8)

Hence, combining (3.6), (3.7) and (3.8), we finally deduce that

Wp(µn, µ)p ≤
ˆ
X×X

d(x, y)p dγn(x, y) ≤ δp + 4M2pδ ∀n� 1.

Since δ > 0 can be chosen arbitrarily small, this proves that Wp(µn, µ)→ 0 as n→∞.
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• 2. ⇒ 1. Let γn ∈ Γ(µn, µ) be an optimal transport plan with respect to the cost
c(x, y) = d(x, y)p. Applying the triangle inequality for the Wasserstein distance (recall
Theorem 3.1.5) and using that Wp(µn, µ)→ 0, we have

ˆ
X
d(x0, x)p dµn = Wp(δx0 , µn)p →Wp(δx0 , µ)p =

ˆ
X
d(x0, x)p dµ .

It remains to show that µn
∗
⇀ µ. Let ϕ ∈ Cc(X) be a compactly supported function, and

let ω : [0,∞) → [0,∞) be its modulus of continuity (i.e., |ϕ(x)− ϕ(y)| ≤ ω(d(x, y)) for
all x, y ∈ X). Given δ > 0, we have∣∣∣∣ˆ

X
ϕdµn −

ˆ
X
ϕdµ

∣∣∣∣ ≤ ˆ
X×X

|ϕ(x)− ϕ(y)| dγn(x, y)

≤
ˆ
{d(x,y)≤δ}

ω(δ) dγn(x, y) +

ˆ
{d(x,y)>δ}

2‖ϕ‖∞ dγn(x, y)

≤ ω(δ) + 2‖ϕ‖∞
ˆ
{d(x,y)>δ}

d(x, y)p

δp
dγn(x, y)

≤ ω(δ) +
2‖ϕ‖∞
δp

ˆ
X×X

d(x, y)p dγn(x, y)

= ω(δ) +
2‖ϕ‖∞
δp

Wp(µn, µ)p.

By first letting n → ∞ and then δ → 0, the last inequality implies that
´
X ϕdµn →´

X ϕdµ, concluding the proof.

Theorem 3.1.6 is particularly useful when the ambient space X is compact (or, equivalently,
when all measures µn ∈ P(X) live inside a fixed compact set). Indeed, since in this case the
function d(x0, ·)p has compact support (because the whole space is compact), the convergence´
X d(x0, x)p dµn →

´
X d(x0, x)p dµ is a consequence of the weak-∗ convergence of µn to µ. Hence

we immediately deduce that, on compact sets, Wasserstein convergence is equivalent to weak-∗
convergence.

Corollary 3.1.7. Let X be compact, p ≥ 1, (µn)n∈N ⊂ Pp(X) a sequence of probability mea-
sures, and µ ∈ Pp(X). Then

µn
∗
⇀ µ ⇔ Wp(µn, µ)→ 0.

3.1.1 Construction of geodesics

Let X = Rd and γ ∈ Γ(µ, ν) be an optimal coupling for Wp. Set πt(x, y) := (1 − t)x + ty, so
that {

(π0)#γ = µ
(π1)#γ = ν

.

Define µt := (πt)#γ and let γs,t := (πs, πt)#γ ∈ Γ(µs, µt). Then

Wp(µs, µt) ≤
(ˆ

X×X
|z − z′|p dγs,t(z, z′)

) 1
p

=

(ˆ
X×X

|πs(x, y)− πt(x, y)|p dγ(x, y)

) 1
p

= |t− s|
(ˆ

X×X
|x− y|p dγ

) 1
p

= |t− s|Wp(µ0, µ1).
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Applying this bound on the intervals [0, s], [s, t], and [t, 1], we get

Wp(µ0, µs) +Wp(µs, µt) +Wp(µt, µ1) ≤ [s+ (t− s) + 1− t]Wp(µ0, µ1) = Wp(µ0, µ1).

Note that the converse inequality always holds, by the triangle inequality. Hence, all inequalities
are equalities and we deduce that

Wp(µs, µt) = |t− s|Wp(µ0, µ1) ∀ 0 ≤ s, t ≤ 1. (3.9)

Definition 3.1.8. A curve of measure (µt)t∈[0,1] ⊂Wp(Rd) is said to be a constant speed geodesic
if (3.9) holds.

Remark 3.1.9. Notice that, on a Riemannian manifold, a minimizing geodesic (as defined
in Section 1.3) satisfy (3.9) with Wp replaced by the Riemannian distance. Also the converse
implication is true, if a curve on a Riemannian manifold satisfies (3.9) (with Wp replaced by
the Riemannian distance) then the curve is a minimizing geodesic.

It follows from the discussion above that any optimal coupling γ induces a geodesic via the
formula µt := (πt)#γ. Note that, in the particular case when the coupling γ = (Id × T )#µ is
induced by a map, the geodesic µt takes the form

µt = (πt)#(Id× T )#µ =
(
πt ◦ (Id× T )

)
#
µ = (Tt)#µ,

where Tt(x) := (1 − t)x + tT (x) is the linear interpolation between the identity map and the
transport map T .

3.2 An informal introduction to gradient flows in Hilbert spaces

Let H be a Hilbert space (think, as a first example, H = Rd) and let φ : H → R be of class C1.
Given x0 ∈ H, the gradient flow (GF) of φ starting at x0 is given by the ordinary differential
equation {

ẋ(t) = −∇φ(x(t)) ,

x(0) = x0 .

Note that, for a solution x(t) of the gradient flow, it holds

d

dt
φ(x(t)) = ∇φ(x(t)) · ẋ(t) = −|∇φ|2(x(t)) ≤ 0. (3.10)

Thus:
- φ decreases along the curve x(t);
- we have d

dtφ(x(t)) = 0 if and only if |∇φ|(x(t)) = 0, i.e., x(t) is a critical point of φ.
In particular, if φ has a unique stationary point which coincides with the global minimizer (this
is for instance the case if φ is strictly convex), then one expect x(t) to converge to the minimizer
as t→ +∞.

Remark 3.2.1. To define a gradient flow, one needs a scalar product (exactly as in the definition
of gradient of a function on a manifold, see Definition 1.3.2). Indeed, as a general fact, given a
function f : H → R one defines its differential df(x) : H → R as

df(x)[v] = lim
ε→0

f(x+ εv)− f(x)

ε
.

If f is sufficiently regular, the map df(x) : H → R is linear and continuous, which means that
df(x) ∈ H∗ (the dual space of H). On the other hand, if t 7→ x(t) ∈ H is a curve, then

ẋ(t) = lim
ε→0

x(t+ ε)− x(t)

ε
∈ H.
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So ẋ(t) ∈ H and df(x(t)) ∈ H∗ live in different spaces.
To define a (GF), we need a way to identify H and H∗. This can be done if we introduce a

scalar product. Indeed, if 〈 · , · 〉 is a scalar product on H×H, we can define the gradient of f
at x as the unique element of H such that

〈∇f(x), v〉 := df(x)[v] ∀ v ∈ H.

In other words, the scalar product allows us to identify the gradient and the differential, and
thanks to this identification we can now make sense of ẋ(t) = −∇f(x(t)).

Now the first question is: how does one constructs a solution to (GF)? If ∇φ is Lipschitz
continuous, one can simply rely on the Picard–Lindelöf Theorem (see [Tes12, Theorem 2.2]).
Actually, even if ∇φ is only continuous, one could rely on Peano Theorem (see [Tes12, Theorem
2.19]) to get existence of a solution. Unfortunately, as we shall see, in most situations of interest
∇φ is not continuous. So, even the assumption of C1 regularity is too strong; for the time being
we keep this assumption just to emphasize the ideas, but later we shall remove it.

A classical way to construct solutions of (GF) is by discretizing the ODE in time, via the
so-called implicit Euler scheme. More precisely, fixed a small time step τ > 0, we discretize the
time derivative ẋ(t) as x(t+τ)−x(t)

τ , so that our ODE becomes

x(t+ τ)− x(t)

τ
= −∇φ(y)

for a suitable choice of the point y. A natural idea would be to choose y = x(t) (as in the
explicit Euler scheme), but for our purposes the choice y = x(t + τ) (as in the implicit Euler
scheme) works better. Thus, given x(t), one looks for a point x(t+ τ) ∈ H solving the relation

x(t+ τ)− x(t)

τ
= −∇φ(x(t+ τ)).

With this idea in mind, we set xτ0 = x0. Then, given k ≥ 0 and xτk, we want to find xτk+1 by
solving

xτk+1 − xτk
τ

= −∇φ(xτk+1),

or equivalently

∇x
(
‖x− xτk‖2

2τ
+ φ(x)

)
|x=xτk+1

=
xτk+1 − xτk

τ
+∇φ(xτk+1) = 0,

where ‖ · ‖ denotes the norm induced by the scalar product introduced before. In other words,

xτk+1 is a critical point of the function ψτk(x) :=
‖x−xτk‖

2

2τ + φ(x). Therefore, a natural way to
construct xτk+1 is by looking for a global minimizer of ψτk .

As mentioned above, the C1 assumption on φ is generally to strong. So, let us assume
instead that φ : H → R ∪ {∞} is convex and lower semicontinuous, and recall the notion of
subdifferential introduced in Definition 2.5.1. Then we define a generalized gradient flow in the
following way:

Definition 3.2.2. An absolutely continuous curve15 x : [0,+∞)→ H is a gradient flow for the

15An absolutely continuous curve is a continuous curve which is differentiable a.e., its derivative satisfies
|ẋ(t)| ∈ L1

loc([0,+∞)), and the fundamental theorem of calculus holds:

x(t)− x(s) =

ˆ t

s

ẋ(τ) dτ ∀ s, t ∈ [0,+∞).

We refer to [AGS08, Section 1.1] for a general introduction to absolutely continuous curves.
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convex and lower semicontinuous function φ with initial point x0 ∈ H if

(GF) :=

{
x(0) = x0 ,

ẋ(t) ∈ −∂φ(x(t)) for a.e. t > 0.

Proceeding by analogy with what we did before, for φ convex and lower semicontinuous
we can still repeat the construction of discrete solutions via the implicit Euler scheme: we set
xτ0 = x0, and given k ≥ 0 and xτk we look for a point xτk+1 satisfying

xτk+1 − xτk
τ

∈ −∂φ(xτk+1).

One can check that this relation is equivalent to

0 ∈
xτk+1 − xτk

τ
+ ∂φ(xτk+1) =: ∂ψτk(xτk+1), ψτk(x) :=

‖x− xτk‖2

2τ
+ φ(x).

Note that 0 ∈ ∂ψτk(xτk+1) is equivalent to saying that xτk+1 is a global minimizer of ψτk (this
follows immediately from Definition 2.5.1). Hence, given xτk, one finds xτk+1 by minimizing
x 7→ ψτk(x).

It is not difficult to prove that a minimizer exists16, so we can construct the sequence (xτk)k≥0.
Then, setting xτ (0) := x0 and xτ (t) := xτk for t ∈ ((k − 1)τ, kτ ], one obtains a curve t 7→ xτ (t)
that should be almost a solution to the (GF).

Then, the main challenge is to let τ → 0 and prove that there exists a limit curve x(t) that
indeed solves (GF). We shall not discuss this here, and we refer to [AG13, Section 3.1] and the
references therein for more details.

Remark 3.2.3 (Uniqueness and stability). Let φ be a convex function, and let x(t), y(t) be
solutions of (GF) with initial conditions x0 and y0 respectively. If φ is of class C1 then

d

dt

‖x(t)− y(t)‖2

2
= 〈x(t)− y(t), ẋ(t)− ẏ(t)〉

= −〈x(t)− y(t),∇φ(x(t))−∇φ(y(t))〉 ≤ 0,

where the last inequality follows from the convexity of φ.

16Actually, in this case one can prove that there exists a unique minimizer. Indeed, to prove this, fix x0 ∈ H a
point where the subdifferential of φ is nonempty, and fix p0 ∈ ∂φ(x0). Then

φ(x) ≥ φ(x0)− 〈p0, x− x0〉 ≥ φ(x0)− ‖p0‖
(
‖x‖+ ‖x0‖

)
= −A‖x‖ −B ∀x ∈ H,

where A := ‖p0‖ and B := ‖p0‖ ‖x0‖ − φ(x0). Hence, recalling the definition of ψτk , this proves that

lim
‖x‖→∞

ψτk(x) ≥ lim
‖x‖→∞

‖x− xτk‖2

2τ
−A‖x‖ −B = +∞.

