Serie 5
Optimal transport, Fall semester
EPFL, Mathematics section, Dr. Xavier Fernandez- Real

Exercise 5.1. Let z1, 22, y1, 92 € R%, 21 # x5 and let

1 1 1 1
= 559;1 + 5(5272 and v = 55?,1 + §5y2.

(i) Describe all maps transporting p to v; that is, such that Tyup = v.
(ii) Describe all couplings of p and v; that is v € P(X x Y') such that (7x)xy = p and (7y ) gy = v.

(iii) Prove that, for any choice of continuous cost ¢: R x R — R, there exists an optimal transport

map (i.e., the optimal coupling has a map structure).

(iv) Assuming that x1, Tx1, xo and Txo are not colinear, observe that for the linear cost c(z,y) =

|x — y|, the corresponding optimal transport map does not cross trajectories.

Figure 1: Crossing trajectories

Solution:

(i) We have

1sO(yl) + ;w(yz) = /wp = /T#/w = %‘P(Tl'l) + %«p(T@)

2
for all ¢ € C°(RY). Suppose now Tx1 & {y1,y2}; by taking ¢ with p(Tz1) > 0, p(y1) =

©(y2) = 0and p(Txe) = 0if Txy # Txy, we reach a contradiction. Therefore, Tx1 € {y1,y2}.

Then, we have ¢(y) = p(Tx2) for some y € {y1,y2} and for all ¢, so y = T'za. Thus, we
have two possibilities:

Tix1 =1 Tizy =y
Tixo = yo Tizo = yso.

(ii) Notice that suppy C U, ;(#i,y;). Indeed, let (z,y) & U, ;(z:,y;). Assume without loss of

generality that x is different from z; and zs. There is a neighborhood N of x containing




(iii)

neither z; nor x5 and hence y(N x R%) = 0. This proves that (x,5) € (R x R?) \ supp .
In particular,

Y = o110ayy; + 012051y, + 02100,y + @2205,y,,

and v can be represented by the matrix

allp Q12
A, = .
Qg1 (22

Notice that we must have (7x)xy = p, so since (7x)xy = (11 +a12)0z, + (21 +a22)05, = 1
this implies

a11 + o = 1/2

a9l + gy = 1/2.

Similarly, since we have (my)xvy = v,
a1y + a9 = 1/2

a2 + gy =1/2.

In particular, we can take a1; = «, and then a2 = a1 = 1/2 — a and a9 = «, that is
o % —
A, = for some « € [0,1/2],

and all such possibilities of A, describe a coupling between ;i and v.

Let us consider

min / c(z,y) dy(z,y).
YET (1,v) JRA xR

Notice that it is well-defined, because v is supported on Ul j(:):i, y;j) and c is bounded from
below on this finite set. Notice also that by the previous part, the set of couplings is given

by I'(u,v) = Uae[0,1/2} Yo, With 7, represented by the matrix

1
a i-o 1 1
Ay, = < 2 ) s Yo = gy, + (2 — CV) Oz1ys + (2 - O‘) Ozay; + Q0ayys,.
-« @

Thus, we want

i ) d o ) .
Lhin /R . c(x,y) dya(z,y)

Let us split
Ao = Ay, =205+ (1 =20)Ag, 50 Yo = 20712 + (1 — 2a)70,

and

cost(Va) = / c(x,y) dya(r,y) = 2cccost(7yy2) + (1 — 2a) cost (o).
RIxR4

In particular, since 2a € [0, 1], cost(va) > min{cost(7o), cost(v1/2)} for all a € [0,1/2] and




Y0 or 712 is an optimal coupling, which has a map structure (77 or 75 from |(i)| ).

v) We need to show that the segements z1Tx; and x9Tzo do not cross. Since {Tz1, Tz} =
{y1,y2} if they were to cross, x1,x2,y1,y2 would be coplanar, thus it is enough to study the
case d = 2. Notice that the cost to bring x; to Tz is simply |x; — Txy|, thus the result
follows by the triangular inequality. Indeed, if the trajectories were to cross at a point I (see
figure [I{ below), then have

|21 — 1] + |z2 —yol <o — I+ [T —yi| + w2 — I| + [ — y2| = |21 — yo| + |22 — w1

where equality holds only if x1,x2,y; and ys are all colinear, a contradiction. This implies

that the trajectories do not cross.

