Theoretical foundations

Behavioral assumptions

Michel Bierlaire

Mathematical Modeling of Behavior

Choice theory

Theory of behavior that is

- descriptive: how people behave and not how they should,
- abstract: not too specific,
- operational: can be used in practice for forecasting.

Building the theory

Define

- 1. who (or what) is the decision maker,
- 2. what are the characteristics of the decision maker,
- 3. what are the alternatives available for the choice,
- 4. what are the attributes of the alternatives, and
- 5. what is the decision rule that the decision maker uses to make a choice.

Outline

Decision maker

Alternatives

Attributes

Decision rule

Example

Behavioral validity

Appendix

Decision maker

Individual

- a person,
- ▶ a group of persons (internal interactions are ignored):
 - household, family,
 - ► firm,
 - government agency,
- notation: *n*.

Characteristics of the decision maker

Disaggregate models

Individuals

- face different choice situations,
- have different tastes.

Characteristics

- income,
- sex,
- age,
- ▶ level of education,
- household/firm size,
- etc.

Outline

Decision maker

Alternatives

Attributes

Decision rule

Example

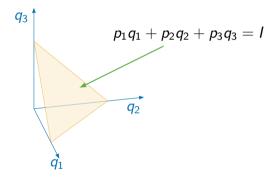
Behavioral validity

Appendix

Alternatives: continuous choice set

Commodity bundle

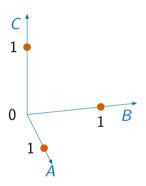
- q₁: quantity of milk.
- q₂: quantity of bread.
- q₃: quantity of butter.
- ightharpoonup Unit price: p_i .
- ► Budget: *I*.



Alternatives: discrete choice set

List of alternatives

- ▶ Brand A.
- ▶ Brand *B*.
- ▶ Brand *C*.



Alternatives: discrete choice set

Choice set

- ▶ Non empty finite and countable set of alternatives.
- \triangleright Universal: \mathcal{C} .
- ▶ Individual specific: $C_n \subseteq C$.
- Availability, awareness.

Example

Choice of a transportation mode:

- $ightharpoonup C = \{car, bus, metro, walking \}.$
- ▶ If decision maker *n* has no driver license, and the trip is 12km long

$$C_n = \{bus, metro\}.$$

Outline

Decision maker

Alternatives

Attributes

Decision rule

Example

Behavioral validity

Appendix

Alternative attributes

Characterize each alternative *i* for each individual *n*

- price,
- travel time,
- frequency,
- comfort,
- color,
- size,
- etc.

Nature of the variables

- Quantitative and qualitative.
- Generic and specific.

Outline

Decision maker

Alternatives

Attributes

Decision rule

Example

Behavioral validity

Appendix

Decision rule

Homo economicus

Rational and narrowly self-interested economic actor who is optimizing her outcome.

Preferences

- \triangleright $i \succ j$: i is preferred to j,
- $ightharpoonup i \sim j$: indifference between i and j,
- \triangleright $i \gtrsim j$: i is at least as preferred as j.

Decision rule

Rationality

 \triangleright Completeness: for all alternatives i and j,

$$i \succ j$$
 or $i \prec j$ or $i \sim j$.

ightharpoonup Transitivity: for all bundles i, j and k,

if
$$i \gtrsim j$$
 and $j \gtrsim k$ then $i \gtrsim k$.

► "Continuity": if *i* is preferred to *j* and *k* is arbitrarily "close" to *i*, then *k* is preferred to *j*.

Utility

$$U_n: \mathcal{C}_n \longrightarrow \mathbb{R}: i \leadsto U_n(i).$$

Consistent with the preferences:

$$U_n(i) \geq U_n(j) \iff i \succsim j.$$

- Captures the attractiveness of an alternative.
- Measure that the decision maker wants to optimize.
- Unique up to an order-preserving transformation.

Utility

Shift invariant

$$i \succsim j \iff U_n(i) \ge U_n(j) \iff U_n(i) + \eta \ge U_n(j) + \eta, \forall \eta \in \mathbb{R}.$$

Scale invariant

$$i \gtrsim j \iff U_n(i) \ge U_n(j) \iff \mu U_n(i) \ge \mu U_n(j), \forall \mu \in \mathbb{R}, \mu > 0.$$

Comments

- ► The "zero" is arbitrary.
- ► The units are arbitrary.

Behavioral assumptions

- ► The preference structure of the decision maker is fully characterized by a utility associated with each alternative.
- ► The decision maker is a perfect optimizer.
- ▶ The alternative with the highest utility is chosen.

