Guided proofs of Rademacher
and Alexandrov Theorems

Theorem 1 (Rademacher). Let f : RY — R be a locally Lipschitz continuous function. Then
f is differentiable £%-almost everywhere.

Sketch of the proof of Theorem ]

1. Use Riesz representation theorem (from Functional Analysis) to prove that there exists
a weak gradient of f, namely there exists an L -function Vf = (01 f,...,04f) : R —
R? such that
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for all g € C°(R% R) and for all i = 1,...,d. Here with 9;g we denote the classical
derivative of g with respect to the coordinate z;.

To do this, use that 0;g is the limit of incremental ratios.

2. Show that, for each x5 € R and each r; | 0, the sequence of functions

f(xo +75y) — f(0)

T

fri(y) =

admits a uniformly convergent subsequence to a function fy in B(0,1).
3. Let 2y € R? be a Lebesgue point for @f. That is, a point such that
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m LT(IO) IVf—Vf(x)| de — 0 asr — 0.

Show that the weak gradients @frj converge to V f(xo) in L'(B(0,1),R%) as r; | 0.

4. Show that Vfy = Vf(x) in B(0,1) and deduce that f is differentiable at o, its
classical gradient being exactly Vf(zo). Conclude by the Lebesgue differentiation
theorem.



Theorem 2 (Alexandrov). Let f : R? — R be a convex function. Then f is twice differen-
tiable L%-almost everywhere.

To prove Theorem [2| we first need a couple of lemmas. The first is about a mean-value
property of convex functions. The second regards uniformly convex (A-convex) functions.

Lemma 3 (Non-smooth mean value theorem). Let f : R — R be a convex function. Then,
for every x,y € RY, there exist z in the closed segment with endpoints x,y, and & € Of(z),
such that

fy) = f(z) = &y — ).

Hint: Approximate f by convolution with smooth convex functions. Then use the stability
of subdifferentials under uniform convergence.

Definition 4 (\-convexity). A function f : R? — R is said to be \-convez, for some \ € R,
if f—(\/2)|z|? is conver.

Lemma 5 (Properties of A-convex functions). Let f : R? — R be \-convex for some X\ > 0
(in particular, f is convex). Then the following hold.

i) For every x,y € R? and every t € [0,1]:
A
=tz +ty) < (1 =1)f(z) +tf(y) = S0 =Dy — =],
ii) The subdifferential of f at x can be written as

A
07(0) = {€ € RY: 1(4) 2 J(a) + (6 = a) + Fly — ol for every y € R

iii) For every x,y € R and every £ € Of(x),n € Of(y) we have
(n—¢&y—a) > Ay —al®

w) If X > 0, then for every £ € R%, there exists a unique point v =: W(&) € R? such that
€ € 0f(x). Moreover, ¥ : RY — R? is A\=1-Lipschitz.

Hint: Points i),ii) and iii) are direct consequences of the definition of A-convexity and the
corresponding properties of convex functions. Regarding point iv), to find z such that
¢ € Of(x) it is enough to minimize the function y — f(y) — (¢,y). To prove that such
r =: ¥(§) is unique and that ¥ is A~!-Lipschitz, use point iii).



Sketch of the proof of Theorem [9

1. First of all observe that we may assume without loss of generality that f is A-convex,
for some A > 0. Then, thanks to point iv) in Lemmal|it is well-defined the “inverse” of
the subdifferential ¥ : R — R? as the A\~ '-Lipschitz map which associates each point
¢ € R? with the unique ¥(§) = z € R? for which £ € 9f(z).

2. Define the set
¥ = {¢ € R? : either VU is not differentiable at £ or it is but det D¥(§) =0} .
Use Theorem (1| and the area formula to prove that
L4V (2)) = 0.

Define the set
Q:={z € R?: [ is differentiable at =} \ ¥(X).

Observe that by Theorem [1| again (remember that convex functions are locally Lips-
chitz),
ZYR\ Q) = 0.

3. Given x € €, take p = V f(x), and notice that W(p) = z, ¥ is differentiable at p and
det DU (p) # 0. Hence it is well-defined the matrix

S(z) := DV (p)~".
Notice that since ¥ is A~'-convex, |S(z)| < A. Prove that
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4. Show that the function

9(9) = 1(y) ~ f(@) ~ (V()y — ) — 5 (S@)ly — o), (g — o)

is convex. Notice that can be rephrased as
lim i
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Finally, use Lemma [3| on ¢ to conclude that
) = £@) = (V@) = 2) = M@ = 2), (v = )

— 0.
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