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Optimal transport, Fall semester

EPFL, Mathematics section, Dr. Xavier Fernández- Real

Exercise 5.1. Let x1, x2, y1, y2 ∈ Rd, x1 ̸= x2 and let

µ =
1

2
δx1 +

1

2
δx2 and ν =

1

2
δy1 +

1

2
δy2 .

(i) Describe all maps transporting µ to ν; that is, such that T#µ = ν.

(ii) Describe all couplings of µ and ν; that is γ ∈ P(X×Y ) such that (πX)#γ = µ and (πY )#γ = ν.

(iii) Prove that, for any choice of continuous cost c : Rd ×Rd → R, there exists an optimal transport

map (i.e., the optimal coupling has a map structure).

(iv) Assuming that x1, Tx1, x2 and Tx2 are not colinear, observe that for the linear cost c(x, y) =

|x− y|, the corresponding optimal transport map does not cross trajectories.
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Figure 1: Crossing trajectories

Solution:

(i) We have
1

2
φ(y1) +

1

2
φ(y2) =

∫
νφ =

∫
T#µφ =

1

2
φ(Tx1) +

1

2
φ(Tx2)

for all φ ∈ C∞
c (Rd). Suppose now Tx1 ̸∈ {y1, y2}; by taking φ with φ(Tx1) > 0, φ(y1) =

φ(y2) = 0 and φ(Tx2) = 0 if Tx2 ̸= Tx1, we reach a contradiction. Therefore, Tx1 ∈ {y1, y2}.
Then, we have φ(ȳ) = φ(Tx2) for some ȳ ∈ {y1, y2} and for all φ, so ȳ = Tx2. Thus, we

have two possibilities: T1x1 = y1

T1x2 = y2
or

T1x1 = y1

T1x2 = y2.

(ii) Notice that supp γ ⊆
⋃
i,j(xi, yj). Indeed, let (x, y) ̸∈

⋃
i,j(xi, yj). Assume without loss of

generality that x is different from x1 and x2. There is a neighborhood N of x containing
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neither x1 nor x2 and hence γ(N × Rd) = 0. This proves that (x, y) ∈ (Rd × Rd) \ supp γ.
In particular,

γ = α11δx1y1 + α12δx1y2 + α21δx2y1 + α22δx2y2 ,

and γ can be represented by the matrix

Aγ =

(
α11 α12

α21 α22

)
.

Notice that we must have (πX)#γ = µ, so since (πX)#γ = (α11+α12)δx1+(α21+α22)δx2 = µ

this implies α11 + α12 = 1/2

α21 + α22 = 1/2.

Similarly, since we have (πY )#γ = ν,α11 + α21 = 1/2

α12 + α22 = 1/2.

In particular, we can take α11 = α, and then α12 = α21 = 1/2− α and α22 = α, that is

Aγ =

(
α 1

2 − α
1
2 − α α

)
for some α ∈ [0, 1/2],

and all such possibilities of Aγ describe a coupling between µ and ν.

(iii) Let us consider

min
γ∈Γ(µ,ν)

∫
Rd×Rd

c(x, y) dγ(x, y).

Notice that it is well-defined, because γ is supported on
⋃
i,j(xi, yj) and c is bounded from

below on this finite set. Notice also that by the previous part, the set of couplings is given

by Γ(µ, ν) =
⋃
α∈[0,1/2] γα, with γα represented by the matrix

Aγα =

(
α 1

2 − α
1
2 − α α

)
, γα = αδx1y1 +

(
1

2
− α

)
δx1y2 +

(
1

2
− α

)
δx2y1 + αδx2y2 .

Thus, we want

min
α∈[0,1/2]

∫
Rd×Rd

c(x, y) dγα(x, y).

Let us split

Aα := Aγα = 2αA1/2 + (1− 2α)A0, so γα = 2αγ1/2 + (1− 2α)γ0,

and

cost(γα) =

∫
Rd×Rd

c(x, y) dγα(x, y) = 2α cost(γ1/2) + (1− 2α) cost(γ0).