The case of continuous goods

Consumption bundle:

$$q = \left(egin{array}{c} q_1 \ dots \ q_L \end{array}
ight), \; p = \left(egin{array}{c} p_1 \ dots \ p_L \end{array}
ight).$$

Budget constraint:

$$p^Tq = \sum_{\ell=1}^L p_\ell q_\ell \leq I.$$

No attributes, just quantities and prices.

Choice

Solution of an optimization problem

$$\max_{q \in \mathbb{R}^L} \, \widetilde{U}(q)$$

subject to

$$p^T q \leq I, \ q \geq 0.$$

Demand function

- Solution of the optimization problem.
- Quantity as a function of prices and budget:

$$q^* = \operatorname{demand}(I, p).$$

Example: Cobb-Douglas

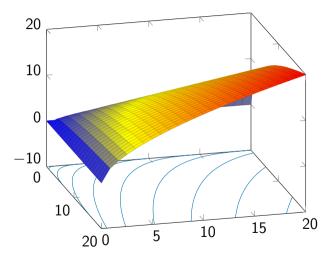
Utility function

$$\widetilde{U}(q) = heta_0 \prod_{\ell=1}^L q_\ell^{ heta_\ell}.$$

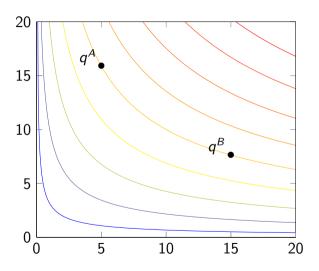
Demand function

$$q_i^* = rac{ heta_i}{\sum_{\ell=1}^L heta_\ell} rac{I}{p_i}$$

Example: Cobb-Douglas



Example



The case of discrete goods

The consumer

- ightharpoonup selects the quantities of continuous goods: $q=(q_1,\ldots,q_L)$,
- ightharpoonup chooses an alternative in a discrete choice set $i=1,\ldots,j,\ldots,J$.
- **Discrete** decision vector: (y_1,\ldots,y_J) , $y_j\in\{0,1\}$, $\sum_j y_j=1$.

Note

- ▶ In theory, one alternative of the discrete choice combines all possible choices made by an individual.
- In practice, the choice set is restricted for tractability.

Example

Choices

- ► House location: discrete choice.
- Car type: discrete choice.
- Number of kilometers driven per year: continuous choice.

Discrete choice set

Each combination of a house location and a car is an alternative.

Utility maximization

Utility

$$\widetilde{U}(q, y, \widetilde{z}^T y; \theta).$$

- q: quantities of the continuous good.
- v: discrete choice.
- $ilde{z}^T = (\tilde{z}_1, \dots, \tilde{z}_i, \dots, \tilde{z}_J) \in \mathbb{R}^{K \times J}$: K attributes of the J alternatives.
- $ightharpoonup ilde{z}^T y \in \mathbb{R}^K$: attributes of the chosen alternative.
- \triangleright θ : vector of parameters. Let's ignore them for now.

Optimization problem

subject to

$$egin{aligned} \max_{q,y} \ \widetilde{U}(q,y, ilde{z}^Ty; heta) \ & p^Tq+c^Ty \leq I, \ & \sum_j y_j = 1, \end{aligned}$$

 $y_i \in \{0, 1\}, \forall i$.

where $c^T = (c_1, \dots, c_i, \dots, c_J)$ is the cost of each alternative Solving the problem

- Mixed integer optimization problem.
- No optimality condition.
- Impossible to derive demand functions directly.

Solving the problem

Step 1: condition on the choice of the discrete good

- Fix the discrete good, that is select a feasible y.
- ightharpoonup The problem becomes a continuous problem in q.
- Conditional demand functions can be derived:

$$q_{\ell|y} = \operatorname{demand}(I - c^T y, p, \tilde{z}^T y),$$

or, equivalently, for each alternative i,

$$q_{\ell|i} = \mathsf{demand}(I - c_i, p, \tilde{z}_i).$$

- $ightharpoonup I c_i$ is the income left for the continuous goods, if alternative i is chosen.
- ▶ If $I c_i < 0$, alternative i is declared unavailable and removed from the choice set.

Solving the problem

Conditional demand functions

demand
$$(I - c^T y, p, \tilde{z}^T y)$$
.

