Serie 3

Optimal transport, Fall semester

EPFL, Mathematics section, Dr. Xavier Fernández-Real

Exercise 3.1. Let $f: \mathbb{R}^d \to \mathbb{R}$ be a nonnegative lower semicontinuous function. Show that:

- (i) f admits a minimizer in every compact set $K \subset \mathbb{R}^n$.
- (ii) f can be approximated from below monotonically (namely, $f_{\lambda}(x) \uparrow f(x)$ for every $x \in \mathbb{R}^d$) by a sequence of functions f_{λ} as $\lambda \to \infty$, where f_{λ} is λ -Lipschitz.
- (iii) for every sequence of measures $\mu_n \rightharpoonup \mu$ narrowly,

$$\liminf_{n \to \infty} \int_{\mathbb{R}^d} f \, d\mu_n \ge \int_{\mathbb{R}^d} f \, d\mu.$$

Hint: For (ii), define $f_{\lambda}(x) = \inf_{y \in \mathbb{R}^n} \{ f(y) + \lambda |x - y| \}.$

Exercise 3.2. The support of a nonnegative measure $\mu \in \mathcal{M}_+(\mathbb{R}^n)$ is defined as the smallest closed set on which μ is concentrated, i.e.

$$spt(\mu) := \bigcap \{ C \subset \mathbb{R}^n \text{ closed } : \mu(\mathbb{R}^n \setminus C) = 0 \}.$$

Let us take a sequence of nonnegative measures $\mu_j \in \mathcal{M}_+(\mathbb{R}^n)$ such that $\mu_j \stackrel{*}{\rightharpoonup} \mu$. Prove the following fact: for every $x \in spt(\mu)$, there exists a sequence of points $x_j \in spt(\mu_j)$ such that $x_j \to x$.

Exercise 3.3 (Characterizations of weak-* convergence). Let $\mu_j, \mu \in \mathscr{P}(\mathbb{R}^n)$ be probability measures in \mathbb{R}^n .

- i) Show that $\mu_j \rightharpoonup \mu$ narrowly if and only if one of the following properties hold:
 - a) For every open set $A \subset \mathbb{R}^n$:

$$\liminf_{j \to \infty} \mu_j(A) \ge \mu(A).$$

b) For every closed set $C \subset \mathbb{R}^n$:

$$\limsup_{j \to \infty} \mu_j(C) \le \mu(C).$$

c) For every set $E \subset \mathbb{R}^n$ such that $\mu(\partial E) = 0$:

$$\lim_{j \to \infty} \mu_j(E) = \mu(E).$$

ii) Give an example of a sequence of probability measures $\mu_j \in \mathscr{P}(\mathbb{R}^n)$ such that $\mu_j \stackrel{*}{\rightharpoonup} \mu$ for some measure $\mu \in \mathcal{M}_+(\mathbb{R}^n)$ and an open set A such that

$$\liminf_{j \to \infty} \mu_j(A) > \mu(A).$$

1

Hint: For one implication in (i), use Exercise 3.1. For the other, use the layer-cake formula

$$\int \varphi d\mu = \int_0^\infty \mu(\{\varphi > t\}) dt \quad \text{for every } \varphi \in C_b(\mathbb{R}^n), \ \varphi \ge 0.$$

Exercise 3.4. Let $\{\mu_n\}_{n\in\mathbb{N}}\subset\mathscr{P}(\mathbb{R})$ be a sequence of probability measures with $\mu_n\rightharpoonup\mu$ narrowly. Define $F_n(x):=\mu_n((-\infty,x]), F(x):=\mu((-\infty,x]).$

- (i) Prove that μ is a probability measure.
- (ii) Prove that

$$\limsup_{n} F_n(x) \le F(x) \quad \text{ for every } x \in \mathbb{R}.$$

(iii) Prove that

$$\lim_{n} F_n(x) = F(x)$$
 for every $x \in \mathbb{R}$ at which F is continuous.

(iv) Give an example of a sequence of measures $\mu_n \rightharpoonup \mu$ narrowly and an $x \in \mathbb{R}$ for which

$$\lim_{n} \sup_{x} F_n(x) < F(x).$$

Exercise 3.5.

- (i) Find a sequence of functions $f_n:[0,1]\to [0,1]$ such that $(f_n)_\#(\mathscr{L}^1\sqcup [0,1])=(\mathscr{L}^1\sqcup [0,1])$ but f_n weakly converge to 1/2.
- (ii) What is the weak limit of $(\mathrm{id}, f_n)_{\#} \mathcal{L}^1 \sqcup [0, 1]$?
- (iii) ($\check{\bullet}$) Can these functions be taken C^1 ?

Hint: For (i), use piecewise affine oscillating functions.

Exercise 3.6 (*). Let $\mu \in \mathscr{P}(\mathbb{R}^n)$ be a probability measure. We say that a sequence of borel functions $T_j : \mathbb{R}^n \to \mathbb{R}^n$ converge in μ -measure to $T : \mathbb{R}^n \to \mathbb{R}^n$ if

$$\lim_{j \to \infty} \mu\left(\left\{x \in \mathbb{R}^n : |T_j(x) - T(x)| > \epsilon\right\}\right) = 0 \quad \text{for every } \epsilon > 0.$$

Denoting by $\pi_j := (id, T_j)_{\#}\mu, \pi := (id, T)_{\#}\mu \in \mathscr{P}(\mathbb{R}^n \times \mathbb{R}^n)$, prove the following equivalence:

$$\pi_j \stackrel{*}{\rightharpoonup} \pi \iff T_j \text{ converges to } T \text{ in } \mu\text{-measure}$$

¹By standard measure theory arguments one can easily prove that whenever T_j converges to T in μ -measure, there is a subsequence $j_k \nearrow \infty$ such that T_{j_k} converge to T pointwise μ -almost everywhere.