Thus, if xj is a minimizing sequence of ψτk (i.e., ψτk(xj) → infH ψ
τ
k as j → ∞), it follows from the equation

above that ‖xj‖ cannot go to infinity. This means that xj is a bounded sequence in the Hilbert space H, so by
Banach-Alaoglu’s Theorem it has a subsequence xj` that converges weakly to some point x̄. Note now that ψτk
is a lower semicontinuous convex function. Also, for convex functions, lower semicontinuity with respect to the
strong convergence is equivalent to lower semicontinuity with respect to the weak convergence (see for instance
[Bre11, Corollary 3.9]). Hence

ψτk(x̄) ≤ lim inf
`→∞

ψτk(xj`) = inf
H
ψτk ,

which proves that x̄ is a minimizer. Note also that, since φτk is uniformly convex (being the sum of the convex
function φ and a uniformly convex function), the minimizer is unique: indeed, if x̄1 and x̄2 are minimizers then

ψτk

(
x̄1 + x̄2

2

)
≤ ψτk(x̄1) + ψτk(x̄2)

2
=

infH ψ
τ
k + infH ψ

τ
k

2
= inf
H
ψτk ,

so equality holds in the first inequality, and therefore x̄1 = x̄2.
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More in general, if φ convex but not necessarily C1, we have

ẋ(t) = −p(t) and ẏ(t) = −q(t), p(t) ∈ ∂φ(x(t)), q(t) ∈ ∂φ(y(t)),

and therefore

d

dt

‖x(t)− y(t)‖2

2
= 〈x(t)− y(t), ẋ(t)− ẏ(t)〉

= −〈x(t)− y(t), p(t)− q(t)〉 ≤ 0,

where the last inequality follows from the monotonicity of the subdifferential of convex functions
(this is just a particular case of the cyclical monotonicity of the subdifferential of a convex
function in the case N = 2, see Theorem 2.5.2).

In particular, in both cases the (GF) is unique. Even more, if the initial conditions x0 and
y0 are close, then x(t) and y(t) remain uniformly close for all times.

Example 3.2.4. Let H = L2(Rd) and

φ(u) =

{
1
2

´
Rd |∇u|

2dx if u ∈W 1,2(Rd)
+∞ otherwise

.

We claim that

∂φ(u) 6= ∅ ⇔ ∆u ∈ L2(Rd),

and in that case ∂φ(u) = {−∆u}.

Proof. Even though the proofs are quite similar, we prove the two implications separately.
⇒ Let p ∈ L2(Rd) with p ∈ ∂φ(u). Then, by definition, for any v ∈ L2(Rd) we have

φ(v) ≥ φ(u) + 〈p, v − u〉L2 .

Take v = u+ εw with w ∈W 1,2(Rd) and ε > 0. Then the equation above takes the form

ˆ
Rd

|∇(u+ εw)|2

2
dx−

ˆ
Rd

|∇u|2

2
dx ≥ ε

ˆ
Rd
pw dx.

Rearranging the terms and dividing by ε yields

ˆ
Rd
∇u · ∇w dx+

ε

2

ˆ
Rd
|∇w|2dx ≥

ˆ
Rd
pw dx,

so by letting ε→ 0 we obtain

ˆ
Rd
∇u · ∇w ≥

ˆ
Rd
pw dx ∀w ∈W 1,2(Rd).

Replacing w with −w in the inequality above, we conclude that

ˆ
Rd

−∆u︸ ︷︷ ︸
as a distribution

w =

ˆ
Rd
∇u · ∇w dx =

ˆ
Rd
pw dx ∀w ∈W 1,2(Rd),

i.e., −∆u = p ∈ L2(Rd).
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⇐ Assume that the distributional Laplacian ∆u belongs to L2(Rd). By definition of φ, for
any w ∈W 1,2(Rd) we have

φ(u+ w)− φ(u) =

ˆ
Rd
∇u · ∇w dx+

1

2

ˆ
Rd
|∇w|2dx ≥

ˆ
Rd
∇u · ∇w dx =

ˆ
Rd
−∆u w dx.

On the other hand, if w 6∈W 1,2(Rd) then trivially

φ(u+ w) = +∞ ≥ φ(u) +

ˆ
Rd
−∆u w dx.

Thus −∆u ∈ ∂φ(u).

As a consequence of this discussion, we obtain the following:

Corollary 3.2.5 (Heat equation as gradient flow). Let H = L2(Rd) and consider the Dirichlet
energy functional

φ(u) :=

{
1
2

´
Rd |∇u|

2dx if u ∈W 1,2(Rd) ,
+∞ otherwise.

Then the (GF) of φ with respect to the L2-scalar product is the heat equation, i.e.,

∂tu(t) ∈ −∂φ(u(t)) ⇔ ∂tu(t, x) = ∆u(t, x).

3.3 Heat equation and optimal transport: the JKO scheme

In the previous paragraph we saw that the heat equation is the L2-gradient flow of the Dirichlet
energy functional (see Corollary 3.2.5). Hence, by the discussion done in the previous section,
a way to find solutions to the heat equation is by solving the (GF) by means of the implicit
Euler scheme

uτk+1 is the minimizer in L2(Rd) of u 7→
‖u− uτk‖

2
L2(Rd)

2τ
+ φ(u),

and then letting τ → 0.
In [JKO98], the authors discovered a completely new and surprising way of constructing

solutions of the heat equations as gradient flows. More precisely, the authors discovered that by
replacing the Dirichlet energy functional with the so-called “entropy functional”

´
ρ log(ρ), and

by replacing the L2-norm with the 2-Wasserstein distance, one obtains again the heat equation.
In other words, the scheme above can be replaced by the following one:17

ρτk+1 is the minimizer in P(Rd) of ρ 7→
W 2

2 (ρ, ρτk)

2τ
+

ˆ
Rd
ρ log(ρ) dx.

Note that, given ρ and ρ̃ probability densities, we identify them with the probability measures
ρ dx and ρ̃ dx, thus

W2(ρ, ρ̃) := W2(ρ dx, ρ̃ dx) = inf
γ∈Γ(ρ dx,ρ̃ dx)

(ˆ
Rd×Rd

|x− y|2dγ
) 1

2

.

Remark 3.3.1. In all this section we will work with probability densities. However, up to
multiplying the initial datum ρ0 by a positive constant, one can always reduce to this setting
whenever ρ0 ∈ L1(Rd) is nonnegative.

17We adopt the convention that
´
Rd ρ log(ρ) dx := +∞ if ρ ∈ P(Rd) is not absolutely continuous with respect

to the Lebesgue measure.
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In the paper [JKO98], the authors consider solutions in the whole space Rd. Here, instead,
we consider the setting of a bounded convex domain Ω ⊂ Rd.

More precisely, we take ρ0 to be a probability density in Ω such that

ˆ
Ω
ρ0 log(ρ0) dx︸ ︷︷ ︸

Entropy

< +∞.

Fix τ > 0, set ρτ0 := ρ0, and given ρτk we define ρτk+1 as the minimizer of

ρ 7→
W 2

2 (ρ, ρτk)

2τ
+

ˆ
Ω
ρ log(ρ) dx. (3.11)

The goal of this section is to show that, as τ → 0, the scheme converges to the solution of the
heat equation. We begin by proving the existence of discrete solutions.18

Lemma 3.3.2. For any k ≥ 0, ρτk+1 exists (i.e., the functional in (3.11) has a minimum).

Proof. Fix k ≥ 0, and take (ρm)m∈N ⊂ P(Ω) a minimizing sequence, that is

W 2
2 (ρm, ρ

τ
k)

2τ
+

ˆ
Ω
ρm log(ρm) dx→ inf

ρ∈P(Ω)

{
W 2

2 (ρ, ρτk)

2τ
+

ˆ
Ω
ρ log(ρ) dx

}
.

For all M ∈ N the sequence {ρm ∧M}m∈N is bounded in L∞(Ω), thus by Banach-Alaoglu’s
Theorem it is weakly-∗ compact in L∞. Hence, by a diagonal argument, we can find a subse-
quence m` independent of M such that ρm` ∧M

∗
⇀ ρM in L∞(Ω) for each M ∈ N. Also, since

s log(s) + 1 ≥ 0 for all s ≥ 0, we can bound

ˆ
Ω

(
ρm − ρm ∧M

)
dx =

ˆ
{ρm`≥M}

(ρm` −M) dx ≤ 1

log(M)

ˆ
Ω∩{ρm≥M}

ρm log(ρm) dx

≤ 1

log(M)

ˆ
Ω∩{ρm≥M}

(
ρm log(ρm) + 1

)
dx

≤ 1

log(M)

ˆ
Ω

(
ρm log(ρm) + 1

)
dx ≤ C

log(M)
,

where the last bound follows from the fact that ρm` is a minimizing sequence (hence
´

Ω ρm` log(ρm`)
is uniformly bounded) and Ω is bounded (hence it has finite volume).

Set ρ∞ := supM ρM . We know that

ρm` ∧M dx
∗
⇀ ρM dx,

ρM
L1

→ ρ∞ (by monotone convergence),

‖ρm` ∧M − ρm`‖L1 ≤
C

log(M)
.

Hence, thanks to the first two properties, we can find a sequence of indices (m`M )M∈N, with
m`M →∞, such that ρm`M ∧M ⇀ ρ∞ in L1(Ω) as M →∞. Also, thanks to the third property,

ρm`M⇀ρ∞ in L1(Ω).
We now want to show that ρ∞ is still a probability density. Note that this is not obvious,

since some mass may have “escaped” from Ω. To prove this, set Nε := {x ∈ Ω | dist(x, ∂Ω) < ε}.
18The reader familiar with Dunford-Pettis’ Theorem will find the proof longer than needed. However, we have

decided to present a more elementary proof based only on the weak-∗ compactness of L∞.
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Since |Nε| ≤ Cε, for L := 1
ε| log(ε)| we have

ˆ
Nε

ρm ≤
ˆ
Nε∩{ρm≤L}

ρm +

ˆ
Nε∩{ρm≥L}

ρm
log(ρm)

log(L)

≤ L|Nε|+
C

log(L)
≤ C

(
εL+

1

log(L)

)
≤ C

| log(ε)|
∀m ∈ N,

so in particular
ˆ

Ω\Nε
ρm`M ≥ 1− C

| log(ε)|

and therefore ˆ
Ω\Nε

ρ∞ ≥ 1− C

| log(ε)|
.

Letting ε → 0, we conclude that ρ∞ is a probability density. In particular, it follows by
Lemma 2.1.13 that the family {ρm`M }m∈N is tight and the convergence of ρm`M to ρ∞ is also
narrow.

We now observe that, since [0,∞) 3 s 7→ s log(s) is convex, [AFP00, Theorem 5.2] implies
that19

ˆ
Ω
ρ∞ log(ρ∞) ≤ lim inf

M→∞

ˆ
Ω
ρm`M log(ρm`M ). (3.12)

We now want to study the behaviour of W 2
2 (ρm`M , ρ

τ
k) as M →∞.

Let γM ∈ Γ(ρm`M , ρ
τ
k). Then, since the family {ρm`M }m∈N is tight (by the previous discus-

sion), the proof of Lemma 2.3.1 shows that also γM is tight. Hence, up to taking a subsequence,
γM ⇀ γ∞ with

(π1)#γ∞ = ρ∞, (π2)#γ∞ = ρτk,

thus γ∞ ∈ Γ(ρ∞, ρ
τ
k). Note also that, since |x− y|2 is continuous and bounded on Ω× Ω,

W 2
2 (ρm`M , ρ

τ
k) =

ˆ
Ω×Ω
|x− y|2dγM →

ˆ
Ω×Ω
|x− y|2dγ∞ ≥W 2

2 (ρ∞, ρ
τ
k).

Hence, combining together the lower semicontinuity of
´

Ω ρm`M log(ρm`M ) with the equation
above, we get

lim inf
M→∞

W 2
2 (ρm`M , ρ

τ
k)

2τ
+

ˆ
Ω
ρm`M log(ρm`M ) ≥

W 2
2 (ρ∞, ρ

τ
k)

2τ
+

ˆ
Ω
ρ∞ log(ρ∞).