Conditional indirect utility functions

Substitute the demand functions into the utility:

$$U = \widetilde{U}(\operatorname{demand}(I - c^T y, p, \widetilde{z}_i), y, \widetilde{z}^T y) = U(I - c^T y, y, p, \widetilde{z}^T y).$$

Solving the problem

Step 2: Choice of the discrete good

$$\max_{y} U(I - c^{T}y, y, p, \tilde{z}^{T}y) \text{ s.t. } y \in \{0, 1\}^{J}, \sum_{i=1}^{J} y_{i} = 1.$$

- Enumerate all alternatives.
- For each alternative i, set $y_i = 1$, $y_j = 0$, $j \neq i$.
- ▶ Compute the conditional indirect utility function *U*.
- \triangleright Select the alternative with the highest U.
- Note: no income constraint anymore.

Model for individual *n*

$$\max_{y} U(I_{n} - c_{n}^{T}y, y, p_{n}, \tilde{z}_{n}^{T}y).$$

Simplifications

- \triangleright s_n : set of characteristics of n, including income l_n .
- ▶ Prices of the continuous goods (p_n) are neglected.
- $ightharpoonup c_{in}$ is considered as another attribute and merged into \tilde{z}_n :

$$z_n = \{\tilde{z}_n, c_n\}.$$

Optimization problem

$$\max_{i} U_{in} = U(z_{in}, s_n)$$

Outline

Decision maker

Alternatives

Attributes

Decision rule

Example

Behavioral validity

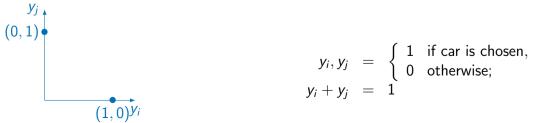
Appendix

Context

Choice between car and bus for a commuter trip.

	Attributes	
Alternatives	Travel time (t)	Travel cost (c)
i (e.g. car)	t _i	Ci
j (e.g. bus)	$\mid t_j \mid$	c_j

Decision variables



Utility functions

Arbitrary units: for instance, CHF.

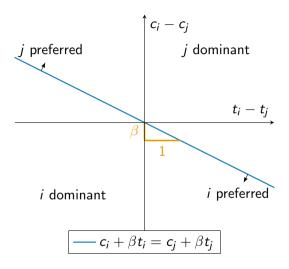
$$U_i = -c_i - \beta t_i, U_j = -c_j - \beta t_j,$$

where $\beta > 0$ is a parameter to be estimated from data.

Role of β : transforming minutes into CHF.

i is chosen if

$$U_i \geq U_j, \ -c_i - \beta t_i \geq -c_j - \beta t_j, \ -\beta (t_i - t_j) \geq c_i - c_j.$$



$$c_j > c_i$$
 and $t_j > t_i$
 i is dominant.

$$c_i > c_j$$
 and $t_i > t_j$
 j is dominant.

$$c_i > c_i$$
 and $t_i > t_i$

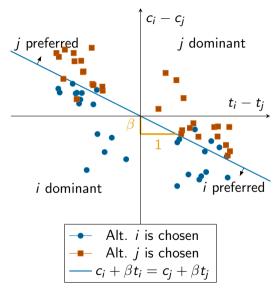
Alternative j is chosen if

$$-\beta(t_i-t_j)\leq c_i-c_j,$$

or, as
$$t_i > t_j$$
,

$$\beta \geq \frac{c_j - c_i}{t_i - t_i}.$$

Example: transportation mode choice



Outline

Decision maker

Alternatives

Attributes

Decision rule

Example

Behavioral validity

Appendix

Behavioral validity of the utility maximization?

Assumptions

Decision-makers

- are able to process information,
- have perfect discrimination power,
- have transitive preferences,
- are perfect maximizer,
- are always consistent.

Relax the assumptions

Use a probabilistic approach: what is the probability that alternative i is chosen?

Introducing probability

Constant utility

- Human behavior is inherently random.
- Utility is deterministic.
- Consumer does not maximize utility.
- Probability to use inferior alternative is non zero.

Niels Bohr Nature is stochastic.

Random utility

- Decision-maker are rational maximizers.
- Analysts have no access to the utility used by the decision-maker.
- Utility becomes a random variable.

Albert Einstein

God does not throw dice.

Random utility model

Probability model

$$P(i|\mathcal{C}_n) = \Pr(U_{in} \geq U_{jn}, \forall j \in \mathcal{C}_n).$$

Random utility

$$U_{in} = V_{in} + \varepsilon_{in}$$
.

