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Outline

Difference with classical hypothesis testing
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Motivation

Modeling

» Impossible to determine the most appropriate model specification.
A good fit does not mean a good model.
Formal testing is necessary, but not sufficient.

>

>

» No clear-cut rules can be given.

» Subjective judgments of the analyst.
>

Good modeling = good judgment + good analysis.

Wilkinson (1999) “The grammar of graphics”. Springer

. some researchers who use statistical methods pay more attention to goodness
of fit than to the meaning of the model... Statisticians must think about what
the models mean, regardless of fit, or they will promulgate nonsense.
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Classical hypothesis testing

Null hypothesis (Hp)

A simple hypothesis contradicting a theoretical assumption.

Analogy: court trial

» Theoretical assumption: an individual has committed a felony.
» Null hypothesis: she is innocent.
» Main principle: the defendant is presumed innocent until proved guilty.

» Similarly, Hy is considered correct, until the data provide sufficient evidences
that it is not.
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Classical hypothesis testing: example

Lady testing tea

» Theory: a lady is able to tell if the milk has been
poured before of after the tea in a cup.

» Hy: the outcome of the taste is purely random.

[Fisher, 1956]
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Classical hypothesis testing: errors

‘ Accept Hy Reject Hy
Ho is true Type | error (prob. «)
Hy is false | Type Il error (prob. )
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Specification testing: example

Null hypothesis (Hp)

A simple hypothesis contradicting a theoretical assumption.

Explanatory variable

» Theory: a variable explains the choice behavior.

» Hy: the coefficient of the variable is zero.
ey,

7/59



Errors in hypothesis testing

Type | error Type Il error
» Hy rejected and Hj true. » Hy accepted and Hy false.
» Include an irrelevant variable. » Omit a relevant variable.
P Loss of efficiency. » Specification error.
» Cost: C,. » Cost: C;y > (.

Note

In classical hypothesis testing, C; ~ Cj
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Impact of an error

Probability of an error

P(Type I) = P(Ho rejected|Hyp true)  P(H, true)
o A

P(Type Il) = P(Hy accepted|Hy false) P(Hy false)
5 (1—-X)

Expected cost

Expected cost = P(Typel) G+ P(Typell) Cy
= aA G + 5(1—>\) Cu

Classical hypothesis testing
Ax1, C = Cy: prefer small a.
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Impact of an error

Probability of an error

P(Type I) = P(Ho rejected|Hyp true)  P(H, true)
o A

P(Type Il) = P(Hy accepted|Hy false) P(Hy false)
5 (1—-X)

Expected cost

Expected cost = P(Typel) G+ P(Typell) Cy
= aA G + 5(1—>\) Cu

Specification testing
A= 0.5, C; > (: larger o can be used.
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Outline

Informal tests and t tests

11/59



Informal tests

Objective
Identify early inconsistencies between the model and a priori expectations.

Examples

» Sign of the coefficients (e.g. cost, travel time).

» Coefficients in monetary units (e.g. value of time).
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t-test

Question
Is the parameter 6 equal to a given value 6*7

> H09:9*
> H197é9*

Statistic (assuming maximum likelihood estimator)
2

Under Hj, if 0 is normally distributed with known variance o°:

H— o

o

~ N(0,1).
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t-test: under Hj

95%

\
-1.96 1.96
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t-test: if the statistic lies outside

A

95%

-1.96 1.96

Ho is rejected at the 5% level.
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Applying the test

Statistic

*

P(—1.96 < < 1.96) = 0.95 =1 — 0.05.

g

Decision
Ho can be rejected at the 5% level (o« = 0.05) if

0— 6

o

> 1.96.
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Comments

> If §is asymptotically normal,

» if variance is unknown,

» a t test should be used with N degrees of freedom.

» When N > 30, the Student t distribution is well approximated by a N(0,1).
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p value

> Probability to get a t statistic at least as large (in absolute value) as the one
reported, under the null hypothesis.

» It is calculated as
p=2(1—(2),
where ®(-) is the CDF of the standard normal.

» The null hypothesis is rejected when the p-value is lower than the
significance level a.
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Comparing two coefficients

Hypothesis
Ho : 1 = Ba.
Statistic
B — B
)
where

Var(gl — 32) = Var(gl) + Var(@) -2 Cov(Bl, Bg)

Distribution
Under Hy, distributed as N(0,1).
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Outline

Likelihood ratio test
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Likelihood ratio test

Objective

Investigate parsimonious versions of a given specification, by introducing linear
restrictions on the parameters.