Since ρm was a minimizing sequence, this proves that ρ∞ is a minimizer. Hence, we define
ρτk+1 := ρ∞.

19As simple way to prove (3.12) is the following: note that, for each s ≥ 0, it holds

s log s ≥ s(σ + 1)− eσ ∀σ ∈ R, with equality for σ = log(s).

Hence, given any continuous function φ(x), we have

lim inf
M→∞

ˆ
Ω

ρm`M log(ρm`M ) ≥ lim inf
M→∞

ˆ
Ω

(
ρm`M (x)(φ(x) + 1)− eφ(x)

)
dx =

ˆ
Ω

(
ρ∞(x)(φ(x) + 1)− eφ(x)

)
dx,

where we applied the previous formula with s = ρ(x) and σ = φ(x), and the final equality follows from the narrow
convergence of ρm`M to ρ∞. Choosing {φk}k∈N a sequence of functions converging to log(ρ∞), the result follows
by applying the above formula to φ = φk and letting k →∞.
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Next, since ρτk+1 minimizes the functional (3.11), we expect it to satisfy some kind of mini-
mality equation. This is the purpose of the next:

Lemma 3.3.3. For any vector field ξ ∈ C∞(Ω,Rd) tangent to the boundary of Ω, it holds

ˆ
Ω
ρτk+1 div(ξ) dx =

1

τ

ˆ
Ω
〈ξ ◦ Tk+1, Tk+1 − x〉ρτk dx ,

where Tk+1 : Ω→ Ω is the optimal map from ρτk to ρτk+1.

Proof. In order to exploit the minimality of ρτk+1, we want to perturb it. We do it as follows.
Consider the flow of ξ: {

Φ̇(t, x) = ξ(Φ(t, x)) ,

Φ(0, x) = x .

Since ξ is tangent to ∂Ω, it follows that Φ(t) : Ω→ Ω is a diffeomorphism. So we can define

ρε := Φ(ε)#ρ
τ
k+1 ∈ P(Ω).

It follows by Section 1.6 that

ρτk+1(x) = ρε(Φ(ε, x)) det∇Φ(ε, x),

therefore ˆ
Ω
ρε(y) log(ρε(y)) dy =

ˆ
Ω
ρτk+1(x) log(ρε(Φ(ε, x))) dx

=

ˆ
Ω
ρτk+1(x) log

(
ρτk+1(x)

det∇Φ(ε, x)

)
dx.

Then, a Taylor expansion gives (cp. (2.15))

ˆ
Ω
ρε log(ρε) =

ˆ
Ω
ρτk+1 log(ρτk+1)−

ˆ
Ω
ρτk+1 log(det∇Φ(ε, x)︸ ︷︷ ︸

1+ε div ξ+o(ε)

) dx

=

ˆ
Ω
ρτk+1 log(ρτk+1)− ε

ˆ
Ω
ρτk+1 div ξ dx+ o(ε).

Now, given a coupling γ ∈ Γ(ρτk+1, ρ
τ
k) optimal for the W2-distance, define γε := (Φ(ε, ·)×Id)#γ.

Since

(π1)#γε = Φ(ε, ·)#ρ
τ
k+1 = ρε, (π2)#γε = (π2)#γ = ρτk,

and Φ(ε, x) = x+ εξ(x) + o(ε), we get

W 2
2 (ρε, ρ

τ
k) ≤

ˆ
Ω×Ω
|x− y|2dγε =

ˆ
Ω×Ω
|Φ(ε, x)− y|2dγ

=

ˆ
Ω×Ω

[
|x− y|2 + 2ε〈ξ(x), x− y〉+ o(ε)

]
dγ .

Therefore, recalling that γ is optimal from ρτk+1 to ρτk, we obtain

W 2
2 (ρε, ρ

τ
k) ≤W 2

2 (ρτk+1, ρ
τ
k) + 2ε

ˆ
Ω×Ω
〈ξ(x), x− y〉 dγ + o(ε).

56



Combining everything together, we proved that

W 2
2 (ρτk+1, ρ

τ
k)

2τ
+

ˆ
Ω
ρτk+1 log(ρτk+1) dx ≤

W 2
2 (ρε, ρ

τ
k)

2τ
+

ˆ
Ω
ρε log(ρε) dx

≤
W 2

2 (ρτk+1, ρ
τ
k)

2τ
+

ˆ
Ω
ρτk+1 log(ρτk+1) dx

+
ε

τ

ˆ
Ω×Ω
〈ξ(x), x− y〉 dγ − ε

ˆ
Ω
ρτk+1 div ξ dx︸ ︷︷ ︸

(?)

+o(ε).

Hence, since ε can be chosen both positive and negative, we see that the term (?) has to vanish.
Therefore our optimality condition for ρτk+1 reads as

ˆ
Ω
ρτk+1 div(ξ) dx− 1

τ

ˆ
Ω×Ω
〈ξ(x), x− y〉 dγ = 0,

where γ realizes the 2-Wasserstein distance between ρτk+1 and ρτk.
To simplify the formula we apply Theorem 2.5.9 to deduce that the optimal plan γ is unique

and is induced by an optimal map Tk+1 from ρτk to ρτk+1, namely γ = (Tk+1 × Id)#ρ
τ
k. Thus

ˆ
Ω×Ω
〈ξ(x), x− y〉 dγ =

ˆ
Ω
〈ξ ◦ Tk+1(x), Tk+1(x)− x〉ρτk(x) dx,

and the optimality equation becomes20

ˆ
Ω
ρτk+1 div(ξ) dx− 1

τ

ˆ
Ω
〈ξ ◦ Tk+1, Tk+1 − x〉ρτk dx = 0,

as wanted.

We are now ready to state and prove the main result of this section.

Theorem 3.3.4. Given τ > 0, let ρτ : [0,∞)→ P(Ω) be the curve of probability densities given
by

ρτ (t) :=

{
ρ0 for t = 0,
ρτk for t ∈ ((k − 1)τ, kτ ], k ≥ 1.

(3.13)

Then there exists a curve of probability measures ρ ∈ L1
loc([0,∞)×Ω) such that, up to a subse-

quence in τ , ρτ ⇀ ρ weakly in L1
loc([0,∞) × Ω). Furthermore, ρ satisfies the heat equation (in

the distributional sense) with initial datum ρ0 and zero Neumann boundary conditions.

Proof. By the minimality of ρτk, we have

W 2
2 (ρτk, ρ

τ
k−1)

2τ
+

ˆ
Ω
ρτk log(ρτk) dx ≤

(
W 2

2 (ρ, ρτk−1)

2τ
+

ˆ
Ω
ρ log(ρ) dx

)
|ρ=ρτk−1

=

ˆ
Ω
ρτk−1 log(ρτk−1) dx.

20Alternatively, one could have proceeded as follows: let Tk+1 be an optimal transport map from ρτk to ρτk+1,
and note that Φε ◦ Tk+1 transports ρτk to ρε. Hence,

W 2
2 (ρε, ρ

τ
k) ≤

ˆ
Ω

|Φε ◦ Tk+1 − x|2ρτk dx =

ˆ
Ω

|Tk+1 + εξ ◦ Tk+1 − x|2ρτk dx+ o(ε)

=

ˆ
Ω

|Tk+1 − x|2ρτk︸ ︷︷ ︸
W2

2 (ρτ
k+1

,ρτ
k

)

dx+ 2ε

ˆ
Ω

〈ξ ◦ Tk+1, Tk+1 − x〉ρτk dx+ o(ε).

Using this expression, one gets the desired formula for the optimality condition.
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Thus, by taking the telescopic sum over k = 1, . . . , k0, one gets

k0∑
k=1

W 2
2 (ρτk, ρ

τ
k−1)

2τ︸ ︷︷ ︸
≥0

+

ˆ
Ω
ρτk0

log(ρτk0
) dx ≤

ˆ
Ω
ρ0 log(ρ0) dx.

In particular, we deduce that the entropy
´

Ω ρk log(ρk) decreases in k. Therefore, recalling
(3.13), we have

ˆ
Ω
ρτ (t, x) log(ρτ (t, x)) dx ≤

ˆ
Ω
ρ0 log(ρ0) dx ∀ τ > 0, t ≥ 0. (3.14)

Also, since s log s ≥ −1 on [0,+∞), for any k0 ≥ 1 it holds

k0∑
k=1

W 2
2 (ρτ (kτ), ρτ ((k − 1)τ))

2τ
≤
ˆ

Ω
ρ0 log(ρ0) dx−

ˆ
Ω
ρk0 log(ρk0) dx ≤

ˆ
Ω

(
ρ0 log(ρ0) + 1

)
dx.

(3.15)

Furthermore, since
´

Ω ρ
τ (t) = 1, we have

ˆ t2

t1

ˆ
Ω
ρτ (t, x) dx dt = t2 − t1 ∀ 0 ≤ t1 ≤ t2. (3.16)

As shown in the proof of Lemma 3.3.2, the bound (3.14) implies that the measures ρτ (t) cannot
concentrate nor escape to the boundary of Ω, uniformly in t. Hence, up to a subsequence, ρτ

converges weakly in L1
loc([0,∞) × Ω) to a density ρ(t, x), and by passing to the limit in (3.16)

we deduce that
´

Ω ρ(t, x) dx = 1 for a.e. t ∈ [0, T ].
Now that we have shown the convergence of ρτ , we want to show that ρ satisfies the heat

equation. The idea is to test the heat equation against a test function of the form ψ(x)ζ(t). So,
first we fix ψ ∈ C∞(Ω) such that ∂ψ

∂ν |∂Ω = 0. Note that, by a Taylor expansion with integral
reminder, one has

ψ(x)− ψ(y) = 〈∇ψ(y), x− y〉+
1

2

ˆ 1

0
D2ψ(tx+ (1− t)y)[x− y, x− y]dt.

In particular

|ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉| ≤ 1

2
‖D2ψ‖∞|x− y|

2,

from which it follows thatˆ
Ω

∣∣〈∇ψ ◦ Tk, Tk − x〉+ ψ(x)− ψ(Tk)
∣∣ρτk−1 dx ≤

1

2
‖D2ψ‖∞

ˆ
Ω
|Tk − x|2ρτk−1 dx

=
1

2
‖D2ψ‖∞W

2
2 (ρτk, ρ

τ
k−1).

Then, applying Lemma 3.3.3 with ξ = ∇ψ (note that, since ∂ψ
∂ν |∂Ω = 0, ∇ψ is tangent to the

boundary) we obtain∣∣∣∣−ˆ
Ω

∆ψ ρτk dx+
1

τ

ˆ
Ω

[ψ(Tk)− ψ(x)] ρτk−1︸ ︷︷ ︸
=
´
ψρτk−

´
ψρτk−1

dx

∣∣∣∣ ≤ 1

2
‖D2ψ‖∞

W 2
2 (ρτk, ρ

τ
k−1)

τ
(3.17)
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We now take ζ ∈ C∞c ([0,+∞)), and we multiply (3.17) against τ ζ((k − 1)τ). Then, recalling
(3.13), we get∣∣∣∣ˆ

Ω
ψ(x) ρτ (kτ, x) ζ((k − 1)τ) dx−

ˆ
Ω
ψ(x) ρτ ((k − 1)τ, x) ζ((k − 1)τ) dx

− τ
ˆ

Ω
∆ψ(x) ρτ (kτ, x) ζ((k − 1)τ) dx

∣∣∣∣
≤ 1

2
‖D2ψ‖∞‖ζ‖∞W

2
2 (ρτ (kτ), ρτ ((k − 1)τ)).