Random utility model

$$P(i|\mathcal{C}_n) = \Pr(V_{in} + \varepsilon_{in} \geq V_{jn} + \varepsilon_{jn}, \forall j \in \mathcal{C}_n),$$

or

$$P(i|C_n) = \Pr(\varepsilon_{jn} - \varepsilon_{in} \leq V_{in} - V_{jn}, \forall j \in C_n).$$

The random utility model

- Assume that $\varepsilon_n = (\varepsilon_{1n}, \dots, \varepsilon_{J_nn})$ is a multivariate random variable,
- with CDF

$$F_{\varepsilon_n}(\varepsilon_1,\ldots,\varepsilon_{J_n}),$$

and pdf

$$f_{\varepsilon_n}(\varepsilon_1,\ldots,\varepsilon_{J_n})=\frac{\partial^{J_n}F}{\partial\varepsilon_1\cdots\partial\varepsilon_{J_n}}(\varepsilon_1,\ldots,\varepsilon_{J_n}).$$

Then $P_n(i|\mathcal{C}_n) =$

$$\int_{\varepsilon--\infty}^{+\infty} \frac{\partial F_{\varepsilon_{1n},\varepsilon_{2n},\ldots,\varepsilon_{J_n}}}{\partial \varepsilon_i} (\ldots, V_{in} - V_{(i-1)n} + \varepsilon, \varepsilon, V_{in} - V_{(i+1)n} + \varepsilon, \ldots) d\varepsilon.$$

Derivation in the appendix.

Random utility model

- ▶ The general formulation is complex.
- We will derive specific models based on simple assumptions.
- We will then relax some of these assumptions to propose more advanced models.

Summary

- Ingredients of choice theory.
- ▶ Utility theory: from continuous to discrete goods.
- ► Random utility theory.

Outline

Decision maker

Alternatives

Attributes

Decision rule

Example

Behavioral validity

Appendix

Derivation of the random utility model

Joint distributions of ε_n

- Assume that $\varepsilon_n = (\varepsilon_{1n}, \dots, \varepsilon_{J_nn})$ is a multivariate random variable,
- with CDF

$$F_{\varepsilon_n}(\varepsilon_1,\ldots,\varepsilon_{J_n}),$$

and pdf

$$f_{\varepsilon_n}(\varepsilon_1,\ldots,\varepsilon_{J_n})=rac{\partial^{J_n}F}{\partial \varepsilon_1\cdots\partial \varepsilon_{J_n}}(\varepsilon_1,\ldots,\varepsilon_{J_n}).$$

Derive the model for the first alternative (wlog)

$$P_n(1|\mathcal{C}_n) = \Pr(V_{2n} + \varepsilon_{2n} \leq V_{1n} + \varepsilon_{1n}, \dots, V_{In} + \varepsilon_{In} \leq V_{1n} + \varepsilon_{1n}),$$

or

 $P_n(1|\mathcal{C}_n) = \Pr(\varepsilon_{2n} - \varepsilon_{1n} < V_{1n} - V_{2n}, \dots, \varepsilon_{In} - \varepsilon_{1n} < V_{1n} - V_{In}).$

Model

$$P_n(1|\mathcal{C}_n) = \Pr(\varepsilon_{2n} - \varepsilon_{1n} \leq V_{1n} - V_{2n}, \dots, \varepsilon_{Jn} - \varepsilon_{1n} \leq V_{1n} - V_{Jn}).$$

Change of variables

$$\xi_{1n} = \varepsilon_{1n}, \ \xi_{in} = \varepsilon_{in} - \varepsilon_{1n}, \ i = 2, \dots, J_n,$$

that is

$$\begin{pmatrix} \xi_{1n} \\ \xi_{2n} \\ \vdots \\ \xi_{(J_n-1)n} \\ \xi_{J_nn} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ -1 & 1 & \cdots & 0 & 0 \\ & & \vdots & & \\ -1 & 0 & \cdots & 1 & 0 \\ -1 & 0 & \cdots & 0 & 1 \end{pmatrix} \begin{pmatrix} \varepsilon_{1n} \\ \varepsilon_{2n} \\ \vdots \\ \varepsilon_{(J_n-1)n} \\ \varepsilon_{J_nn} \end{pmatrix}.$$

Model in ε

$$P_n(1|\mathcal{C}_n) = \Pr(\varepsilon_{2n} - \varepsilon_{1n} \leq V_{1n} - V_{2n}, \dots, \varepsilon_{Jn} - \varepsilon_{1n} \leq V_{1n} - V_{Jn}).$$