In particular, since 2α ∈ [0, 1], cost(γα) ≥ min{cost(γ0), cost(γ1/2)} for all α ∈ [0, 1/2] and
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γ0 or γ1/2 is an optimal coupling, which has a map structure (T1 or T2 from (i) ).

(iv) We need to show that the segements x1Tx1 and x2Tx2 do not cross. Since {Tx1, Tx2} =

{y1, y2} if they were to cross, x1, x2, y1, y2 would be coplanar, thus it is enough to study the

case d = 2. Notice that the cost to bring x1 to Tx1 is simply |x1 − Tx1|, thus the result

follows by the triangular inequality. Indeed, if the trajectories were to cross at a point I (see

figure 1 below), then have

|x1 − y1|+ |x2 − y2| ≤ |x1 − I|+ |I − y1|+ |x2 − I|+ |I − y2| = |x1 − y2|+ |x2 − y1|

where equality holds only if x1, x2, y1 and y2 are all colinear, a contradiction. This implies

that the trajectories do not cross.

Exercise 5.2. Say if the following sentences are true or false. If they are true, prove it, if they are

false, provide a counterexample. The statements below all refer to the quadratic cost.

(i) Let φ : Rd → R be a convex function, then φ is differentiable Ld-a.e. in Rd and we call N ⊂ Rd

the Lebesgue measure zero set where φ is not differentiable. For any x ∈ N take an element

yx ∈ ∂φ(x), and define the map T : Rd → Rd as follows:

T (x) =

∇φ(x) if x ∈ Rd \N,

yx if x ∈ N.

Then, given µ≪ Ld, the map T is optimal from µ to T#µ.

(ii) If T : R → R is an optimal map between µ1 and µ2 (i.e. T#µ1 = µ2) and S : R → R is optimal

between µ2 and µ3, then S ◦ T is optimal between µ1 and µ3.

(iii) The same as before but in general dimension d ≥ 2, namely: if T : Rd → Rd is an optimal map

between µ1 and µ2 (i.e. T#µ1 = µ2) and S : Rd → Rd is optimal between µ2 and µ3, then S ◦ T
is optimal between µ1 and µ3.

Solution:

(i) True. The Ld-a.e. diffentiability follows from the Rademacher Theorem. Then if we define

γ := (Id, T )#µ, then by construction we have that suppγ ⊂ ∂φ, from which thanks to

Theorem 2.4.3 (see also Remark 2.4.4) we conclude that γ is optimal because it is contained

in a c-cyclically monotone set.

Notice that if we defined for instance, for all x ∈ N , T (x) = y for y /∈ ∂φ we should have

proved also that supp(γ) = supp(γ) ∩ (Rd \ N) × Rd ⊂ ∂φ where the first equality is not

trivial.

(ii) It is true provided that µ3 is non-atomic.
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Suppose that µ3 is non-atomic. Then, since there exist a transport map from µ2 to µ3, µ2

is non-atomic too. With the same argument we get that µ1 is non-atomic. As T and S are

optimal maps, they have to coincide with the monotone rearrangements from µ1 to µ2 and

from µ2 to µ3 respectively. In particular, S ◦ T is monotone, and of course is a transport

map from µ1 to µ3. This means that S ◦ T is optimal from µ1 to µ3.

Now we provide a counterexample (suggested by Berk Ceylan) in the case in which µ3 has

atoms. Take

µ1 =
1

6
δ1 +

1

6
δ2 +

1

6
δ3 +

1

6
δ4 +

1

6
δ5 +

1

6
δ6,

µ2 =
1

3
δ1 +

1

3
δ2 +

1

6
δ5 +

1

6
δ6,

µ3 =
1

2
δ1 +

1

2
δ6.

It can be verified that the following maps are optimal for the Monge problem from µ1 to µ2

and from µ2 to µ3 respectively:

T (x) =



1 if x = 1, 2,

2 if x = 3, 4,

5 if x = 5,

6 if x = 6.