Summing this bound over k = 1, . . . ,∞ yields

∣∣∣∣−ζ(0)

ˆ
Ω
ψ(x) ρ0(x) dx+

(I)︷ ︸︸ ︷
∞∑
k=2

ˆ
Ω
ψ(x) ρτ (kt) ζ((k − 1)τ)) dx−

∞∑
k=1

ˆ
Ω
ψ(x) ρτ (kτ, x) ζ(kτ) dx

−
∞∑
k=1

τ

ˆ
Ω

∆ψ(x) ρτ (kτ, x) ζ((k − 1)τ)︸ ︷︷ ︸
(II)

dx

∣∣∣∣
≤ C

∞∑
k=1

W 2
2 (ρτ (kτ), ρτ ((k − 1)τ)) ≤ C τ,

where C depends on ψ and ζ, and the last bound follows from (3.15). We now rewrite the terms
(I) and (II) as follows. For the term (I), we have

(I) =
∞∑
k=1

ˆ
ψ(x)

ρτ (t) , t∈[(k−1)τ,kτ ]︷ ︸︸ ︷
ρτ (kτ)

−
´ kτ
(k−1)τ ∂tζ(t)dt︷ ︸︸ ︷

[ζ((k − 1)τ)− ζ(kτ)] dx

= −
∞∑
k=1

ˆ kτ

(k−1)τ

ˆ
Ω
ψ(x) ρτ (t, x) ∂tζ(t) dx dt = −

ˆ ∞
0

ˆ
Ω
ψ(x) ρτ (t, x) ∂tζ dx dt.

For the term (II), since

τ ζ((k − 1)τ) =

ˆ kτ

(k−1)τ
ζ((k − 1)τ) dt =

ˆ kτ

(k−1)τ
ζ(t) dt+

ˆ kτ

(k−1)τ
(ζ((k − 1)τ)− ζ(t)) dt︸ ︷︷ ︸
≤‖∂tζ‖∞τ

,

we have

(II) =

∞∑
k=1

ˆ
Ω

∆ψ(x) ρτ (t, x) τ ζ((k − 1)τ) dx

=

∞∑
k=1

ˆ kτ

(k−1)τ

ˆ
Ω

∆ψ(x) ρτ (t, x) ζ(t) dx dt+O

(
τ

∞∑
k=1

ˆ kτ

(k−1)τ

ˆ
Ω
|∆ψ(x)| ρτ (t, x)|∂tζ(t)| dx dt

)

=

∞∑
k=1

ˆ kτ

(k−1)τ

ˆ
Ω

∆ψ(x) ρτ (t, x) ζ(t) dx dt+O

(
τ

∞∑
k=1

ˆ ∞
0

ˆ
Ω
|∆ψ(x)| ρτ (t, x)|∂tζ(t)| dx dt

)
.

Therefore, choosing T > 0 such that supp(ζ) ⊂ [0, T ], we proved that∣∣∣∣−ζ(0)

ˆ
Ω
ψ(x) ρ0(x) dx−

ˆ ∞
0

ˆ
Ω
ψ(x) ρτ (t, x) ∂tζ(t) dt dx−

ˆ ∞
0

ˆ
Ω

∆ψ(x) ρτ (t, x) ζ(t) dx dt

∣∣∣∣
≤ Cτ + τ‖∆ψ‖∞‖∂tζ‖∞

ˆ T

0

ˆ
Ω
ρτ (t, x) dx dt→ 0 as τ → 0.
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Hence, since ρτ ⇀ ρ in L1
loc([0,∞)× Ω), we conclude that

− ζ(0)

ˆ
Ω
ψ(x) ρ0(x) dx−

ˆ ∞
0

ˆ
Ω
ψ(x) ρ(t, x) ∂tζ(t) dx dt−

ˆ ∞
0

ˆ
Ω

∆ψ(x) ρ(t, x) ζ(t) dx dt = 0

(3.18)
for any smooth ψ satisfying ∂ψ

∂ν |∂Ω = 0.
We claim that (3.18) corresponds to saying that ρ solves, in the distributional sense, the

heat equation with Neumann boundary conditions21 ∂ρ(t)
∂ν |∂Ω = 0 and with initial datum ρ0.

To prove the claim we first note that, integrating by parts in time,

− ζ(0)

ˆ
Ω
ψ(x) ρ0(x) dx−

ˆ ∞
0

ˆ
Ω
ψ(x) ρ(t, x) ∂tζ(t) dx dt

= −ζ(0)

ˆ
Ω
ψ(x) ρ0(x) dx−

ˆ
Ω
ψ(x) ρ(t, x) ζ(t) dx

∣∣∣∣t=∞
t=0

+

ˆ
Ω
ψ(x) ∂tρ︸︷︷︸

as a distribution

ζ(t) dx

= −ζ(0)

ˆ
Ω
ψ(x)

[
ρ0(x)− ρ(0)︸︷︷︸

in the trace sense

]
dx+

ˆ
Ω
ψ(x) ∂tρ︸︷︷︸

as a distribution

ζ(t) dx.

On the other hand, integrating by parts in space and using that ∂ψ
∂ν |∂Ω = 0, we have

ˆ ∞
0

ˆ
Ω

∆ψ(x) ρ(t, x) ζ(t) dx dt

=

ˆ ∞
0

(ˆ
∂Ω

∂ψ

∂ν
(x)︸ ︷︷ ︸

=0

ρ(t)

)
ζ(t) dt−

ˆ ∞
0

ˆ
Ω
∇ψ(x) · ∇ρ︸︷︷︸

as a distribution

ζ(t) dx dt

= −
ˆ ∞

0

(ˆ
∂Ω
ψ(x)

∂ρ(t)

∂ν︸ ︷︷ ︸
as a distribution

)
ζ(t) dt+

ˆ ∞
0

ˆ
Ω
ψ(x) ∆ρ︸︷︷︸

as a distribution

ζ(t) dx dt.

Hence, in the sense of distributions, (3.18) is equivalent to

0 = −ζ(0)

ˆ
Ω
ψ(x) [ρ0(x)− ρ(0)] dx−

ˆ ∞
0

(ˆ
∂Ω
ψ(x)

∂ρ(t)

∂ν

)
ζ(t) dt

+

ˆ ∞
0

ˆ
Ω
ψ(x)

[
∂tρ−∆ρ

]
ζ(t) dx dt. (3.19)

Choosing first ψ ∈ C∞c (Ω) and ζ ∈ C∞c ((0,+∞)), we get

ˆ ∞
0

ˆ
Ω
ψ(x)

[
∂tρ−∆ρ

]
ζ(t) dx dt = 0,

and so by the arbitrariness of ψ and ζ we deduce that ∂tρ−∆ρ = 0 in the sense of distributions.
Hence (3.19) becomes

0 = −ζ(0)

ˆ
Ω
ψ(x) [ρ0(x)− ρ(0)] dx−

ˆ ∞
0

(ˆ
∂Ω
ψ(x)

∂ρ(t)

∂ν

)
ζ(t) dt. (3.20)

We now use (3.20) with ζ ∈ C∞c ((0,+∞)) and ψ ∈ C∞(Ω) such that ∂ψ
∂ν |∂Ω = 0 to get

0 =

ˆ ∞
0

(ˆ
∂Ω
ψ(x)

∂ρ(t)

∂ν

)
ζ(t) dt.

21It is natural to expect that ρ satisfies the Neumann boundary condition ∂ρ(t)
∂ν
|∂Ω = 0. Indeed, this condition

corresponds to saying that the mass of ρ cannot enter nor leave Ω, and this is coherent with the way the solution
was constructed.
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Note that the constraint ∂ψ
∂ν |∂Ω = 0 plays no role on the possible values of ψ on ∂Ω. In other

words, ψ|∂Ω can be chosen arbitrarily, and so the equation above implies that ∂ρ(t)
∂ν |∂Ω = 0.

Finally, combining this information with (3.20), we deduce that

0 = −ζ(0)

ˆ
Ω
ψ(x) [ρ0(x)− ρ(0)] dx ∀ψ ∈ C∞c (Ω),

hence ρ(0) = ρ0, as desired.
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4 Differential viewpoint of optimal transport

The goal of this section is to introduce a differential structure on the space of probability
measure, starting from the Benamou-Brenier formula and then introducing Otto’s formalism.
This will allow us to interpret several important PDEs as gradient flows with respect to the
2-Wasserstein distance. In order to focus on the main ideas behind this important theory, most
computations of this section will be formal.

In the previous section we have seen that, considering the entropy functional ρ→
´
ρ log(ρ)

in the 2-Wasserstein space, the discrete Euler scheme for gradient flows produces solutions to
the heat equation. It is natural to wonder whether we can say that, in some sense:

“The heat equation is the gradient flow of the entropy with respect to the W2 metric.”

Moreover, one might ask whether a similar strategy could handle other evolution equations. In
this section we give an answer to these questions by endowing the Wasserstein space with a
differential structure. This makes it much easier to guess (and, with the right toolbox, prove)
that the gradient flow of the entropy is the heat equation. Also, this will allow us to repeat the
same strategy for other functionals/evolution equations.

4.1 The continuity equation and Benamou-Brenier formula

Let Ω ⊂ Rd be convex set (Ω = Rd is admissible), let ρ̄0 ∈ P2(Ω) be a probability measure with
finite second moments (recall (3.1)), and let v : [0, T ] × Ω → Rd be a smooth bounded vector
field tangent to the boundary of Ω. Let X(t, x) denote the flow of v, namely{

Ẋ(t, x) = v(t,X(t, x))

X(0, x) = x,

and set ρt = (X(t))#ρ̄0. Note that, since v is tangent to the boundary, the flow remains inside
Ω, hence ρt ∈ P2(Ω).22

Lemma 4.1.1. Let vt(·) := v(t, · ). The continuity equation

∂tρt + div(vtρt) = 0 (4.1)

holds in the distributional sense.

Proof. Let ψ ∈ C∞c (Ω), and consider the function t 7→
´

Ω ρt(x)ψ(x) dx. Then, using the
definition of X and ρt, we get

ˆ
Ω
∂tρt(x)ψ(x) dx =

d

dt

ˆ
Ω
ρt(x)ψ(x) dx =

d

dt

ˆ
Ω
ψ(X(t, x)) ρ̄0(x) dx

=

ˆ
Ω
∇ψ(X(t, x)) · Ẋ(t, x)ρ̄0(x) dx =

ˆ
Ω
∇ψ(X(t, x)) · vt(X(t, x)) ρ̄0(x) dx

=

ˆ
Ω
∇ψ(x) · vt(x) ρt(x) dx = −

ˆ
Ω
ψ(x) div(vtρt) dx.

22Since vt is bounded, |X(t, x)− x| ≤ Ct, therefore

ˆ
Ω

|x|2ρt(x) dx =

ˆ
Ω

|X(t, x)|2ρ̄0(x) dx ≤ 2

ˆ
Ω

(
|x|2 + (Ct)2) ρ̄0(x) dx.

Thus, if ρ0 has finite second moments, the same holds for ρt.
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Definition 4.1.2. Given a pair (ρt, vt) solving the continuity equation (4.1), with vt · ν|∂Ω = 0
(namely, vt is tangent to the boundary of Ω), we define its action as

A[ρt, vt] :=

ˆ 1

0

ˆ
Ω
|vt(x)|2ρt(x) dx dt .

The following remarkable formula, due to Benamou and Brenier [BB00], shows a link between
the continuity equation and the W2-distance.

Theorem 4.1.3 (Benamou-Brenier formula). Given two probability measures ρ̄0, ρ̄1 ∈ P2(Ω),
it holds

W 2
2 (ρ̄0, ρ̄1) = inf

{
A[ρt, vt] | ρ0 = ρ̄0, ρ1 = ρ̄1, ∂tρt + div(vtρt) = 0, vt · ν|∂Ω = 0

}
.

Proof. We give only a formal proof.
Let (ρt, vt) be a couple “probability measure/smooth vector field” satisfying ρ0 = ρ̄0, ρ1 =

ρ̄1, and ∂tρt + div(vtρt) = 0,. Let X(t, x) denote the flow of vt. By the uniqueness for the
continuity equation23, the unique solution ρt is the one constructed in Lemma 4.1.1, namely
ρt = (X(t))#ρ̄0. In particular X(1)#ρ̄0 = ρ̄1, which implies that X(1) is a transport map from
ρ̄0 to ρ̄1. Then, by the definition of X and Hölder inequality, we get

A[ρt, vt] =

ˆ 1

0

ˆ
Ω
|vt|2ρt dxdt =

ˆ 1

0

ˆ
Ω
|vt(X(t, x))|2ρ̄0(x) dxdt

=

ˆ 1

0

ˆ
Ω
|Ẋ(t, x)|2ρ̄0(x)dtdx =

ˆ
Ω
ρ̄0(x)

ˆ 1

0
|Ẋ(t, x)|2dtdx

≥
ˆ

Ω
ρ̄0(x)

∣∣∣∣ˆ 1

0
Ẋ(t, x)dt

∣∣∣∣2dx =

ˆ
Ω
ρ̄0(x)|X(1, x)− x|2 dx ≥W 2

2 (ρ̄0, ρ̄1).