Change of variables

$$\xi_{1n} = \varepsilon_{1n}, \ \xi_{in} = \varepsilon_{in} - \varepsilon_{1n}, \ i = 2, \dots, J_n,$$

Model in ξ

$$P_n(1|C_n) = \Pr(\xi_{2n} \leq V_{1n} - V_{2n}, \dots, \xi_{J_nn} \leq V_{1n} - V_{J_nn}).$$

Note

The determinant of the change of variable matrix is 1, so that ε and ξ have the same pdf

48 / 54

$$\begin{split} & P_{n}(1|\mathcal{C}_{n}) \\ & = \quad \Pr(\xi_{2n} \leq V_{1n} - V_{2n}, \dots, \xi_{J_{n}n} \leq V_{1n} - V_{J_{n}n}) \\ & = \quad F_{\xi_{1n}, \xi_{2n}, \dots, \xi_{J_{n}}}(+\infty, V_{1n} - V_{2n}, \dots, V_{1n} - V_{J_{n}n}) \\ & = \quad \int_{\xi_{1} = -\infty}^{+\infty} \int_{\xi_{2} = -\infty}^{V_{1n} - V_{2n}} \dots \int_{\xi_{J_{n}} = -\infty}^{V_{1n} - V_{J_{n}n}} f_{\xi_{1n}, \xi_{2n}, \dots, \xi_{J_{n}}}(\xi_{1}, \xi_{2}, \dots, \xi_{J_{n}}) d\xi, \\ & = \quad \int_{\varepsilon_{1} = -\infty}^{+\infty} \int_{\varepsilon_{2} = -\infty}^{V_{1n} - V_{2n} + \varepsilon_{1}} \dots \int_{\varepsilon_{J_{n}} = -\infty}^{V_{1n} - V_{J_{n}n} + \varepsilon_{1}} f_{\varepsilon_{1n}, \varepsilon_{2n}, \dots, \varepsilon_{J_{n}}}(\varepsilon_{1}, \varepsilon_{2}, \dots, \varepsilon_{J_{n}}) d\varepsilon, \end{split}$$

$$P_n(1|\mathcal{C}_n) = \int_{\varepsilon_1 = -\infty}^{+\infty} \int_{\varepsilon_2 = -\infty}^{V_{1n} - V_{2n} + \varepsilon_1} \cdots \int_{\varepsilon_{J_n} = -\infty}^{V_{1n} - V_{J_n n} + \varepsilon_1} f_{\varepsilon_{1n}, \varepsilon_{2n}, \dots, \varepsilon_{J_n}}(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_{J_n}) d\varepsilon$$

$$P_n(1|\mathcal{C}_n) = \int_{\varepsilon_1 = -\infty}^{+\infty} \frac{\partial F_{\varepsilon_{1n}, \varepsilon_{2n}, \dots, \varepsilon_{J_n}}}{\partial \varepsilon_1} (\varepsilon_1, V_{1n} - V_{2n} + \varepsilon_1, \dots, V_{1n} - V_{J_n n} + \varepsilon_1) d\varepsilon_1.$$

Appendix: some concepts from continuous choices

Roy's identity

Derive the demand function from the indirect utility:

$$q_{\ell} = -rac{\partial U(I,p; heta)/\partial p_{\ell}}{\partial U(I,p; heta)/\partial I}$$

Elasticities

Direct price elasticity

Percent change in demand resulting form a 1% change in price

$$E_{p_\ell}^{q_\ell} = rac{\%}{\%}$$
 change in $rac{q_\ell}{p_\ell} = rac{\Delta q_\ell/q_\ell}{\Delta p_\ell/p_\ell} = rac{p_\ell}{q_\ell} rac{\Delta q_\ell}{\Delta p_\ell}.$

Asymptotically

$$E_{
ho_\ell}^{q_\ell} = rac{p_\ell}{q_\ell(I,p; heta)} rac{\partial q_\ell(I,p; heta)}{\partial p_\ell}.$$

Cross price elasticity

$$E_{p_m}^{q_\ell} = rac{p_m}{q_\ell(I,p; heta)} rac{\partial q_\ell(I,p; heta)}{\partial p_m}.$$

Consumer surplus

Definition

Difference between what a consumer is willing to pay for a good and what she actually pays for that good.

Calculation

Area under the demand curve and above the market price

Demand curve

- Plot of the inverse demand function
- Price as a function of quantity

Consumer surplus

