
Guided proofs of Rademacher

and Alexandrov Theorems

Theorem 1 (Rademacher). Let f : Rd → R be a locally Lipschitz continuous function. Then
f is di�erentiable L d-almost everywhere.

Sketch of the proof of Theorem 1.

1. Use Riesz representation theorem (from Functional Analysis) to prove that there exists
a weak gradient of f , namely there exists an L∞

loc-function ∇̃f = (∂̃1f, . . . , ∂̃df) : Rd →
Rd such that ∫

Rd

f ∂ig dx = −
∫
Rd

∂̃if g dx

for all g ∈ C∞
c (Rd,R) and for all i = 1, . . . , d. Here with ∂ig we denote the classical

derivative of g with respect to the coordinate xi.

To do this, use that ∂ig is the limit of incremental ratios.

2. Show that, for each x0 ∈ Rd, and each rj ↓ 0, the sequence of functions

frj(y) =
f(x0 + rjy)− f(x0)

rj

admits a uniformly convergent subsequence to a function f0 in B(0, 1).

3. Let x0 ∈ Rd be a Lebesgue point for ∇̃f . That is, a point such that

1

L d(Br(x0))

∫
Br(x0)

|∇̃f − ∇̃f(x0)| dx → 0 as r → 0.

Show that the weak gradients ∇̃frj converge to ∇̃f(x0) in L1(B(0, 1),Rd) as rj ↓ 0.

4. Show that ∇f0 ≡ ∇̃f(x0) in B(0, 1) and deduce that f is di�erentiable at x0, its
classical gradient being exactly ∇̃f(x0). Conclude by the Lebesgue di�erentiation
theorem.
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Theorem 2 (Alexandrov). Let f : Rd → R be a convex function. Then f is twice di�eren-
tiable L d-almost everywhere.

To prove Theorem 2 we �rst need a couple of lemmas. The �rst is about a mean-value
property of convex functions. The second regards uniformly convex (λ-convex) functions.

Lemma 3 (Non-smooth mean value theorem). Let f : Rd → R be a convex function. Then,
for every x, y ∈ Rd, there exist z in the closed segment with endpoints x, y, and ξ ∈ ∂f(z),
such that

f(y)− f(x) = ⟨ξ, y − x⟩.

Hint: Approximate f by convolution with smooth convex functions. Then use the stability
of subdi�erentials under uniform convergence.

De�nition 4 (λ-convexity). A function f : Rd → R is said to be λ-convex, for some λ ∈ R,
if f − (λ/2)|x|2 is convex.

Lemma 5 (Properties of λ-convex functions). Let f : Rd → R be λ-convex for some λ ≥ 0
(in particular, f is convex). Then the following hold.

i) For every x, y ∈ Rd and every t ∈ [0, 1]:

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y)− λ

2
t(1− t)|y − x|2.

ii) The subdi�erential of f at x can be written as

∂f(x) =

{
ξ ∈ Rd : f(y) ≥ f(x) + ⟨ξ, y − x⟩+ λ

2
|y − x|2 for every y ∈ Rd

}
.

iii) For every x, y ∈ Rd and every ξ ∈ ∂f(x), η ∈ ∂f(y) we have

⟨η − ξ, y − x⟩ ≥ λ|y − x|2.

iv) If λ > 0, then for every ξ ∈ Rd, there exists a unique point x =: Ψ(ξ) ∈ Rd such that
ξ ∈ ∂f(x). Moreover, Ψ : Rd → Rd is λ−1-Lipschitz.

Hint: Points i),ii) and iii) are direct consequences of the de�nition of λ-convexity and the
corresponding properties of convex functions. Regarding point iv), to �nd x such that
ξ ∈ ∂f(x) it is enough to minimize the function y 7→ f(y) − ⟨ξ, y⟩. To prove that such
x =: Ψ(ξ) is unique and that Ψ is λ−1-Lipschitz, use point iii).
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Sketch of the proof of Theorem 2.

1. First of all observe that we may assume without loss of generality that f is λ-convex,
for some λ > 0. Then, thanks to point iv) in Lemma 5 it is well-de�ned the �inverse� of
the subdi�erential Ψ : Rd → Rd as the λ−1-Lipschitz map which associates each point
ξ ∈ Rd with the unique Ψ(ξ) = x ∈ Rd for which ξ ∈ ∂f(x).

2. De�ne the set

Σ :=
{
ξ ∈ Rd : either Ψ is not di�erentiable at ξ or it is but detDΨ(ξ) = 0

}
.

Use Theorem 1 and the area formula to prove that

L d(Ψ(Σ)) = 0.

De�ne the set
Ω :=

{
x ∈ Rd : f is di�erentiable at x

}
\Ψ(Σ).

Observe that by Theorem 1 again (remember that convex functions are locally Lips-
chitz),

L d(Rd \ Ω) = 0.

3. Given x ∈ Ω, take p = ∇f(x), and notice that Ψ(p) = x, Ψ is di�erentiable at p and
detDΨ(p) ̸= 0. Hence it is well-de�ned the matrix

S(x) := DΨ(p)−1.

Notice that since Ψ is λ−1-convex, |S(x)| ≤ λ. Prove that

lim
y→x

η∈∂f(y)

|η −∇f(x)− S(x)(y − x)|
|y − x|

= 0. (1)

4. Show that the function

g(y) := f(y)− f(x)− ⟨∇f(x), y − x⟩ − 1

2
⟨S(x)(y − x), (y − x)⟩

is convex. Notice that (1) can be rephrased as

lim
y→x

η∈∂g(y)

|η|
|y − x|

= 0.

Finally, use Lemma 3 on g to conclude that

lim
y→x

∣∣f(y)− f(x)− ⟨∇f(x), y − x⟩ − 1
2
⟨S(x)(y − x), (y − x)⟩

∣∣
|y − x|2

= 0.
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