(4.2)

Hence, this proves that W 2
2 (ρ̄0, ρ̄1) is always less than or equal to the infimum appearing in the

statement.
To show equality, take X(t, x) = x + t(T (x) − x), where T = ∇ϕ is optimal from ρ̄0 to

ρ̄1, set ρt := X(t)#ρ̄0, and let vt be such that Ẋ(t) = vt ◦ X(t).24 With this choice we have
(T (x)−x) = Ẋ(t, x) = vt(X(t, x)), and looking at the computations above one can easily check
that all inequalities in (4.2) become equalities, therefore

A[ρt, vt] = W 2
2 (ρ̄0, ρ̄1).

23The uniqueness for the continuity equation, at least for smooth vector fields, can be obtained exploiting the
duality with the transport equation, as sketched in [Amb08, pg. 3, (2)].

24This definition corresponds to saying that vt := Ẋ ◦X−1(t). To show that this makes sense, we need to show
that X(t)−1 exists. Note that

|X(t, x)−X(t, x̃)||x− x̃| ≥ 〈X(t, x)−X(t, x̃), x− x̃〉

= (1− t)〈x− x̃, x− x̃〉+ t 〈∇ϕ(x)−∇ϕ(x̃), x− x̃〉︸ ︷︷ ︸
≥0 (ϕ convex)

≥ (1− t)|x− x̃|2, (4.3)

thus |X(t, x) −X(t, x̃)| ≥ (1 − t)|x − x̃|. This implies that, for t ∈ [0, 1), X(t) is injective and therefore X(t)−1

exists. In addition, this also proves that

|X(t)−1(y)−X(t)−1(ỹ)| ≤ 1

1− t |y − ỹ|,

so X(t)−1 is also Lipschitz.
Note that the injectivity may be false for t = 1. Indeed, if ρ̄1 = δx̄ then T (x) = x̄ is constant and obviously

not injective.
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4.2 Otto’s calculus: from Benamou-Brenier to a Riemannian structure

In [Ott01], Otto generalized classical notions from Riemannian geometry (recall Section 1.3)
to the Wasserstein space: the norm, the scalar product, and the gradient. We will not follow
precisely the line of thought of the mentioned paper. Instead, we will use the Benamou-Brenier
formula as a starting point for our reasoning.

Thanks to the Benamou-Brenier formula (Theorem 4.1.3), we have

W 2
2 (ρ̄0, ρ̄1) = inf

ρt,vt

{ˆ 1

0

(ˆ
Ω
|vt|2ρt dx

)
dt | ∂tρ+ div(vtρt) = 0, vt · ν|∂Ω = 0, ρ0 = ρ̄0, ρ1 = ρ̄1

}
= inf

ρt

{
inf
vt

ˆ 1

0

ˆ
Ω
|vt|2ρt dx dt | ∂tρ+ div(vtρt) = 0, vt · ν|∂Ω = 0, ρ0 = ρ̄0, ρ1 = ρ̄1

}
= inf

ρt

{ˆ 1

0
inf
vt

{ˆ
Ω
|vt|2ρt dx | div(vtρt) = −∂tρt, vt · ν|∂Ω = 0

}
︸ ︷︷ ︸

=:‖∂tρt‖2ρt

dt | ρ0 = ρ̄0, ρ1 = ρ̄1

}
,

where in the last equality we used that, for each time t, given ρt and ∂tρt, one can minimize with
respect to all vector fields vt satisfying the constraint div(vtρt) = −∂tρt. In analogy with the
formula for the Riemannian distance on manifold (see Definition 1.3.3), it is natural to define
the Wasserstein-norm of the derivative ∂tρt at ρt as

‖∂tρt‖2ρt := inf
vt

{ˆ
Ω
|vt|2ρt dx | div(vtρt) = −∂tρt, vt · ν|∂Ω = 0

}
. (4.4)

In other words the continuity equation gives, at each time t, a constraints on the divergence
of vtρt, and we got the formula

W 2
2 (ρ̄0, ρ̄1) = inf

ρt

{ˆ 1

0
‖∂tρt‖2ρt dt | ρ0 = ρ̄0, ρ1 = ρ̄1

}
.

To find a better formula for the Wasserstein-norm of ∂tρt we want to understand the prop-
erties of the vector field vt that realizes the infimum (in the definition (4.4)). Hence, given ρt
and ∂tρt, let vt be a minimizer, and let w be a vector field such that div(w) ≡ 0. Then for every
ε > 0, we have

div

((
vt + ε

w

ρt

)
ρt

)
= −∂tρt.

Thus vt + ε wρt is an admissible vector field in the minimization problem (4.4), and so by mini-
mality of vt we get

ˆ
Ω
|vt|2ρt dx ≤

ˆ
Ω

∣∣∣∣vt + ε
w

ρt

∣∣∣∣2ρt dx
=

ˆ
Ω
|vt|2ρt dx+ 2ε

ˆ
Ω
〈vt, w〉 dx+ ε2

ˆ
Ω

|w|2

ρt
dx.

Dividing by ε and letting it go to zero yields

ˆ
Ω
〈vt, w〉 = 0

for every w such that div(w) ≡ 0. By the Helmholtz decomposition (2.17), this implies that

vt ∈ {w | div(w) = 0}⊥ = {∇q | q : Ω→ R}.
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Therefore, there exists a function ψt such that vt = ∇ψt. Also, since div(vtρt) = −∂tρt and
vt · ν|∂Ω = 0, then ψt is a solution of{

div(ρt∇ψt) = −∂tρt in Ω,
∂ψt
∂ν = 0 on ∂Ω.

(4.5)

Note that, if ρt is “nice” (say, positive and smooth) then (4.5) is a uniformly elliptic equation
with Neumann boundary conditions for ψt, and the solution ψt is unique up to a constant. So
one can define

‖∂tρt‖2ρt =

ˆ
Ω
|∇ψt|2ρt dx,

where ψt solves (4.5). More in general, given ρ ∈ P2(Ω) and h : Ω → R such that
´

Ω h = 0,25

we can define

‖h‖2ρ :=

ˆ
Ω
|∇ψ|2ρ dx, where

{
div(ρ∇ψ) = −h in Ω,
∂ψ
∂ν = 0 on ∂Ω.

Hence, we obtained a nice expression for the Wasserstein norm of the derivative of a curve.
Once a norm is defined, we can canonically construct the scalar product.

Definition 4.2.1. Given two functions h1, h2 : Ω → R with
´

Ω h1 =
´

Ω h2 = 0, one can define
their Wasserstein scalar product at ρ as

〈h1, h2〉ρ :=

ˆ
Ω
∇ψ1 · ∇ψ2 ρ dx, where

{
div(ρ∇ψi) = −hi in Ω,
∂ψi
∂ν = 0 on ∂Ω.

Now that we have a scalar product, we can define the gradient of a functional in the Wasser-
stein space (cf. Definition 1.3.2).

Definition 4.2.2. Given a functional F : P2(Ω) → R, its gradient with respect to the Wasser-
stein scalar product at ρ̄ ∈ P2(Ω) is the unique function gradW2

F [ρ̄] (if it exists) such that

〈
gradW2

F [ρ̄],
∂ρε
∂ε

∣∣∣
ε=0

〉
ρ̄

=
d

dε

∣∣∣
ε=0
F [ρε]

for any smooth curve ρε : (−ε0, ε0)→ P(Ω) with ρ0 = ρ̄.

Before going on, let us spend some time to obtain a more explicit formula for the Wasserstein
gradient of a functional. Given a functional F : P2(Ω) → R and a probability measure ρ̄ ∈
P2(Ω), let us denote with δF [ρ̄]

δρ its first L2-variation26, that is the function in L2(Ω) such that

d

dε

∣∣∣
ε=0
F [ρε] =

ˆ
Ω

δF [ρ̄]

δρ
(x)

∂ρε(x)

∂ε

∣∣∣
ε=0

dx

25The condition
´

Ω
h = 0 is needed for the solvability of the elliptic equation{

div(ρ∇ψ) = −h in Ω,
∂ψ
∂ν

= 0 on ∂Ω.

since ˆ
Ω

h dx =

ˆ
Ω

div(ρ∇ψ) dx =

ˆ
∂Ω

∂ψ

∂ν
ρ = 0.

Also, it is a classical fact that this is sufficient for solvability.
Note that, whenever ρt is a curve of probability measures, thenˆ

Ω

∂tρt dx =
d

dt

ˆ
Ω

ρt dx =
d

dt
1 = 0.

26The first L2-variation does not exist for all functionals, but it does for the ones we will consider.
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for any (smooth) curve ρ : (−ε0, ε0)→ P2(Ω) such that ρ0 = ρ̄.
Then, by the definition of Wasserstein gradient,

〈
gradW2

F [ρ̄],
∂ρε
∂ε

∣∣∣
ε=0

〉
ρ̄

=

ˆ
Ω

δF [ρ̄]

δρ

∂ρε
∂ε

∣∣∣
ε=0

dx.

Thus, denoting by ψ the solution of div(∇ψ ρ̄) = −∂ρε
∂ε

∣∣
ε=0

with zero Neumann boundary
conditions, we have

〈
gradW2

F [ρ̄],
∂ρε
∂ε

∣∣∣
ε=0

〉
ρ̄

= −
ˆ

Ω

δF [ρ̄]

δρ
div(∇ψ ρ̄) dx =

ˆ
Ω
∇δF [ρ̄]

δρ
· ∇ψ ρ̄ dx

and therefore, by definition of Wasserstein scalar product, we deduce that

gradW2
F [ρ̄] = −div

(
∇
(δF [ρ̄]

δρ

)
ρ̄

)
. (4.6)

Example 4.2.3. If F [ρ] =
´

Ω U(ρ(x)) dx with U : R → R, then for any smooth variation
ε 7→ ρε it holds

d

dε

∣∣∣
ε=0

ˆ
Ω
U(ρε(x)) dx =

ˆ
Ω
U ′(ρ̄(x))

∂ρε(x)

∂ε

∣∣∣
ε=0

dx,

therefore the first L2-variation of F [ρ] at ρ̄ ∈ P2(Ω) is given by

δF [ρ̄]

δρ
(x) = U ′(ρ̄(x)).

Using (4.6), this implies that the Wasserstein gradient of F is

gradW2
F [ρ̄] = −div

(
ρ̄∇[U ′(ρ̄)]

)
= −div

(
ρ̄ U ′′(ρ̄)∇ρ̄) .

In the special case U(s) = s log(s) (hence F is the entropy) one has U ′′(s) = 1
s , thus

gradW2
F [ρ̄] = −∆ρ̄ .

If instead U(s) = sm

m−1 for some m 6= 1, then we get

gradW2
F [ρ̄] = −div

(
ρ̄m ρ̄m−2∇ρ̄

)
= −∆(ρ̄m) .

Example 4.2.4. If F [ρ] =
´

Ω ρ(x)V (x) dx with V : Ω → R, then its first L2-variation at
ρ̄ ∈ P2(Ω) is

δF [ρ̄]

δρ
(x) = V (x) ,

therefore the Wasserstein gradient of F is

gradW2
F [ρ̄] = −div

(
∇V ρ̄) .

Example 4.2.5. If F [ρ] = 1
2

˜
ρ(x) ρ(y)W (x − y) dx dy with W : Rd → R such that W (z) =

W (−z), then its first L2 variation at ρ̄ is

δF [ρ̄]

δρ
(x) = W ∗ ρ̄(x) =

ˆ
Ω
W (x− y) ρ(y) dy ,

where ∗ denotes the convolution, and therefore the Wasserstein gradient of F is

gradW2
F [ρ̄] = −div

(
(∇W ∗ ρ̄)ρ̄

)
.
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The definition of gradient flow in the Wasserstein space is (at least on a purely formal level)
exactly the expected one.

Definition 4.2.6. Given a functional F : P2(Ω) → R, a curve of probability measure ρ :
[0, T )→ P2(Ω) is a gradient flow of F with respect to W2 and with starting point ρ̄0 if{

∂tρt = −gradW2
F [ρt]

ρ0 = ρ̄0.

