

Michel Bierlaire.

TAs: Cloe Cortes, Pavel Ilinov, Evangelos Paschalidis, Anne-Valérie Preto, Negar Rezvany Mid-term wrap-up — November 12, 2024

Question 1: Specification testing and forecasting

Consider the following transportation mode choice model (M_1) for the Swissmetro (SM) case study, which involves three alternatives: car, rail and Swissmetro. The utility functions are defined as

$$U_{in} = V_{in} + \varepsilon_{in}$$
,

where i denotes the alternative, n the individual, ε_{in} are the error terms, i.i.d. EV(0, 1), and V_{in} are the deterministic part of the utility functions, specified as follows:

$$\begin{split} V_{\text{car},n} &= ASC_{\text{car}} + \beta_{\text{c}}\text{cost}_{\text{car},n} + \beta_{\text{t}}\text{time}_{\text{car},n} + \beta_{\text{f},\text{car}}\text{female}_{n}, \\ V_{\text{rail},n} &= ASC_{\text{rail}} + \beta_{\text{c}}\text{cost}_{\text{rail},n} + \beta_{\text{t}}\text{time}_{\text{rail},n} + \beta_{\text{f},\text{rail}}\text{female}_{n}, \\ V_{\text{SM},n} &= \beta_{\text{c}}\text{cost}_{\text{SM},n} + \beta_{\text{t}}\text{time}_{\text{SM},n}, \end{split}$$

where $cost_{i,n}$ is the travel cost in CHF associated with alternative i and individual n, $time_{i,n}$ is the travel time in minutes of alternative i and individual n, and $female_n$ is a binary variable that takes value 1 if individual n is female and 0 otherwise. The estimates for the parameters ASC_{car} , ASC_{rail} , β_c , β_t , $\beta_{f,car}$ and $\beta_{f,rail}$ can be found in Table 1 on the following page.

Interpretation of the specification

- 1. What are the parameters ASC_{car} and ASC_{rail} , and what are they capturing?
- 2. The model does not involve a parameter ASC_{SM}. Why?
- 3. What is the behavioral interpretation of the sign of β_{cost} and β_{time} ?
- 4. The model does not involve a term $\beta_{f,SM}$ female_n. Why?
- 5. What is the value of the alternative specific constants for females?
- 6. What is the value of the alternative specific constants for males?

Michel Bierlaire.

TAs: Cloe Cortes, Pavel Ilinov, Evangelos Paschalidis, Anne-Valérie Preto, Negar Rezvany Mid-term wrap-up — November 12, 2024

			Robust		
Parameter		Coeff.	Asympt.		
number	Description	estimate	std. error	t-stat	p-value
1	ASC_{car}	-0.461	0.0973	-4.74	0.00
2	ASC_{rail}	0.0906	0.0913	0.99	0.32
3	β_c	-0.0108	0.000670	-16.18	0.00
4	β_{t}	-0.0125	0.00105	-11.81	0.00
5	$eta_{ extsf{f,car}}$	0.309	0.102	3.04	0.00
6	$eta_{f,rail}$	-1.23	0.0792	-15.53	0.00

Summary statistics

Number of observations = 6768

Number of excluded observations = 3960

Number of estimated parameters = 6

$$\begin{array}{rcl} \mathcal{L}(\beta_0) & = & -6964.663 \\ \mathcal{L}(\hat{\beta}) & = & -5187.983 \\ -2[\mathcal{L}(\beta_0) - \mathcal{L}(\hat{\beta})] & = & 3553.359 \\ \rho^2 & = & 0.255 \\ \bar{\rho}^2 & = & 0.254 \end{array}$$

Table 1: Estimation results for M_1

- 7. Specify an equivalent model (M₂) that involves the variable male_n instead of female_n. That variable is 0 if individual n is a female, and 1 otherwise. Provide the estimated value of the parameters for this new specification.
- 8. Specify an equivalent model (M_3) that explicitly includes an alternative specific constant for females, and an alternative specific constant for others. Provide the estimated value of the parameters for this new specification.

Michel Bierlaire.