, S(x) =

1 if x = 1, 5,

6 if x = 2, 6.

However, the map

S ◦ T (x) =

1 if x = 1, 2, 5,

6 if x = 3, 4, 6

is clearly non optimal from µ1 to µ3. The problem here is that when there are atoms, in

general Monge’s optimal maps are not minimizers for the Kantorovich problem. In particular,

optimal maps can be non monotone.

(iii) False. We provide a counterexample for Dirac deltas, the exercise can be generalized to

absolutely continuous measures.

Let µ1 =
δ(1,0)+δ(−1,0)

2 , µ2 =
δ(−1,0)+δ(1,4)

2 , µ3 =
δ(−1,4)+δ(1,0)

2 . Using point (i) of Exercise 5.1

we can directly prove that T1 defined as

T1(−1, 0) = (−1, 0) T1(1, 0) = (1, 4)

and extended in whatever way is an optimal map from µ1 to µ2, as well as

T2(−1, 0) = (1, 0) T2(1, 4) = (−1, 4)

and extended in whatever way is an optimal map from µ2 and µ3, but T2 ◦ T1 is not an

optimal map from µ1 to µ3 because

T2 ◦ T1(−1, 0) = (1, 0) T2 ◦ T1(1, 0) = (−1, 4),
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indeed the optimal map is T3 from µ1 to µ3 is defined as

T3(1, 0) = (1, 0) T3(−1, 0) = (−1, 4)

and extended in whatever way.

Exercise 5.3 (Birkhoff - Von Neumann Theorem). A (n× n)-matrix A ∈ M (n,R) with nonnegative

entries is said to be:

� a doubly-stochastic matrix if
∑n

i=1Aij = 1 for any j = 1, . . . , n, and
∑n

j=1Aij = 1 for any

i = 1, . . . , n.

� a permutation matrix if there is a permutation σ : {1, . . . , n} → {1, . . . , n} such that Aiσ(i) = 1

and Aij = 0 if j ̸= σ(i).

Prove that any doubly-stochastic matrix can be written as a finite convex combination of permutation

matrices.

Hints: Here is a guideline through a possible proof of the result:

� Use Hall’s marriage Theorem1 to prove that given a doubly-stochastic matrix A, there exists

a permutation σ ∈ Sn such that Aiσ(i) > 0 for any i = 1, . . . , n. Deduce that there exists a

permutation matrix P and λ > 0 such that Aij ≥ λPij , ∀i, j ∈ {1, . . . , n}.

� Let us now prove the result by induction on the number of non-zero entries k of A. Start by

proving that k ≥ n and that the result holds for k = n.

� Let now k > n. Consider the permutation P and λ given in the first bullet above, and define

A′ =
1

1− λ
(A− λP ).

Show that A′ is doubly-stochastic with at most k − 1 non-zero entries.

� Deduce, by induction, that A is a convex combination of permutation matrices.

Solution: The solution is decomposed into four steps based on the hints.

Step 1: (Application of Hall’s marriage theorem) Let us begin with the following lemma.

Lemma 1. Given a doubly-stochastic matrix A, there is a permutation σ ∈ Sn such that Aiσ(i) > 0

for any i = 1, . . . , n.

Proof. Let us construct a bipartite graph as follows: the graph consists of 2n vertices labeled

by {1r, . . . , nr} and {1c, . . . , nc} (the indexes r, c stand for row and column). Then, we say that

there is an edge between ir and jc if and only if Aij > 0. We denote the presence of an edge

with ir ∼ jc. The first step of the proof consists in showing that such a bipartite graph admits a

1See https://en.wikipedia.org/wiki/Hall%27s_marriage_theorem#Graph_theoretic_formulation.
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perfect matching (i.e., there is a permutation σ : {1, . . . , n} → {1, . . . , n} such that ir ∼ σ(i)c for

any i = 1, . . . , n). In order to do so, we want to apply Hall’s marriage theorem. Given a subset