Exe

false

(i)

rcise 5.2. Say if the following sentences are true or false. If they are true, prove it, if they are

, provide a counterexample. The statements below all refer to the quadratic cost.

Let ¢ : R? — R be a convex function, then ¢ is differentiable £%a.e. in R? and we call N ¢ R?
the Lebesgue measure zero set where ¢ is not differentiable. For any z € N take an element
Yr € Op(z), and define the map T : RY — R? as follows:

Vo(z) ifzeRY\ N,
Ya itz e N.

T(x)=

Then, given p < £%, the map T is optimal from yx to Typ.

If T:R — R is an optimal map between p; and po (i.e. Thpu1r = p2) and S : R — R is optimal
between s and us, then S o T is optimal between py and us.

The same as before but in general dimension d > 2, namely: if T : R — R is an optimal map
between i1 and po (i.e. Tiypy = pe) and S : R — RY is optimal between 2 and ps3, then SoT

is optimal between p; and us.

t

Solution:

(i) True. The L£%a.e. diffentiability follows from the Rademacher Theorem. Then if we define
v = (Id,T)4p, then by construction we have that suppy C Jd¢, from which thanks to
Theorem 2.4.3 (see also Remark 2.4.4) we conclude that «y is optimal because it is contained

in a c-cyclically monotone set.

Notice that if we defined for instance, for all x € N, T'(z) = y for y ¢ J¢ we should have
proved also that supp(y) = supp(y) N (R?\ N) x R? C 9y where the first equality is not

trivial.

ii) It is true provided that ps is non-atomic.




(iii)

Suppose that ug is non-atomic. Then, since there exist a transport map from ps to us, e
is non-atomic too. With the same argument we get that p; is non-atomic. As T and S are
optimal maps, they have to coincide with the monotone rearrangements from pu; to ps and
from po to us respectively. In particular, S o T is monotone, and of course is a transport

map from g to pg. This means that S o T is optimal from pg to ps.

Now we provide a counterexample (suggested by Berk Ceylan) in the case in which us has

atoms. Take

1 1 1 1 1 1
= -4 — -0 — —d =4
1 61+62+63+64+65+66,

1 1 1 1
=_-4 —0 ) )
H2 31+32+65+66,

1 1
= -4 —06.
©3 5 1+26

It can be verified that the following maps are optimal for the Monge problem from u; to ue

and from po to ps respectively:

1 ifx=1,2,

2 ifx =234, 1 if x =1,5,
T(z) = ;o Se) =

5 ifx=25, 6 ifx=2,6.

6 if x = 6.

However, the map
1 ife=1,2,5,
6 ifx=3,4,6

SoT(x)=

is clearly non optimal from g to ps. The problem here is that when there are atoms, in
general Monge’s optimal maps are not minimizers for the Kantorovich problem. In particular,

optimal maps can be non monotone.

False. We provide a counterexample for Dirac deltas, the exercise can be generalized to

absolutely continuous measures.

0 +0(_ 0(—1,0)+0 0(—1,4)+0 . . . .
Let pq = “RO07E80 1y = SO0 g = S0 Using point |(i)] of Exercise

we can directly prove that T defined as
T1(—1,0) = (—-1,0) Ti(1,0) =(1,4)

and extended in whatever way is an optimal map from p; to peo, as well as
T5(—1,0) = (1,0) T»(1,4) = (—1,4)

and extended in whatever way is an optimal map from ps and ps, but 75 o T is not an

optimal map from p; to ps because

TQ OTl(—l,O) = (1,0) T2 OTI(l,O) = (—1,4),




indeed the optimal map is T3 from w1 to ps is defined as
T3(170) = (170) T3(_17O) = (_174)

and extended in whatever way.

Exercise 5.3 (Birkhoff - Von Neumann Theorem). A (n X n)-matrix A € .#(n,R) with nonnegative

entries is said to be:

e a doubly-stochastic matriz if Y ;" | A;j = 1 for any j = 1,...,n, and Z?Zl A;; = 1 for any

1=1,...,n.