TAs: Cloe Cortes, Pavel Ilinov, Evangelos Paschalidis, Anne-Valérie Preto, Negar Rezvany Mid-term wrap-up — November 12, 2024

Testing

We now characterize a new model (M_4) as follows:

$$\begin{split} V_{\text{car},n} &= ASC_{\text{car}} + \beta_{\text{c}}\text{cost}_{\text{car},n} + \beta_{\text{t,car}}\frac{\text{time}_{\text{car},n}^{\lambda} - 1}{\lambda} + \beta_{\text{f,car}}\text{female}_{n}, \\ V_{\text{rail},n} &= ASC_{\text{rail}} + \beta_{\text{c}}\text{cost}_{\text{rail},n} + \beta_{\text{t,rail}}\text{time}_{\text{rail},n} \\ V_{\text{SM},n} &= \beta_{\text{c}}\text{cost}_{\text{SM},n} + \beta_{\text{t,SM}}\text{time}_{\text{SM},n} \\ &+ \beta_{\text{GA,SM}}GA_{n}, \end{split}$$

where all the elements are defined in the same way as for model M_1 , GA_n is a variable that takes value 1 if individual n owns a yearly subscription, and 0 otherwise, and λ is the parameter of the Box-Cox transform, to be estimated. The estimates for the parameters can be found in Table 2 on the next page.

- 1. What does it mean for a coefficient to be significant? Is there any parameter in Table 2 on the following page that is not significant? What are the implications in terms of model specification?
- 2. We want to use a likelihood ratio test to compare the two specifications M_1 and M_4 . What is the null hypothesis for such a test? What are the corresponding linear restrictions?
- 3. Which model is preferred using a level of significance of 5%? Use Table 3 on the next page to justify your answer.
- 4. Specify a new linear-in-parameter model with the exact same number of parameters as M₄, and call it M₅. It shall capture the fact that the marginal effect of travel cost in the utility varies with travel cost.
- 5. What statistical tests can be used to compare M_5 against model M_4 ? Explain how they are used and what are the possible outcomes.
- 6. What is the expression for the value of time associated with each alternative and individual according to model M_5 ?

Michel Bierlaire.

TAs: Cloe Cortes, Pavel Ilinov, Evangelos Paschalidis, Anne-Valérie Preto, Negar Rezvany Mid-term wrap-up — November 12, 2024

			Robust		
Parameter		Coeff.	Asympt.		
number	Description	estimate	std. error	t-stat	p-value
1	ASC_{car}	0.549	0.565	0.97	0.33
2	ASC_{rail}	-1.58	0.139	-11.32	0.00
3	β_c	-0.0108	0.000730	-14.82	0.00
4	$\beta_{\rm GA,SM}$	0.458	0.203	2.25	0.02
5	$\beta_{\text{GA},\text{rail}}$	2.34	0.213	11.00	0.00
6	$\beta_{t,SM}$	-0.0122	0.00181	-6.73	0.00
7	$\beta_{t,\mathtt{car}}$	-0.0684	0.0643	-1.06	0.29
8	$\beta_{\rm t,rail}$	-0.0123	0.00115	-10.75	0.00
9	$\beta_{\rm f,car}$	-0.428	0.102	-4.20	0.00
10	$eta_{f,rail}$	1.10	0.0863	12.74	0.00
11	λ	0.647	0.197	3.29	0.00

Summary statistics

Number of observations = 6768

Number of excluded observations = 3960

Number of estimated parameters = 11

$$\begin{array}{rcl} \mathcal{L}(\beta_0) & = & -6964.663 \\ \mathcal{L}(\widehat{\beta}) & = & -4936.917 \\ -2[\mathcal{L}(\beta_0) - \mathcal{L}(\widehat{\beta})] & = & 4055.492 \\ \rho^2 & = & 0.291 \\ \bar{\rho}^2 & = & 0.290 \end{array}$$

Table 2: Estimation results for M_4

k	$P(X \ge x) = 5\%$	k	$P(X \ge x) = 5\%$	k	$P(X \ge x) = 5\%$
1	3.841	4	9.488	7	14.07
2	5.991	5	11.07	8	15.51
3	7.815	6	12.59	9	16.92

Table 3: Critical values of a χ^2 distribution with k degrees of freedom for a 5% level of significance