S ⊂ {1, . . . , n}, let T be the subset defined as

T = {t ∈ {1, . . . , n} : sr ∼ tc for at least one s ∈ S}

Exploiting the fact that the matrix A is doubly-stochastic and the definition of T , we obtain

#S =
∑
s∈S

n∑
j=1

Asj =
∑
s∈S

∑
t∈T

Ast ≤
n∑
i=1

∑
t∈T

Ait =
∑
t∈T

n∑
i=1

Ait = #T

Since we can choose S arbitrarily, the inequality #S ≤ #T is exactly the hypothesis necessary

to apply Hall’s marriage theorem and deduce the existence of a perfect matching. Hence, by

definition of perfect matching, there is a permutation σ such that ir ∼ σ(i)c for any i = 1, . . . , n.

This last fact is equivalent to the desired statement.

Step 2: We can now prove the statement of the theorem by induction on the number of

nonzero entries of the matrix A.

Since A is doubly-stochastic, it is easy to see that it must have at least n nonzero entries.

Moreover, if it has exactly n nonzero entries, then it must be already a permutation matrix.

Step 3: Let us assume that the number of nonzero entries of A is k > n. Let P σ be the

permutation matrix induced by the permutation σ (that is, P σiσ(i) = 1 for all i, and P σij = 0 if

j ̸= σ(i)) whose existence is provided by the lemma. Let λ > 0 be the maximum value such that

λP σ ≤ A (the inequality must be understood entry-wise, namely λP σij ≤ Aij for all i, j). Notice

that, since A is doubly-stochastic, each entry of A is bounded by 1 and therefore λ ≤ 1. Also, it

must be λ < 1, as otherwise A would have exactly n nonzero entries.

Let A′ := 1
1−λ (A− λP σ). Since λP σ ≤ A, all entries of A′ are nonnegative. Moreover, thanks

to the choice of λ, the matrix A′ has at most k − 1 nonzero entries. Finally, one can easily check

that A′ is doubly-stochastic.

Step 4: By the inductive hypothesis, we are able to write A′ as a convex combination of

permutation matrices

A′ =
∑
i∈I

λiP
σi , λi ≥ 0,

∑
i∈I

λi = 1,

where I is a finite set of indices and P σi are permutation matrices (induced by the permutations

σi). From the definition of A′, it follows that

A = λP σ +
∑
i∈I

λi(1− λ)P σi ,

thus A is a convex combination of permutation matrices.

Exercise 5.4 (Discrete optimal transport). Given two families {x1, . . . , xn} and {y1, . . . , yn} of points

in Rd, let µ := 1
n

∑n
i=1 δxi and ν := 1

n

∑n
i=1 δyi . Prove that, for any choice of a continuous cost

c : Rd × Rd → R, there exists an optimal transport map from µ to ν.

Hint: Use Exercise 5.3 or Kantorovich duality.
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Solution: We present two different solutions of this exercise, the first one uses Birkohoff-Von

Neumann’s theorem, whereas the second one borrows some ideas from the duality theory.

Note that c is bounded below on the finite set {(xi, yj)}1≤i,j≤n, so it follows by Theorem 2.3.2

and Remark 2.3.3 that there exists an optimal coupling γ ∈ Γ(µ, ν).

Let Aγ be the n × n matrix defined as Aij := γ({xi, yj}). From the marginal constraints on

γ, it follows that nA is a doubly-stochastic matrix. Hence, applying Exercise 5.3, we can express

nA as a convex combination of permutation matrices

nA =
∑
k∈I

λkP
σk ,

where I is a finite set of indices,
∑

k∈I λk = 1, and P σk are permutation matrices (induced by the

permutations σk).

Let us define the cost of an n× n matrix B as

C(B) :=
n∑

i,j=1

Bijc(xi, yj).

By definition, the cost C is linear and it holds∫
Rd×Rd

c(x, y) dγ(x, y) = C(A) = 1

n

∑
k∈I

λkC(P σk) ≥
1

n
min
k∈I

C(P σk).

