
Serie 1

Optimal transport, Fall semester

EPFL, Mathematics section, Dr. Xavier Fernández-Real

Remark: Any reference made to equations or statements (theorems, propositions, lemmas, etc)

in the series of exercises refer to the book followed by this course:

A. Figalli, F. Glaudo, An Invitation to Optimal Transport, Wasserstein Distances

and Gradient Flows.

The notion of convex function is fundamental in the course, since one of the main results of the

theory represents optimal transport maps as gradients of convex functions, under suitable assumptions.

For this reason, we devote the first exercise sheet to deduce useful properties of convex functions.

Definition 1. A function f : Rd → R ∪ {+∞} is said to be convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀λ ∈ [0, 1].

We recall hereafter some basic properties of convex functions. They should be known to the students

from bachelor courses in analysis and may be taken from granted.

� Let f : Rn → R ∪ {+∞} be a convex function. Then, for every finite collection of points

x1, . . . , xn ∈ Rd, and any choice of λ1, . . . , λn ∈ [0, 1] with λ1 + · · ·+ λn = 1, we have:

f(λ1x1 + · · ·+ λnxn) ≤ λ1f(x1) + · · ·+ λnf(xn).

� f : Rd → R ∪ {+∞} is convex if and only if its epigraph {(x, y) ∈ Rd+1 : y ≥ f(x)} is convex.

� f : Rd → R∪{+∞} is convex if and only if it can be written as the supremum of affine functions1.

� If f : Rd → R is convex, then it satisfies the monotonicity of difference quotients, namely: for

any triple of pairwise distinct points x, y, z ∈ Rd such that y ∈ {(1− λ)x+ λz : λ ∈ [0, 1]}, we
have

f(y)− f(x)

|y − x|
≤ f(z)− f(x)

|z − x|
≤ f(z)− f(y)

|z − y|
.

In particular, if f is C1, then, for every direction e ∈ Sd−1, ∂ef is non-decreasing in direction e.

� A C2 function f : Rd → R is convex if and only if, for every x ∈ Rd, D2f(x) is a nonnegative

definite matrix.

1If you did not see this fact before, you can prove it with the following hint: By the assumption and the first bullet,
we know that the epigraph of φ is convex. We need to show that, for any point (x, y) with y < f(x), there is a line
passing through (x, y) and which lies below x. To this end, take the point at minimal distance to (x, y) in the epigraph
(why does it exist?) and consider the plane passing from (x, y) and perpendicular to the segment which realizes the
minimal distance.
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Exercise 1.1 (Convex functions are locally Lipschitz). Let f : Rd → R∪{+∞} be a convex function.

Let D := {f < +∞} be its finiteness domain. Show that f is locally Lipschitz in the interior of D.

More precisely, for each ball BR(x0) compactly contained in int(D) show the following:

(i) f is bounded in BR(x0).

(ii) For every 0 < r < R and for every x, y ∈ Br(x0),

|f(x)− f(y)| ≤
supBR(x0) f − infBR(x0) f

R− r
|x− y|.

Hints: For (i), you may assume without loss of generality that the hypercube Q2R(x0) with side

length 2R centered in x0 is compactly supported in int(D). Deduce from the finiteness of f in the

vertices of Q2R(x0) that f is bounded from above in BR(x0). The bound from below follows from

a characterization described before the exercise. To prove (ii) use appropriately the monotonicity of

difference quotients.

By the previous exercise and the Rademacher’s Theorem stated below, we deduce that convex

functions are almost everywhere differentiable on their finiteness domain. This fact will be used in

the course, for instance to give a meaning to Brenier theorem.

Theorem 1 (Rademacher). Let f : Rd → R be a locally Lipschitz function. Then the set of points

where f is not differentiable is negligible for the Lebesgue measure.

Second differentiability results are also known. In fact, for a general convex function f : Rd → R it can

be proven that f is almost everywhere twice differentiable (Alexandrov’s Theorem), moreover, in the

sense of distributions, D2f turns out to be a matrix-valued nonnegative measure. This complementary

material won’t be proved during the course, but the interested student is invited to ask for a proof of

these results in the form of a guided exercise.

Definition 2. Given f : Rd → R ∪ {+∞} convex, we define the subdifferential of f at x ∈ Rd as

∂f(x) = {y ∈ Rd : f(z) ≥ f(x) + ⟨y, z − x⟩ ∀z ∈ Rd}.

Exercise 1.2. Let f : Rd → R∪{+∞} be a convex function, D = {f < +∞} be its finiteness domain

and x0 ∈ int(D).

(i) Show that ∂f(x0) is not empty.

(ii) Show that ∂f(x0) is a closed convex set.