By the computation in Example 4.2.3, the Wasserstein gradient flow of the entropy functional
F [ρ] =

´
Ω ρ log(ρ) dx is the heat equation

∂tρ = −gradW2
F [ρ] = ∆ρ,

as expected from what we proved in Section 3.3.
On the other hand, if F [ρ] = 1

m−1

´
Ω ρ

m for m 6= 1 with m > 0, then the gradient flow is
(cf. Example 4.2.3)

∂tρ = ∆(ρm) ,

that is, the porous medium equation (if m > 1) or the fast diffusion equation (if m ∈ (0, 1)) .

4.3 Displacement convexity

We move our attention to the convexity properties of functionals in the Wasserstein space. As
we observed in Section 3.2, convexity of a functional is extremely useful: indeed, not only it
allows one to define the concept of gradient flow via the notion of subdifferential, but more
importantly it implies existence and uniqueness of the gradient flow (at least in the Hilbertian
setting).27

The first author to introduce and investigate the convexity of functionals in the Wasserstein
space (i.e., convexity along W2-geodesics) was McCann in [McC97].

Definition 4.3.1. We say that a functional F : P2(Ω) → R is W2-convex, or displacement
convex, if the 1-dimensional function

[0, 1] 3 t 7→ F [ρt]

is convex for any W2-geodesic ρ : [0, 1]→ P2(Rd).

Let us focus first on the special case F [ρ] =
´

Ω U(ρ) dx, with U : R → R. We want to
understand under which assumption on U the functional F is W2-convex.

Given ρ0 ∈ P2(Ω), let ϕ : Ω→ R be a smooth convex function, and set T := ∇ϕ and ρ1 :=
T#ρ0. It follows by Remark 2.5.8 that T is the optimal map from ρ0 to ρ1, and the Wasserstein
geodesic connecting these two measures is given by ρt := (Tt)#ρ0 with Tt(x) = x+ t(T (x)− x)
(see Section 3.1.1).

Recalling Section 1.6, we have that ρt◦Tt = ρ0

det∇Tt . Therefore, since ∇Tt = (1−t)Id+tD2ϕ,

F [ρt] =

ˆ
Ω

U(ρt(x))

ρt(x)
ρt(x) dx =

ˆ
Ω

U(ρt ◦ Tt)
ρt ◦ Tt

ρ0 dx =

ˆ
Ω
U
( ρ0

det∇Tt

)
det∇Tt dx

=

ˆ
Ω
U
( ρ0

det((1− t)Id + tD2ϕ)

)
det
(
(1− t)Id + tD2ϕ(x)

)
dx.

27It is however important to remark that convexity is not needed to define gradient flows (see [AGS08]), and it is
actually possible to prove existence under very weak assumption. More challenging is usually to prove uniqueness,
but there are several cases of interests where uniqueness can still be proved without relying on convexity (see,
for example, [FG10; FGY11]).
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Since ϕ is convex, D2ϕ is a nonnegative symmetric matrix. For any x ∈ Ω, let λ1(x), . . . , λd(x) ≥
0 be the eigenvalues of D2ϕ(x). It holds

D(x, t) := det
(
(1− t)Id + tD2ϕ(x)

)1/d
= det

 (1− t) + tλ1(x) · · · 0

0
. . . 0

0 · · · (1− t) + tλd(x)


1/d

=
d∏
i=1

(
(1− t) + tλi(x)

)1/d
.

We leave as an exercise to the reader to prove, using the identity above involving the eigenvalues,
that t 7→ D(x, t) is concave (for a proof, see [Vil03, Lemma 5.21]). Then we can rewrite

F [ρt] =

ˆ
Ω
U

(
ρ0(x)

D(x, t)d

)
D(x, t)d dx.

We now ask ourselves:
When is the map t 7→ U

(
ρ0(x)
D(x,t)d

)
D(x, t)d convex for every x?

Since t 7→ D(x, t) is concave, a sufficient condition is that the function (0,∞) 3 s 7→ U
(

1
sd

)
sd

is convex and nonincreasing.28 Hence, we have proven the following important:

Proposition 4.3.2. Let U : [0,∞)→ R satisfy

(0,∞) 3 s 7→ U
( 1

sd

)
sd is convex and nonincreasing.

Then the functional F [ρ] :=
´

Ω U(ρ) dx is W2-convex.

Example 4.3.3. Let F [ρ] =
´
U(ρ(x)) dx. Using the above mentioned criterion, it is not hard

to show that the following choices yield W2-convex functionals:

U(s) :=


s log(s) ⇒ ∂tρt = ∆ρ (Heat eq.)

1
m−1s

m for m > 1 ⇒ ∂tρt = ∆(ρm) (Porous medium eq.)
1

m−1s
m for m ∈ [1− 1

d , 1) ⇒ ∂tρt = ∆(ρm) (Fast diffusion eq.)

Let us conclude this section with two criteria useful to establish the convexity of other kind
of functionals.

1. If V : Rd → R is convex, then the functional F [ρ] :=
´
V ρ dx is W2-convex.

2. If W : Rd → R is convex, then the functional F [ρ] :=
˜
W (x − y)ρ(x)ρ(y) dx dy is

W2-convex.
Let us prove the two criteria together.

Consider the geodesic ρt = (Tt)#ρ0, with Tt(x) = (1 − t)x + tT (x) where T is the optimal
map between ρ0 and ρ1. We have that the two functionals can be expressed asˆ

Ω
V (x) ρt(x) dx =

ˆ
Ω
V (Tt(x))ρ0(x) dx ,

¨
Ω×Ω

W (x− y) ρt(x) ρt(y) dx dy =

¨
Ω×Ω

W (Tt(x)− Tt(y)) ρ0(x)ρ0(y) dx dy .

28Indeed, fixed x ∈ Ω, set G(s) := U( 1
sd

)sd and H(t) := D(x,t)

ρ0(x)1/d
. Then

U

(
ρ0(x)

D(x, t)d

)
D(x, t)d = ρ0(x)G

(
H(t)

)
.

Hence, since G′ ≤ 0, G′′ ≥ 0, and H ′′ ≤ 0, we get

d2

dt2
G(H(t)) = G′′(H(t)) [H ′(t)]2 +G′(H(t))H ′′(t) ≥ 0 .
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Since the map t 7→ Tt(x) is affine, the two functions t 7→ V (Tt(x)) and t 7→ W (Tt(x) − Tt(y))
are convex for any x, y ∈ Rd (here we are using the convexity of V and W ), and thus the two
functionals are convex along the geodesic ρt, as desired.

4.4 An excursion into the linear Fokker-Planck equation

We are going to apply all the tools that we developed so far to the case of the linear Fokker-
Planck equation, that is

∂tρ = ∆ρ+ div(∇V ρ),

where ρ : [0,∞)×Rd → R+ is a nonnegative function, and V : Rd → R is a C2 convex function.
Here, ρ(t) usually represents a density of particles, while V plays the role of an external confining
potential.

As we will see, this equation is a gradient flow in the Wasserstein space, and this perspective
allows us to obtain quantitative convergence rates to the equilibrium for the solution ρ(t) as
t→ +∞. A nice perk of this strategy is that, as a byproduct, it yields a proof of the logarithmic
Sobolev inequality.

The functional and its gradient. Let us consider the functional F : P2(Rd) → R on the
Wasserstein space (as usual, F [ρ] := +∞ if ρ ∈ P2(Rd) is not absolutely continuous with respect
to the Lebesgue measure)

F [ρ] :=

ˆ
Rd

(
ρ log(ρ) + ρV

)
dx.

Notice that we can rewrite

F [ρ] =

ˆ
Rd
η log(η)e−V dx, η := eV ρ, (4.7)

therefore the functional F can be seen as the relative entropy with respect to the measure
e−V dx.

Assuming that
´
Rd e

−V dx < ∞, up to adding a constant to V we can assume that e−V is
a probability measure, i.e.,

´
Rd e

−V dx = 1. Since [0,∞) 3 s 7→ s log(s) is a convex function,
Jensen’s inequality implies

F [ρ] =

ˆ
Rd
η log(η)e−V dx ≥

(ˆ
Rd
ηe−V dx

)
log

( ˆ
Rd
ηe−V dx

)
=

( ˆ
Rd
ρ dx

)
log

(ˆ
Rd
ρ dx

)
= 0 (4.8)

(recall that ρ is a probability density), thus the functional F is nonnegative. Also one can check
that equality holds if and only if η = 1, thus F [e−V ] = 0 is the only minimum.

Recalling (4.6), computing the Wasserstein gradient of F is routine:

gradW2
F [ρ] = −div

(
∇ρ+ ρ∇V

)
, (4.9)

and its Wasserstein norm is given by (recall Definition 4.2.1, and that ρ = e−V η)

〈gradW2
F [ρ], gradW2

F [ρ]〉ρ =

ˆ
Rd

∣∣∣∣∇ρ+ ρ∇V
ρ

∣∣∣∣2ρ dx
=

ˆ
Rd

|e−V∇η − η∇V e−V + ηe−V∇V |2

e−V η
dx =

ˆ
Rd

|∇η|2

η
e−V dx. (4.10)
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λ-convexity. We want to investigate the convexity of the functional F defined above. Ex-
ploiting the criteria described in Section 4.3, one easily checks that F is W2-convex (the entropy
is convex, and

´
ρV dx is convex since V is convex by assumption). Unfortunately, for our pur-

poses, this nonquantitative form of convexity is not sufficient. Hence we introduce the notion
of λ-convexity.

Definition 4.4.1. Let I ⊂ R be an interval, and let ϕ : I → R∪{+∞} be a lower semicontinuous
function. Given λ ∈ R, the function ϕ is said to be λ-convex if

(1− s)ϕ(x) + sϕ(y) ≥ ϕ((1− s)x+ sy) +
λs(1− s)

2
|x− y|2 ∀x, y ∈ I, 0 ≤ s ≤ 1.

A lower semicontinuous function ϕ : X → R ∪ {+∞} on a geodesic metric space (X, d) is said
λ-convex if, given any geodesic γ : [0, 1]→ X, the function ϕ◦γ : [0, 1]→ R∪{+∞} is λ-convex.

Notice that the notion of λ-convexity is stronger than convexity for λ > 0, and weaker for
λ < 0 (and equivalent for λ = 0).

Also, λ-convexity behaves well under addition:

Lemma 4.4.2. Let i = 1, 2, and let ϕi : X → R ∪ {+∞} be λi-convex. Then ϕ1 + ϕ2 is
(λ1 + λ2)-convex.

Proof. Let γ : [0, 1]→ X be a geodesic. By the λi-convexity of ϕi it holds

(1− s)ϕi(γ(τ)) + sϕi(γ(σ)) ≥ ϕi((1− s)γ(τ) + sγ(σ)) +
λis(1− s)

2
|γi(τ)− γi(σ)|2

for all σ, τ ∈ [0, 1], 0 ≤ s ≤ 1, i = 1, 2. Adding the two inequalities over i = 1, 2, we get the
result.