Hence, there is a permutation σk such that

1

n

n∑
i=1

c(xi, yσk(i)) =
1

n
C(P σk) ≤

∫
Rd×Rd

c(x, y) dγ(x, y),

and therefore the map T : Rd → Rd such that T (xi) = yσk(i) is optimal.

Solution: Without loss of generality (up to relabeling the indices of the points yi), we can assume

that the trivial permutation has the minimum cost among all permutations, that is

n∑
i=1

c(xi, yi) ≤
n∑
i=1

c(xi, yσ(i)) (1)

for any permutation σ : {1, . . . , n} → {1, . . . , n}. Under this assumption, we want to prove that

the map T (xi) := yi is optimal, in the sense that the coupling induced by it is optimal (in the

Kantorovich sense).

We now want to use Theorem 2.6.6. In fact, we only need to use the inequality

inf
γ∈Γ(µ,ν)

∫
X×Y

c dγ ≥ sup
φ(x)+ψ(y)+c(x,y)≥0

∫
−φdµ+

∫
−ψ dν,

which follows immediately from the marginal condition (see the proof of (2.12)). In any case, it

7



suffices to construct two functions φ : {x1, . . . , xn} → R and ψ : {y1, . . . , yn} → R such that

φ(xi) + ψ(yj) + c(xi, yj) ≥ 0 for any 1 ≤ i, j ≤ n, (2)
n∑
i=1

c(xi, yi) =

n∑
i=1

−φ(xi)− ψ(yi) . (3)

Indeed, from these equations we get∫
Rd

c(x, T (x)) dµ =
1

n

n∑
i=1

c(xi, yi)
(3)
=

∫
Rd

−φdµ+

∫
Rd

−ψ dν
(2)

≤ inf
γ∈Γ(µ,ν)

∫
Rd×Rd

c dγ,

so the optimality of T follows.

To prove (2)-(3), we claim that it suffices to construct a function φ such that

φ(xj)− φ(xi) ≤ c(xi, yj)− c(xj , yj) =: bij for any 1 ≤ i, j ≤ n. (4)

Indeed, if the above bound holds, then (2)-(3) hold with the function ψ defined as ψ(yi) :=

−c(xi, yi)− φ(xi) for any 1 ≤ i ≤ n.

So, it remains only to construct a function φ such that (4) holds. To do this, let us consider

the weighted oriented complete graph with vertices {1, . . . , n} such that the weight of the edge

i → j is bij , and denote with d(i, j) the distance (i.e. the infimum of the sum of the weights of a

path from the first vertex to the second one) between vertex i and vertex j (notice the similarity

between this approach and the proof of Rockafellar’s theorem, Theorem 2.5.2).

Let us check that, for any 1 ≤ i, j ≤ n, it holds d(i, j) > −∞. Since the graph consists of

finitely many points, one can note that the distance between two vertices can be −∞ if and only

if there is a simple loop (that is, a closed path that visits each vertex at most once) i1, i2, . . . , ik

with negative length, that is

bi1i2 + bi2i3 + · · ·+ biki1 < 0 . (5)

To rule out this possibility, we have to use the optimality condition (1) (that we have never used

until now). Let σ̄ be the permutation such that σ̄(i1) = i2, σ̄(i2) = i3, . . . , σ(ik) = i1, and σ(i) = i

for all other values of i. Applying 1 with σ = σ̄, we get

0 ≤
n∑
i=1

c(xi, yσ̄(i))− c(xσ̄(i), yσ̄(i)) =

n∑
i=1

biσ̄(i) = bi1i2 + bi2i3 + · · ·+ biki1 ,

which shows that (5) cannot hold.

Hence, we have proven that the distance d(i, j) is finite for every 1 ≤ i, j ≤ n. We now observe

that, even if this notion of distance on a graph might be negative and not symmetric, it still

satisfies the triangle inequality. Therefore we have

d(1, j) ≤ d(1, i) + d(i, j) ≤ d(1, i) + bij ∀ i, j.

Hence, if we set φ(xi) := d(1, i) then the desired inequality (4) holds, concluding the proof.
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