(iii) Compute the subdifferential of the following functions defined on R2:

f1(x, y) =
√

x2 + y2, f2(x, y) = |x− 1|+ |x+ 1|
2

.

(iv) Give an example of a nonconvex function f : R → R whose subdifferential is empty at every

point x ∈ R. Can you make it C1?
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Hint: To prove point (i) it may be useful to recall the Hahn-Banach Theorem (first geometric form):

Let A,B ⊂ Rn be two disjoint convex sets, with A open. Then there exists an hyperplane which

separates A and B. More precisely, there exists a vector v ∈ Rn and a number α ∈ R for which

⟨v, x⟩ ≤ α ≤ ⟨v, y⟩ for every x ∈ A and every y ∈ B.

To show the existence of an element in the subdifferential, choose appropriately A and B!

Exercise 1.3 (Monotonicity of the subdifferential). Let f : Rd → R be a convex function. Show the

following facts:

(i) For every x1, x2 ∈ Rd and every ξ1 ∈ ∂f(x1), ξ2 ∈ ∂f(x2) we have2:

⟨ξ2 − ξ1, x2 − x1⟩ ≥ 0.

(ii) For every collection of points x1, . . . , xn ∈ Rd, given any ξ1 ∈ ∂f(x1), . . . , ξn ∈ ∂f(xn), and any

permutation σ of {1, . . . , n}, we have

n∑
i=1

⟨ξi, xi⟩ ≥
n∑

i=1

⟨ξσ(i), xi⟩.

Exercise 1.4 (A characterization of differentiability). Let f : Rd → R be a convex function. Prove

the following facts:

(i) If f is differentiable at a point x, then ∂f(x) = {∇f(x)}.

(ii) (,) If ∂f(x) is a singleton, then f is differentiable at x.

Hint: To prove (ii) you can assume that x = 0, f(0) = 0 and ∂f(0) = {0}. Then argue by contradic-

tion: suppose that f is not differentiable at 0 and find some direction along which f grows linearly.

Then use the Hahn-Banach Theorem to obtain a non-zero element in the subdifferential.

Exercise 1.5 ((,) Boundedness and continuity of the subdifferential). Given a convex function f :

Rd → R and a set E ⊂ Rd, we call

∂f(E) :=
⋃
x∈E

∂f(x).

(i) Prove that if f, g : Rd → R are convex functions and Ω ⊂ Rd is a bounded open set such that

f = g on ∂Ω and f ≤ g in Ω, then

∂g(Ω) ⊆ ∂f(Ω).

(ii) Prove that ∂f is locally bounded, that is to say, for every bounded set E ⊂ Rd, ∂f(E) is also

bounded.

2This property can also be restated by saying that the multi-valued function ∂f is “monotone”.
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(iii) Given a sequence xj ∈ Rd and ξj ∈ ∂f(xj), assume that xj → x. Prove that up to subsequences,

ξj → ξ, for some ξ ∈ ∂f(x).

(iv) Prove that f is C1 if and only if ∂f(x) is a singlet for every x ∈ Rd.

Hints: For i) take any hyperplane touching g from below at some point x ∈ Ω and translate it down

vertically until it touches f from below for the first time. For ii) compare f locally with a suitably

chosen convex paraboloid and use point i).

Exercise 1.6 ((,) Extended gradient and descending slope). Let f : Rd → R be a convex function.

(i) Prove that for every x ∈ Rd there exists a unique vector ξ ∈ ∂f(x) with minimal norm. Such

vector is often called the “extended gradient” of f at x. In this exercise we will denote it by

∇f(x).

(ii) Prove that x is a minimum of f if and only if ∇f(x) = 0.

(iii) Prove that the modulus of the extended gradient equals the so called “descending slope” of f :

|∇f(x)| = sup
y ̸=x

[f(x)− f(y)]+

|y − x|
,

where the superscript “+” stands for the positive part, i.e. a+ := max{a, 0}. Deduce from it

that the map x 7→ |∇f(x)| is lower semi-continuous.

Hints: In point iii), to prove the ≤ inequality it may be a good idea to use the Hahn-Banach Theorem

as follows. Call m the descending slope of f at x and prove that the following convex subsets of Rd×R
are disjoint:

A := {(y, r) ∈ Rd × R : r < −m|y − x|}, B := {(y, r) ∈ Rd × R : f(y)− f(x) ≤ r}.

Deduce that there exists an hyperplane in Rd × R which separates A and B. Finally, find a vector

ξ ∈ ∂f(x) such that |ξ| ≤ m.

Exercise 1.7. Let f : R → R be a convex function in one space dimension. Then there exists a

countable set Z ⊂ R such that f is differentiable at x for every x ∈ R \ Z.

Hint: Consider the map that associates to each point x ∈ R the length of ∂f(x).
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