In order to understand the meaning of this definition, note that a function ϕ : I → R is
λ-convex if and only if the map

[0, 1] 3 x→ ϕ(x)− λ

2
|x|2

is convex. In particular, if ϕ is of class C2, this is true if and only if ϕ′′ ≥ λ.
In the case X = Rd, one can easily check that the same characterization holds: ϕ : Rd →

R ∪ {+∞} is λ-convex if and only if

Rd 3 x 7→ ϕ(x)− λ

2
|x|2

is convex. Hence, given a λ-convex function ϕ ∈ C1(Rd), applying the inequality

ψ(y) ≥ ψ(x) + 〈∇ψ(x), y − x〉, with ψ(z) := ϕ(z)− λ

2
|z|2,

we get

ϕ(y) ≥ ϕ(x) + 〈∇ϕ(x), y − x〉+
λ

2
|y − x|2 ∀x, y ∈ Rd. (4.11)

Exchanging the role of x, y in (4.11) and adding the two inequalities, we also get

〈x− y,∇ϕ(x)−∇ϕ(y)〉 ≥ λ|x− y|2 . (4.12)

Exploiting these inequalities, we now prove two useful properties of λ-convex functions.
Consider a λ-convex function ϕ ∈ C1(Rd,R) with λ > 0, and let x0 be the unique minimum

of ϕ.
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(i) Applying (4.11), since ∇ϕ(x0) = 0, we deduce

ϕ(x) ≥ ϕ(x0) +
λ

2
|x− x0|2 =⇒

√
2

λ

(
ϕ(x)− ϕ(x0)

)
≥ |x− x0|. (4.13)

(ii) Applying (4.11) again, we deduce

ϕ(x0) ≥ ϕ(x) + 〈∇ϕ(x), x0 − x〉+
λ

2
|x− x0|2

=⇒ 〈∇ϕ(x), x− x0〉 ≥ ϕ(x)− ϕ(x0) +
λ

2
|x− x0|2

therefore

|∇ϕ(x)| ≥ ϕ(x)− ϕ(x0)

|x− x0|
+
λ

2
|x− x0| ≥

√
2λ
(
ϕ(x)− ϕ(x0)

)
, (4.14)

where we used the inequality
2
√
ab ≤ a+ b ∀ a, b ≥ 0

with a = ϕ(x)−ϕ(x0)
|x−x0| and b = λ

2 |x− x0|.
Note that the proofs above work also on a general geodesic metric space, dropping also the

assumption of C1-regularity, provided that we can give a meaning to |∇ϕ|. This can be done in
a very general setting (see [AGS08]), but for us it is sufficient to notice that the results above
are true in the Wasserstein space (P2(Rd),W2). More precisely, the following holds:

Lemma 4.4.3. Given a λ-convex lower semicontinuous functional F : P2(Rd) → R ∪ {+∞},
with λ > 0, let minF = F [ρ̄]. The natural generalizations of (4.13) and (4.14) read as

W 2
2 (ρ, ρ̄) ≤ 2

λ

(
F [ρ]−F [ρ̄]

)
, (4.15)

F [ρ]−F [ρ̄] ≤ 1

2λ
〈gradW2

F [ρ], gradW2
F [ρ]〉ρ, (4.16)

for all ρ ∈ P2(Rd).

Proof. These bounds can be shown by mimicking the 1-dimensional proof on a geodesic between
ρ̄ and ρ. To show the method, we prove (4.15) and leave (4.16) to the interested reader.

Let L := W2(ρ, ρ̄), let γ ∈ Γ(ρ̄, ρ) be a optimal plan, and set

πt(x, y) := (L− t)x+ ty, t ∈ [0, L], ρ̂t := (πt)#γ.

Repeating the argument in Section 3.1.1 one can show that ρ̂t is a unit-speed W2-geodesic.
Let ϕ̂ : [0, L] → R be the composition ϕ̂(t) := F [ρ̂(t)]. Since ϕ is λ-convex it follows (by

definition) that ϕ̂ is λ-convex, hence we can repeat the argument above to get√
2

λ

(
ϕ̂(L)− ϕ̂(0)

)
≥ L,

which is precisely (4.15).

Let us move back to the study of the functional F [ρ] =
´
Rd (ρ log(ρ) + V ρ) dx. Recall that´

Rd ρ log(ρ) is convex (see Example 4.3.3). Also, we proved that if V : Rd → R is convex then
the functional ρ 7→

´
V ρ dx is convex, and the same proof shows that if V : Rd → R is λ-convex

then ρ 7→
´
V ρ dx is λ-convex. Hence, thanks to Lemma 4.4.2, we obtain the following:

Proposition 4.4.4. Consider the functional F [ρ] =
´
Rd (ρ log(ρ) + V ρ) dx, and assume that

V : Rd → R is λ-convex. Then F : P2(Rd) → R ∪ {+∞} is λ-convex. In particular, if λ > 0
then (4.15) and (4.16) hold.
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Log-Sobolev inequality. Consider a λ-convex function V : Rd → R with λ > 0, and assume
that

´
Rd e

−V = 1. Given a function η : Rd → [0,∞) such that
´
Rd ηe

−V dx = 1, set ρ := ηe−V ∈
P(Rd). Thanks to Proposition 4.4.4 we can apply (4.16), (4.8), and (4.10), to get to get

ˆ
Rd
η log(η)e−V dx = F [ρ] ≤ 1

2λ
〈gradW2

F [ρ], gradW2
F [ρ]〉ρ =

1

2λ

ˆ
Rd

|∇η|2

η
e−V dx.

Hence, this proves that

ˆ
Rd
η log(η)e−V dx ≤ 1

2λ

ˆ
Rd

|∇η|2

η
e−V dx ∀ η : Rd → [0,∞) s.t.

ˆ
Rd
ηe−V dx = 1.

This inequality is known in the literature as the log-Sobolev inequality (see [Led01, Section
5.1]), and it is well-known that the constant 1

2λ is sharp.

Convergence to the equilibrium. Again, given a λ-convex function V : Rd → R with
λ > 0 and

´
Rd e

−V = 1, we consider the functional F [ρ] =
´
Rd (ρ log(ρ) + V ρ) dx. Thanks to

the formula (4.9), we know that the Wasserstein gradient flow associated to F is the linear
Fokker-Planck equation {

∂tρ = ∆ρ+ div(∇V ρ),

ρ(0) = ρ̄ ∈ P2(Rd).
(4.17)

For simplicity, we assume that F [ρ̄] < +∞. (This assumption is not strictly necessary, as one
can prove that F [ρt] < +∞ for any positive time t > 0.) Our goal is to understand the behavior
of ρt := ρ(t) as t → ∞. We have already shown that e−V is a minimum point of F , hence we
expect ρt to converge to e−V , as remarked Section 3.2. Let us state (3.10) in the form we need
here:

d

dt
F [ρt] = 〈gradW2

F [ρt], ∂tρt〉W2 = −〈gradW2
F [ρt], gradW2

F [ρt]〉ρt ≤ 0 . (4.18)

The functional F shall be interpreted as the energy of the system, that tends to its minimum
as time evolves. Let us prove

F [ρt]→ F [e−V ] = 0 as t→∞.

Combining (4.18) with (4.16) we get (recall that minF = 0)

d

dt
F [ρt] ≤ −2λF [ρt]

and therefore
d

dt

(
F [ρt]e

2λt
)
≤ 0 =⇒ F [ρt] ≤ e−2λtF [ρ̄]. (4.19)

Hence we have shown that the energy converges to 0 exponentially fast. Since the energy
controls the Wasserstein distance to the equilibrium e−V (recall (4.15)), we deduce immediately

W 2
2 (ρt, e

−V ) ≤ 2

λ
F [ρ̄]e−2λt ∀ t ≥ 0.

Remark 4.4.5. Thanks to the λ-convexity of F , a stronger form of the latter inequality holds,
namely

W 2
2 (ρt, e

−V ) ≤ e−2λtW 2
2 (ρ̄, e−V ) .

In fact, this last inequality holds even if we replace e−V with any curve of probability measures
ρ̃ : [0,+∞) → P2(Rd) that is a gradient-flow with respect to the functional F ; more precisely,
it holds

W 2
2 (ρt, ρ̃t) ≤ e−2λtW 2

2 (ρ0, ρ̃0) ∀ t ≥ 0. (4.20)
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This property of the gradient-flow is usually called contractivity. The proof is rather technical,
and we refer to [AGS08] for a proof. Here, we show it only in the simpler case of gradient-flows
on Rd.

Take a smooth λ-convex function ϕ : Rd → R, and consider two curves x, y : [0,+∞)→ Rd
that solve the gradient-flow equation

ẋ(t) = −∇ϕ(x(t)), ẏ(t) = −∇ϕ(y(t)).

Then

d

dt

‖x(t)− y(t)‖2

2
= 〈x(t)− y(t), ẋ(t)− ẏ(t)〉

= −〈x(t)− y(t),∇ϕ(x(t))− ϕ(y(t))〉 ≤ −λ‖x(t)− y(t)‖2 ,

where in the last inequality we applied (4.12). Hence we have

d

dt

(
‖x(t)− y(t)‖2e2λt

)
≤ 0 =⇒ ‖x(t)− y(t)‖2 ≤ e−2λt‖x(0)− y(0)‖2 ,

which is the Euclidean analogue of (4.20).

What we have proved until now is very robust and can be applied verbatim to several other
functionals on P2(Rd). We want to conclude with a convergence result that cannot be easily
adapted to other functionals: ρt converges to e−V in the L1-norm. More precisely, we claim
that if ρt solves (4.17) then

‖ρt − e−V ‖
2

L1 ≤ 2e−2λtF [ρ̄] .

This convergence follows from (4.19) together with the following inequality (that is valid for
any V : Rd → R with e−V ∈ P(Rd)):

1

2
‖ρ− e−V ‖2L1 ≤ F [ρ] ∀ ρ ∈ P(Rd). (4.21)

This inequality is known in literature as Csiszár-Kullback-Pinsker inequality, see the introduc-
tion of [BV05].

Before proving (4.21), let us observe that the coefficient 1
2 is optimal. Indeed, if ρ = ηe−V ∈

P(Rd) with η : Rd → {1± ε} everywhere, then

F [ρ] =

ˆ
Rd
η log ηe−V =

ˆ
Rd

(
(η − 1) +

1

2
(η − 1)2 +O(|η − 1|3)

)
e−V

=
ε2

2
+O(ε3) =

1 +O(ε)

2
‖ρ− e−V ‖2L1

.

We now prove (4.21).

Proof of (4.21). In this proof we denote µ = e−V and ρ = ηe−V . Let us remark that the
convexity of V is not necessary, hence the result holds for any probability measure µ ∈ P(Rd).

Applying Jensen’s inequality, we have

F [ρ] =

ˆ
{η>1}

η log η dµ+

ˆ
{η≤1}

η log η dµ ≥ α(1 + x) log(1 + x) + β(1− y) log(1− y) , (4.22)

where α := µ({η > 1}), β := µ({η ≤ 1}), and x, y are defined so that

1 + x := α−1

ˆ
{η>1}

η dµ , 1− y := β−1

ˆ
{η≤1}

η dµ .
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As a direct consequence of the definitions, it holds α, β ≥ 0, α + β = 1, x ≥ 0 and 0 ≤ y ≤ 1.
Also, since

´
Rd η dµ = 1, we have αx = βy, therefore{

α+ β = 1,
αx = βy

=⇒

{
α = y

x+y

β = x
x+y .

(4.23)

Furthermore the following identity holds:

‖ρ− e−V ‖L1 =

ˆ
Rd
|η − 1| dµ = αx+ βy =

2xy

x+ y
. (4.24)

Combining (4.22), (4.23), and (4.24), the sought inequality (4.21) boils down to proving that

Z(x, y) :=
1 + x

x
log(1 + x) +

1− y
y

log(1− y)− 2xy

x+ y
≥ 0 ∀x ≥ 0, 0 ≤ y ≤ 1. (4.25)

One can easily check that the function Z is continuous on [0,+∞)× [0, 1], and that

Z ≥ 0 on {x = 0} ∪ {y = 0} ∪ {y = 1}.

Also, Z(x, y) → +∞ as x → +∞, hence there exists R � 1 such that Z > 0 for x ≥ R. So it
remains to check that Z ≥ 0 inside (0, R)× (0, 1).

If Z has no minimum point in (0, R)× (0, 1), then Z ≥ 0 everywhere (since it must attain its
minimum on the boundary, where we know that Z is nonnegative). Hence, it suffices to show
that Z ≥ 0 at all critical points in (0, R)× (0, 1) (notice that Z is smooth inside (0, R)× (0, 1)).
Note that the critical point condition ∇Z(x, y) = (0, 0) yields

0 = ∂xZ(x, y) ⇐⇒ log(1 + x)

x
= 1− 2xy2

(x+ y)2
,

0 = ∂yZ(x, y) ⇐⇒ log(1− y)

y
= −1− 2x2y

(x+ y)2
.

(4.26)

Hence, using (4.26), (4.25) simplifies to

Z(x, y) = (1 + x)
(

1− 2xy2

(x+ y)2

)
+ (1− y)

(
− 1− 2x2y

(x+ y)2

)
− 2xy

x+ y
=

(x− y)2

x+ y
,

which is clearly nonnegative, concluding the proof.
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5 Further readings

Now that the reader has a basic knowledge of optimal transport, we present here a list of possible
references in order to learn about some of the several applications of this beautiful theory. Our
list of references is far from complete and shall be seen as a starting point for the study of these
topics.