Null hypothesis

The parsimonious, or restricted, model is the true model
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Likelihood ratio test

Test
Under Hy,

_Z(E(BR) - E(BU)) ~ X%KUfKR)a
where
> L(f3r) is the log likelihood of the restricted model,
> £(BAU) is the log likelihood of the unrestricted model,
» Kpg is the number of parameters in the restricted model, and,

» Ky is the number of parameters in the unrestricted model.
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Benchmarking

Unrestricted model

\/inzﬁlxink_’_"'
\/jn:62xjnk+'”

Restrictions

Restricted model
Equal probability model

\/in:O
Vi =0

B =0, Vk
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Benchmarking

Log likelihood of the unrestricted
model

L(P)

Statistic

Log likelihood of the restricted
model

Py = 1/J,, Vi € Cp,¥n

£(0) = =) " log(Jn)

-~

—2(L(0) = L(8)) ~ Xk
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Benchmarking revisited

Unrestricted model Restricted model
Only alternative specific constants

Vin = B1Xink + - - Vin = Bi,
an:B2Xjnk+"' an:ﬁj)

Restrictions

All coefficients but the constants are constrained to zero.
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Benchmarking revisited

Log likelihood of the unrestricted  Log likelihood of the restricted
model model

L(B) P, = N;/N Vi € C,Vn.
J
L(c) = N;log(N;/N).
i=1

Statistic

—2(L(c) — L(B)) ~ x5 withd = K — J + 1.
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Benchmarking

Classical output of estimation software
Summary statistics
Number of observations = 2544

L£(0) = —2794.870
L(c) = —2203.160
L(B) = —1640.525
—2[£(0) — £(B)] = 2308.689
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Test of generic attributes

Unrestricted model Restricted model
Alternative specific Generic
Vin = BriXink + - - Vin = B1Xink + - -+
Vin = B1jXjnk + - - Vin = BiXjnk + - -
Restriction
ﬁli == ﬁlj =
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Test of generic attributes

Log likelihood of the unrestricted  Log likelihood of the restricted
model model

L(Bas) L(B¢)
Statistic

~

—2(£(ﬂg) — ﬁ(B\As)) ~ X% with d = KAS — KG.
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Test of taste variations

Segmentation

» Classify the data into G groups. Size of group g: N,.
» The same specification is considered for each group.
» A different set of parameters is estimated for each group.
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Test of taste variations

N, N, N3 N, N

L (BY) Lan(B?)  La(B®) LB S8 L, (5#)
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Test of taste variations

Unrestricted model
Group specific coefficients

G

\/in - Z(éngﬁlg)xink + -
g=1
G

Vio = D (oo + -+
g=1

Restrictions

5k1 - 6k2 =

Restricted model
Generic coefficients

\/in:BIXink+"'
an:B2Xjnk+"'

e :ﬁkG; Vk. 32/59



Test of taste variations

Log likelihood of the unrestricted  Log likelihood of the restricted
model model

G A
—~ Ln(B)
L, (5%)
Statistic

G G
—2 [LN(B) - ZﬁNg(Bg)] ~ G withd =Y K—K=(G-1)K.
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Tests of nonlinear specifications

Unrestricted model
Power series

+ ..
—1 Xref
an - 62Xjnk +
Restrictions
512 — 613 =

Restricted model
Linear specification

Vin = BiXink + - -+
an:B2Xjnk+"'
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Power series

Xink
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Test of nonlinear specifications

Log likelihood of the unrestricted  Log likelihood of the restricted
model model

L(Bu) L(Br)
Statistic

~

2 [/;(ﬁR) - .C(EU)] ~ 3 withd = L — 1.
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Notes

» Usually not behaviorally meaningful

» Danger of overfitting

» Polynomials are most of the time inappropriate for extrapolation due to
oscillation.

» Other nonlinear specifications can be used for testing:

» piecewise linear,
» Box-Cox.
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Outline

Non nested hypotheses
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Non nested hypotheses

Nested hypotheses

» Restricted and unrestricted models.
» Linear restrictions.

» Hy: restricted model is correct.

» Test: likelihood ratio test.

Non nested hypotheses

» Need to compare two models.

» None of them is a restriction of the other.

» Likelihood ratio test cannot be used.
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Example

Model 1 Model 2
\/in - ﬁlxink + - \/in - 51 Iog(xink) + -
an = 52Xjnk + - an =5 Iog(Xjnk) + -
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Cox test

Back to nested hypotheses

» We want to test model 1 against model 2.

» \We generate a composite model C such that both models 1 and 2 are

restricted cases of model C.
Model C
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Example

Model 1 Model 2
Vin = BiXink + -+ Vin = 51 Iog(xink) + -
Vin = BoXjnk + -+ Vin = B2 log(Xjnk) + - -
Model C

Vin = B11Xink + P12 log(Xink) + - - -
\/jn - ﬂ21xjnk + 622 log(Xjnk) +---
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Cox test

Testing

» We test 1 against C using the likelihood ratio test.
» We test 2 against C using the likelihood ratio test.