* a permutation matriz if there is a permutation o : {1,...,n} — {1,...,n} such that A;;; =1
and Aij =0 ifj 75 U(Z)

Prove that any doubly-stochastic matrix can be written as a finite convex combination of permutation

matrices.
Hints: Here is a guideline through a possible proof of the result:

e Use Hall’s marriage Theorem[] to prove that given a doubly-stochastic matrix A, there exists
a permutation o € S, such that A;;;) > 0 for any @ = 1,...,n. Deduce that there exists a
permutation matrix P and A > 0 such that A;; > AP;;, Vi,j € {1,...,n}.

e Let us now prove the result by induction on the number of non-zero entries k of A. Start by
proving that k£ > n and that the result holds for & = n.
e Let now k > n. Consider the permutation P and A given in the first bullet above, and define

1

A=
1—A

(A—AP).
Show that A’ is doubly-stochastic with at most & — 1 non-zero entries.

e Deduce, by induction, that A is a convex combination of permutation matrices.

Solution: The solution is decomposed into four steps based on the hints.

Step 1: (Application of Hall’s marriage theorem) Let us begin with the following lemma.

Lemma 1. Given a doubly-stochastic matrix A, there is a permutation o € S, such that A;,;) > 0

forany i =1,...,n.

Proof. Let us construct a bipartite graph as follows: the graph consists of 2n vertices labeled
by {1,,...,n,} and {1.,...,n.} (the indexes r,c stand for row and column). Then, we say that
there is an edge between 4, and j. if and only if A;; > 0. We denote the presence of an edge

with i, ~ j.. The first step of the proof consists in showing that such a bipartite graph admits a

!See https://en.wikipedia.org/wiki/Hall%27s_marriage_theorem#Graph_theoretic_formulation.


https://en.wikipedia.org/wiki/Hall%27s_marriage_theorem#Graph_theoretic_formulation.

perfect matching (i.e., there is a permutation o : {1,...,n} — {1,...,n} such that i, ~ o (i), for
any i = 1,...,n). In order to do so, we want to apply Hall’s marriage theorem. Given a subset
S c{1,...,n}, let T be the subset defined as

T={te{l,...,n}: s, ~t. for at least one s € S}

Exploiting the fact that the matrix A is doubly-stochastic and the definition of T', we obtain

#SzZiAsj=ZZAstsiZAit=Z§njAu=#T

se€S j=1 s€S teT i=1 tcT teT i=1

Since we can choose S arbitrarily, the inequality #S < #7T is exactly the hypothesis necessary
to apply Hall’s marriage theorem and deduce the existence of a perfect matching. Hence, by
definition of perfect matching, there is a permutation o such that i, ~ o(i). for any i = 1,...,n.

This last fact is equivalent to the desired statement. O

Step 2:  We can now prove the statement of the theorem by induction on the number of
nonzero entries of the matrix A.

Since A is doubly-stochastic, it is easy to see that it must have at least n nonzero entries.
Moreover, if it has exactly n nonzero entries, then it must be already a permutation matrix.

Step 3: Let us assume that the number of nonzero entries of A is k > n. Let P? be the
permutation matrix induced by the permutation o (that is, P W = 1 for all 7, and P =0 if
j # o(i)) whose existence is provided by the lemma. Let A > 0 be the maximum value such that
AP? < A (the inequality must be understood entry-wise, namely AP} < A;j for all 4,7). Notice
that, since A is doubly-stochastic, each entry of A is bounded by 1 and therefore A < 1. Also, it
must be A < 1, as otherwise A would have exactly n nonzero entries.

Let A’ := ﬁ (A — AP7). Since AP? < A, all entries of A’ are nonnegative. Moreover, thanks
to the choice of A, the matrix A’ has at most k — 1 nonzero entries. Finally, one can easily check
that A’ is doubly-stochastic.

Step 4: By the inductive hypothesis, we are able to write A’ as a convex combination of

A=3"NPT =0, > N=1,

icl icl

permutation matrices

where I is a finite set of indices and P? are permutation matrices (induced by the permutations
;). From the definition of A’, it follows that

A=AP°+) N1 - AP,
el

thus A is a convex combination of permutation matrices.

Exercise 5.4 (Discrete optimal transport). Given two families {x1,...,z,} and {y1,...,yn} of points
in RY, let pu:= 23" 6, and v := 13" 5, Prove that, for any choice of a continuous cost

¢ :R% x RY — R, there exists an optimal transport map from wto v.

Hint: Use Exercise [5.3| or Kantorovich duality.