5.1 Functional and geometric inequalities

As we have seen in Section 1.5, transport theory can be used to prove the isoperimetric inequal-
ity. We also observed in Section 4.4 how the formalism of Otto’s calculus yields a neat proof
of the logarithmic Sobolev inequality. These two results are only the tip of the iceberg about
the deep connection between optimal transport and functional/geometric inequalities. In recent
years, optimal transport methods have been used to prove already known inequalities with new
proofs, to establish new ones, and to obtain quantitative version of well-known ones. Let us
mention some of the most remarkable examples.

The paper [CENV04] exploits optimal transport to prove the Sobolev inequality and some
Gagliardo-Niremberg inequalities with sharp constants. In a similar fashion, the logarithimic
Sobolev inequality, and several other related inequalities, are obtained in [CE02]. The Brunn-
Minkowsky inequality (which is a geometric inequality that has the isoperimetric inequality
as a byproduct) and several generalizations are proven in [McC97; CEMS01]. In [FMP10], the
authors (starting from a variant of the proof of the isoperimetric that is contained in Section 1.5)
manage to prove a sharp quantitative version of the anisotropic isoperimetric inequality. We
remark that all these results rely on the structure/properties of optimal transport maps for the
quadratic cost c(x, y) = |x− y|2 (cf. Theorem 2.5.9).

Very recently, optimal transport with the distance cost c(x, y) = d(x, y) has been used in
[Kla17] to give a beautiful alternative proof of the isoperimetric inequality of Lévy–Gromov (and
also of many other important inequalities ) on weighted Riemannian manifolds with lower Ricci
curvature bounds. The idea is to use an optimal transport plan γ for the cost c = d to construct
a foliation of the ambient space M , by considering the union of the geodesics connecting x to
y for (x, y) ∈ supp(γ). This idea is a generalization of the so-called “needle decomposition”,
a deep localization method used in convex geometry to reduce the inequality from M to a 1-
dimensional version along geodesics (called needles). It is worth noticing that the argument in
[Kla17] does not rely on the deep regularity theory for isoperimetric minimizers. In particular,
among several important applications, this method has been used to prove the Lévy–Gromov
inequality on metric measure spaces satisfying a curvature-dimension condition in [CM17].

5.2 Probability

There are many directions of research that have been investigated regarding the applications
of optimal transport in probability. Here we mention just three of them: martingale optimal
transport, the quantitative central limit theorem, and the random matching problem.

The martingale optimal transport problem (which finds one of its motivations in mathe-
matical finance) is a slight modification of the Kantorovich problem. We state it in purely
probabilistic language, but of course it can be framed in a measure-theoretic setting using the
disintegration theorem. Given two distributions µ, ν ∈ P(R) and a cost function c : R×R→ R,
the goal is to minimize E [c(X,Y )] among all pairs (X,Y ) of random variables with X ∼ µ,
Y ∼ ν satisfying the martingale condition E [Y |X] = X. Without entering in technical details,
let us only say that, even if it has various similarities with the Kantorovich problem (i.e., a dual
formulation), many new ideas are necessary to tackle the martingale optimal transport problem.
The interested reader might explore this beautiful problem starting from the two recent papers
[BJ16; BNT17].
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The central limit theorem states that, if (Xi)i∈N is a sequence of independent random
variables with the same law, mean equal to 0, and variance equal to 1, then the average
X̄k = X1+···+Xk

k converges in law, as k → ∞, to a standard Gaussian. One may desire to
make this statement quantitative: how far is the law of X̄k from a Gaussian? Of course, opti-
mal transport can be a tool to measure their distance. This is exactly the problem considered,
and solved, by the authors in [BGM99].

Let us conclude with the random matching problem. Let X1, . . . , Xk be k independent points
uniformly distributed on the interval [0, 1]. One would expect, intuitively, that the distribution
of this k points approximates, as k grows, the uniform measure on [0, 1]. To make precise this
intuition, let µk = 1

k

∑k
i=1 δXk be the empirical measure associated to the k points; how close

is it to the uniform measure on [0, 1]? What is the expected p-Wasserstein distance between µk

and the uniform measure on [0, 1]?
This is the simplest possible instance of the random matching problem. There are many pa-

rameters that can be changed: one could replace the uniform measure with another distribution,
or replace the interval [0, 1] with the square [0, 1]2. The problem changes quite drastically when
varying this parameter (i.e., moving from a compactly supported measure to a noncompactly
supported one or changing the dimension) and the literature is large and scattered through
different fields (combinatorics, probability, theoretical computer science). Let us give only two
important references: in the book [BL19] the 1-dimensional case is treated in detail, while in
the recent paper [AST19] the 2-dimensional case is settled with PDE-techniques. The two
mentioned references contain detailed historical reports on the problem.

5.3 Multi-marginal Optimal Transport

The multi-marginal optimal transport problem is a natural generalization of the classical op-
timal transport problem. It has attracted a lot of research in the latest years, both for the
natural applications to economics, but also because it arises naturally in the subfield of quan-
tum mechanics known as Density Functional Theory (see [BDPGG12]).

Given k ≥ 2 measures µ1, . . . , µk ∈ P(X) and a cost function c : X × . . .×X︸ ︷︷ ︸
k times

→ R, we are

interested in the minimization problem,

min
γ∈Γ(µ1,...,µk)

ˆ
Xk

c(x1, . . . , xk) dµ1(x1) · · · dµk(xk) , (5.1)

where Γ(µ1, . . . , µk) is the set of all plans γ ∈ P(Xk) such that (πi)#(γ) = µi for all i = 1, . . . , k
(πi : Xk → X denotes the projection on the i-th coordinate). Notice that when k = 2 this is
the usual Kantorovich problem.

There is also an analogue of the Monge problem that reads as follows. We are interested in
finding k − 1 maps T2, . . . , Tk such that (Ti)#(µ1) = µi and which minimize the transportation
cost ˆ

X
c(x, T2(x), . . . , Tk(x)) dµ1(x) .

Let us remark that an analogue of Brenier’s Theorem (Theorem 2.5.9) holds for the multi-
marginal case (as proven in [GS98]).

Even if the multi-marginal problem has many features in common with the Kantorovich
problem (such as a duality theory, at least for some choices of the cost), many natural questions
(mainly regarding repulsive costs, which are important for the applications) are still open. We
suggest the surveys [Pas15; DMGN17] as introductions to this active topic of research.

5.4 Gradient Flows

In this book, we have treated the theory of gradient flows only formally (for example, we have
never properly defined what is a gradient-flow in a metric space and we have not shown that,
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in a general Hilbert space, the implicit Euler scheme converges to a proper solution). The main
reason for this choice is that it would require an immense amount of work.

This remarkable goal is achieved in the book [AGS08] which, from the ground up, studies
in depth the properties of gradient flows in metric space, with a particular attention to the
Wasserstein space. Let us also mention the pioneering work by Brezis [Bre71], where the
author defines and constructs gradient flows in Hilbert spaces. The recent survey [San17b] is
an alternative, more compact, introduction to the subject.

The theory of gradient flows in the Wasserstein space has found also numerous applications in
the realm of applied mathematics: many real-world phenomena can be modeled with appropriate
gradient flows. The interested reader may find many useful references about this topic in the
slides [Car14].

5.5 Regularity theory

Whenever µ, ν ∈ P(Rd) are absolutely continuous with respect to the Lebesgue measure, the
optimal transport map with respect to the quadratic cost is the gradient of a convex function
(recall Theorem 2.5.9) and therefore it is differentiable a.e. Nonetheless, it can be discontinuous
(for instance, if the support of µ is connected whereas the support of ν is not).

It is therefore natural to wonder whether one can get some regularity under suitable assump-
tions on the two measures µ, ν. Moreover, as we observed in Section 1.6, a (smooth) transport
map must satisfy a Jacobian equation. It turns out that, for the case of the Brenier transport
map (i.e., T = ∇φ with φ convex), it is rather easy to check the validity of such equation (called
Monge-Ampère equation) in the a.e. sense, whereas it is hard to understand whether it holds
in a suitable “distributional” sense.

The regularity of the Brenier map and the validity of the Monge-Ampère equation are, as
can be expected, tightly linked. In fact, one way to obtain the regularity of the transport maps
(under suitable assumptions on the measures) is to show that it satisfies the Monge-Ampère
equation in a suitable weak sense (i.e., it is an Alexandrov’s solution), and then prove that
solutions to the Monge-Ampère equation are regular. Since the topic is rich and vast, we point
the reader to the book [Fig17] and to the survey paper [DPF14] as possible points of departure
for a study of the subject. In particular, [DPF14, Section 4] discusses also the regularity theory
of optimal maps on Riemannian manifolds, as well as the connection of this theory to the
structure of the cut-locus of the underlying space.

5.6 Computational aspects

There is a vast range of applications of optimal transport to real-world problems, and this
has generated a huge interest in the data-science community (i.e. statistics, machine-learning,
image-processing, etc..). In a very broad sense, optimal transport provides a quantitative and
robust way to decide whether two distributions are close (as a substitute of the more classical
Kullback–Leibler divergence).

In the applications of the optimal transport theory, a fundamental issue to overcome is the
actual computational cost of finding the optimal transport map. In the discrete setting (as
in Exercise A.0.7) the problem, known as the assignment problem or minimum cost matching,
has been studied greatly in the computer-science literature and the first efficient algorithm was
found by Kuhn in [Kuh55]. On the other hand, the continuous (i.e., finding the transport cost
between two absolutely continuous measures) and semi-discrete (i.e., finding the transport cost
between a discrete measure and a density) version of the problem present various difficulties
that do not arise in the discrete version. We suggest the monograph [PC19] for an in-depth
account of these kind of questions.

Let us mention only one key idea that is often useful in the explicit computation of optimal
transport maps: the entropic regularization. Given two measures µ, ν ∈ P(X) and a small
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ε > 0, we consider the minimization problem

min
γ∈Γ(µ,ν)

ˆ
Rd
c(x, y) + ε

(
log
( dγ

dµ⊗ ν

)
− 1
)
dγ(x, y) ,

where c : X → X → [0,∞) is the transport cost and dγ
dµ⊗ν represents the density of γ with

respect to the product measure µ ⊗ ν. This new formulation converges, as ε → 0, to the
classical Kantorovich formulation (both the cost and the plan converge). At the same time, the
problem (for positive ε > 0) is strictly convex (and enjoys many other regularity properties,
notice for example that the optimal plan is always absolutely continuous with respect to µ ⊗
ν) and therefore an iterative algorithm (the Sinkhorn’s algorithm) can be applied to get an
approximation of the optimal plan. We suggest [PC19, Chapter 4] and the references therein
for further details on entropic regularization.

5.7 From Rd to Riemannian manifolds and beyond: RCD spaces

The more advanced part of our study, i.e., the differential viewpoint of optimal transport and
Otto’s calculus, took place entirely in (an open set of) the Euclidean space. What if one
considers probability measures on a Riemannian manifold (M, g)?

One can repeat essentially verbatim all the construction of Otto’s calculus on P2(M). How-
ever, when computing the convexity properties of functionals along Wasserstein geodesics, the
geometry of the manifold M plays a crucial role.

More precisely, the convexity of the functionals is affected by the Ricci curvature of (M, g),
and one can prove the following characterization (see [RS05]):

ρ 7→ F [ρ] =

ˆ
M
ρ(x) log(ρ(x)) dvol(x) is W2-convex

if and only if M has nonnegative Ricci curvature.

In some sense, the geometric properties (i.e., the Ricci curvature) of a space are encoded in
the convexity properties of the entropy functional. Since it is possible to define the entropy
functional on a general metric measure space (i.e., a metric space endowed with a reference
measure), one can say that, by definition:
A metric measure space is positively Ricci curved if the entropy functional is W2-convex.

This is the starting point of a still very active area of research (begun with the fundamental
papers [Stu06a; Stu06b; LV09]) concerning the study of spaces with Ricci curvature bounded
from below. We refer the interested reader to the lecture notes [FV11] (see also [Vil09; AG13;
Amb18] for an exhaustive discussion of this topic) and to the papers [Gig15; AGS14] where
the notion of RCD spaces is introduced (this is a subclass of the spaces considered in [LV09],
similarly to how Riemannian manifolds are a subclass of Finsler manifolds).
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