Guided proofs of Rademacher and Alexandrov Theorems

Theorem 1 (Rademacher). Let $f : \mathbb{R}^d \to \mathbb{R}$ be a locally Lipschitz continuous function. Then f is differentiable \mathcal{L}^d -almost everywhere.

Sketch of the proof of Theorem 1.

1. Use Riesz representation theorem (from Functional Analysis) to prove that there exists a weak gradient of f, namely there exists an L^{∞}_{loc} -function $\tilde{\nabla} f = (\tilde{\partial}_1 f, \dots, \tilde{\partial}_d f) : \mathbb{R}^d \to \mathbb{R}^d$ such that

$$\int_{\mathbb{R}^d} f \, \partial_i g \, dx = -\int_{\mathbb{R}^d} \tilde{\partial}_i f \, g \, dx$$

for all $g \in C_c^{\infty}(\mathbb{R}^d, \mathbb{R})$ and for all i = 1, ..., d. Here with $\partial_i g$ we denote the classical derivative of g with respect to the coordinate x_i .

To do this, use that $\partial_i g$ is the limit of incremental ratios.

2. Show that, for each $x_0 \in \mathbb{R}^d$, and each $r_j \downarrow 0$, the sequence of functions

$$f_{r_j}(y) = \frac{f(x_0 + r_j y) - f(x_0)}{r_j}$$

admits a uniformly convergent subsequence to a function f_0 in $\overline{B(0,1)}$.

3. Let $x_0 \in \mathbb{R}^d$ be a Lebesgue point for $\tilde{\nabla} f$. That is, a point such that

$$\frac{1}{\mathscr{L}^d(B_r(x_0))} \int_{B_r(x_0)} |\tilde{\nabla}f - \tilde{\nabla}f(x_0)| \ dx \to 0 \quad \text{as } r \to 0.$$

Show that the weak gradients $\tilde{\nabla} f_{r_j}$ converge to $\tilde{\nabla} f(x_0)$ in $L^1(B(0,1),\mathbb{R}^d)$ as $r_j \downarrow 0$.

4. Show that $\nabla f_0 \equiv \tilde{\nabla} f(x_0)$ in B(0,1) and deduce that f is differentiable at x_0 , its classical gradient being exactly $\tilde{\nabla} f(x_0)$. Conclude by the Lebesgue differentiation theorem.

Theorem 2 (Alexandrov). Let $f : \mathbb{R}^d \to \mathbb{R}$ be a convex function. Then f is twice differentiable \mathcal{L}^d -almost everywhere.

To prove Theorem 2 we first need a couple of lemmas. The first is about a mean-value property of convex functions. The second regards uniformly convex (λ -convex) functions.

Lemma 3 (Non-smooth mean value theorem). Let $f : \mathbb{R}^d \to \mathbb{R}$ be a convex function. Then, for every $x, y \in \mathbb{R}^d$, there exist z in the closed segment with endpoints x, y, and $\xi \in \partial f(z)$, such that

$$f(y) - f(x) = \langle \xi, y - x \rangle.$$

Hint: Approximate f by convolution with smooth convex functions. Then use the stability of subdifferentials under uniform convergence.

Definition 4 (λ -convexity). A function $f : \mathbb{R}^d \to \mathbb{R}$ is said to be λ -convex, for some $\lambda \in \mathbb{R}$, if $f - (\lambda/2)|x|^2$ is convex.

Lemma 5 (Properties of λ -convex functions). Let $f : \mathbb{R}^d \to \mathbb{R}$ be λ -convex for some $\lambda \geq 0$ (in particular, f is convex). Then the following hold.

i) For every $x, y \in \mathbb{R}^d$ and every $t \in [0, 1]$:

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y) - \frac{\lambda}{2}t(1-t)|y-x|^2.$$

ii) The subdifferential of f at x can be written as

$$\partial f(x) = \left\{ \xi \in \mathbb{R}^d : f(y) \ge f(x) + \langle \xi, y - x \rangle + \frac{\lambda}{2} |y - x|^2 \text{ for every } y \in \mathbb{R}^d \right\}.$$

iii) For every $x,y\in\mathbb{R}^d$ and every $\xi\in\partial f(x),\eta\in\partial f(y)$ we have

$$\langle \eta - \xi, y - x \rangle \ge \lambda |y - x|^2.$$

iv) If $\lambda > 0$, then for every $\xi \in \mathbb{R}^d$, there exists a unique point $x =: \Psi(\xi) \in \mathbb{R}^d$ such that $\xi \in \partial f(x)$. Moreover, $\Psi : \mathbb{R}^d \to \mathbb{R}^d$ is λ^{-1} -Lipschitz.

Hint: Points i),ii) and iii) are direct consequences of the definition of λ -convexity and the corresponding properties of convex functions. Regarding point iv), to find x such that $\xi \in \partial f(x)$ it is enough to minimize the function $y \mapsto f(y) - \langle \xi, y \rangle$. To prove that such $x =: \Psi(\xi)$ is unique and that Ψ is λ^{-1} -Lipschitz, use point iii).

Sketch of the proof of Theorem 2.

- 1. First of all observe that we may assume without loss of generality that f is λ -convex, for some $\lambda > 0$. Then, thanks to point iv) in Lemma 5 it is well-defined the "inverse" of the subdifferential $\Psi : \mathbb{R}^d \to \mathbb{R}^d$ as the λ^{-1} -Lipschitz map which associates each point $\xi \in \mathbb{R}^d$ with the unique $\Psi(\xi) = x \in \mathbb{R}^d$ for which $\xi \in \partial f(x)$.
- 2. Define the set

 $\Sigma := \{ \xi \in \mathbb{R}^d : \text{either } \Psi \text{ is not differentiable at } \xi \text{ or it is but } \det D\Psi(\xi) = 0 \}.$

Use Theorem 1 and the area formula to prove that

$$\mathcal{L}^d(\Psi(\Sigma)) = 0.$$

Define the set

$$\Omega := \{x \in \mathbb{R}^d : f \text{ is differentiable at } x\} \setminus \Psi(\Sigma).$$

Observe that by Theorem 1 again (remember that convex functions are locally Lipschitz),

$$\mathscr{L}^d(\mathbb{R}^d \setminus \Omega) = 0.$$

3. Given $x \in \Omega$, take $p = \nabla f(x)$, and notice that $\Psi(p) = x$, Ψ is differentiable at p and det $D\Psi(p) \neq 0$. Hence it is well-defined the matrix

$$S(x) := D\Psi(p)^{-1}.$$

Notice that since Ψ is λ^{-1} -convex, $|S(x)| \leq \lambda$. Prove that

$$\lim_{\substack{y \to x \\ \eta \in \partial f(y)}} \frac{|\eta - \nabla f(x) - S(x)(y - x)|}{|y - x|} = 0. \tag{1}$$

4. Show that the function

$$g(y) := f(y) - f(x) - \langle \nabla f(x), y - x \rangle - \frac{1}{2} \langle S(x)(y - x), (y - x) \rangle$$

is convex. Notice that (1) can be rephrased as

$$\lim_{\substack{y \to x \\ \eta \in \partial g(y)}} \frac{|\eta|}{|y - x|} = 0.$$

Finally, use Lemma 3 on g to conclude that

$$\lim_{y \to x} \frac{\left| f(y) - f(x) - \langle \nabla f(x), y - x \rangle - \frac{1}{2} \langle S(x)(y - x), (y - x) \rangle \right|}{|y - x|^2} = 0.$$