Solution: We present two different solutions of this exercise, the first one uses Birkohoff-Von
Neumann’s theorem, whereas the second one borrows some ideas from the duality theory.

Note that ¢ is bounded below on the finite set {(x;, y;) }1<i j<n, so it follows by Theorem 2.3.2
and Remark 2.3.3 that there exists an optimal coupling v € I'(u, v).

Let A, be the n x n matrix defined as A;; := v({z;,y;}). From the marginal constraints on
7, it follows that nA is a doubly-stochastic matrix. Hence, applying Exercise we can express

nA as a convex combination of permutation matrices

nA = Z Ao P7¥
kel

where I is a finite set of indices, ), .; Ax = 1, and P?% are permutation matrices (induced by the
permutations oy,).

Let us define the cost of an n X n matrix B as

n
= Z Bije(wi, yj)-

2,j=1

By definition, the cost C is linear and it holds

/ c(z,y)dy(z,y) = Zxkc (Po%) > — mlnC(P"k)
R xR4

n kel
kGI

Hence, there is a permutation o such that

1 n
- E c(xhyo‘k(i)) C(l Uk) (x7y) de(xay)v
n d d

i—1 R4xR

and therefore the map T : R? — R? such that T'(z;) = Yo, (i) 15 optimal.

Solution: Without loss of generality (up to relabeling the indices of the points y;), we can assume

that the trivial permutation has the minimum cost among all permutations, that is

n n
Z xzyyz Zc xzayo (1)
i=1 =1

for any permutation o : {1,...,n} — {1,...,n}. Under this assumption, we want to prove that
the map T'(z;) := y; is optimal, in the sense that the coupling induced by it is optimal (in the
Kantorovich sense).

We now want to use Theorem 2.6.6. In fact, we only need to use the inequality

inf / cdy > sup /—godu%—/—w dv,
Yl (1v) J X xvy () +(y)+e(z,y)>0

which follows immediately from the marginal condition (see the proof of (2.12)). In any case, it




suffices to construct two functions ¢ : {x1,...,2,} = Rand ¢ : {y1,...,yn} — R such that

o(x;) +¥(y;) + c(ziyy;) 20 for any 1 <i,j <n, (2)
Z C(Z4, yz = Z _Sp(xi) - ¢(yz) . (3)
=1 =1

Indeed, from these equations we get

1o
[ ecwt@dn= 2> et @ [ —pdur [ coa e [ can
Rd N Rd Rd YET (1,v) JRA xR
so the optimality of T" follows.
To prove —, we claim that it suffices to construct a function ¢ such that

o(xj) — p(x;) < c(z4,y;) — c(xj,y;) =:b; forany 1 <i,j <n. (4)

Indeed, if the above bound holds, then . ) hold with the function ¢ defined as ¥(y;) =
—c(xi,yi) — (i) for any 1 <i < n.

So, it remains only to construct a function ¢ such that holds. To do this, let us consider
the weighted oriented complete graph with vertices {1,...,n} such that the weight of the edge
i — j is b, and denote with d(i, j) the distance (i.e. the infimum of the sum of the weights of a
path from the first vertex to the second one) between vertex i and vertex j (notice the similarity
between this approach and the proof of Rockafellar’s theorem, Theorem 2.5.2).

Let us check that, for any 1 < 4,5 < n, it holds d(i,j) > —oo. Since the graph consists of
finitely many points, one can note that the distance between two vertices can be —oc if and only
if there is a simple loop (that is, a closed path that visits each vertex at most once) i1, 19, ...,
with negative length, that is

bivio + bigis + -+ biiy <O0. (5)

To rule out this possibility, we have to use the optimality condition (that we have never used
until now). Let & be the permutation such that &(i1) = i2,5(i2) = i3,...,0(ix) = i1, and o(i) =1
for all other values of i. Applying [T| with o = &, we get

n

0< Z C\T4, Ya( z) ( L5(i): Y (z)) = szc_r(z) = bi1i2 + biz’is +o bikh )
=1

which shows that cannot hold.
Hence, we have proven that the distance d(i, j) is finite for every 1 < i, j < n. We now observe
that, even if this notion of distance on a graph might be negative and not symmetric, it still

satisfies the triangle inequality. Therefore we have

Hence, if we set ¢(z;) := d(1,4) then the desired inequality holds, concluding the proof.