Conclusions
C against 1 C against 2 Conclusion
1 is not rejected 2 is rejected Prefer 1
1 is rejected 2 is not rejected Prefer 2

1 is rejected
1 is not rejected

2 is rejected
2 is not rejected

Develop better models
Use another test
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Davidson and McKinnon J test

Motivation
Cox test may require to estimate a model with a potentially very large number of
parameters.

Consider two specifications

My : Up = Vi (i B) + 21

n

M, : Ui, = V,-(nZ)(Xin;v) +€53)-

Null hypothesis

M is correct.
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Davidson and McKinnon J test

First step
Estimate the parameters v of M.

Composite specification

Mc: U, =(1- a)V (x,,, B) + aV( )(x,-,,ﬁ) + €,
where 7 are the estimated parameters of M,.

Estimation
Estimate (5 and «.

Test
Under Hy, the true value of av is 0. A t-test can be used.

45 /59



Adjusted likelihood ratio index

Likelihood ratio index

2, _ L(5)
pr=1-— £(0) (1)
Adjusted likelihood ratio index
P L(B) - K

where K is the number of unknown parameters in the model.

Model selection
Select the model with the highest value of 2.
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Other criteria

Akaike Information Criterion

2K — 2L(B).
The smallest, the better.

Bayesian Information Criterion

K In(N) — 2£(B).

The smallest, the better.
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Outline

Prediction tests
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Prediction tests

Motivation
Check if the model is able to predict.
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Qutlier analysis

Procedure
» Apply the model on the sample.

» Examine observations where the predicted probability is the smallest for the
observed choice.

» Test model sensitivity to outliers, as a small probability has a significant
impact on the log likelihood.
» Potential causes of low probability:

» coding or measurement error in the data,
» model misspecification,
» Inexplicable variation in choice behavior.
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Coding or measurement error in the data

Look for signs of data errors
» Travel time is negative.
» Number is coded as a string.
> etc.

Correct or remove the observation
» Go back to the original survey.
» Correct only if you are certain.
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Model misspecification

Improve the specification

» Seek clues of missing variables from the observation.

» Why is the model associating such a low probability for this choice?
» Did we forget to account for age, income, or any other variable?

» Should a nonlinear specification be investigated?

» Use behavioral intuition.
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Inexplicable variation in choice behavior

Keep the observation

» If no acceptable explanation is found, keep the observation.
» Avoid overfitting of the model to the data.
» The model should reflect how people behave, not how they should behave.
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Cross-validation

Motivation
» Purpose of the model: prediction.
» Is the model able to predict?



Cross-validation

Motivation
» Purpose of the model: prediction.
» Is the model able to predict?




Cross-validation

Motivation
» Purpose of the model: prediction.
» Is the model able to predict?

Estimation

80%

Validation

20%
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Methodology
Split the sample

» Decide the size of the validation set (e.g. 20%)

» Draw randomly an estimation set and a validation set.

» Repeat R times.

Evaluate

» For each pair of estimation/validation set...

» Estimate the parameters of the model with the estimation set.

» Calculate a measure of fit of the estimated model on the validation set.

» Typically, the log-likelihood Zyzvl log P(in|X,), or the expected number of
correctly predicted observations Z,':':VI P(in|%n)-

» Calculate the average measure of fit.

» Select the model with the highest average fit on the validation sets.
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Practical recommendations

» Tests are designed to check meaningful hypotheses.
» Do not test hypotheses that do not make sense.

» Do not apply the tests blindly.

» Always use your judgment.
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Summary

Specification testing different from classical hypothesis testing.
Informal tests.

t-tests.

Likelihood ratio test.

Non nested hypotheses.

Prediction tests.
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90%, 95% and 99% of the x? distribution with K degrees of

freedom

K 90% 95% 99% K 90% 95% 99%
1 2.706 3.841 6.635 21 29.615 32,671 38.932
2 4.605 5.991 9.210 22 30.813 33.924 40.289
3 6.251 7.815 11.345 23 32.007 35.172 41.638
4 7.779 9.488 13.277 24 33.196 36.415 42.980
5 9.236 11.070 15.086 25 34.382 37.652 44.314
6 10.645 12.592 16.812 26 35.563 38.885 45.642
7 12.017 14.067 18.475 27 36.741 40.113 46.963
8 13.362 15.507 20.090 28 37.916 41.337 48.278
9 14.684 16.919 21.666 29 39.087 42.557 49.588
10 15.987 18.307 23.209 30 40.256 43.773 50.892
11 17.275 19.675 24.725 31 41.422 44.985 52.191
12 18.549 21.026 26.217 32 42.585 46.194 53.486
13 19.812 22.362 27.688 33 43.745 47.400 54.776
14 21.064 23.685 29.141 34 44.903 48.602 56.061
15 22.307 24.996 30.578 35 46.059 49.802 57.342
16 23.542 26.296 32.000 36 47.212 50.998 58.619
17 24.769 27.587 33.409 37 48.363 52.192 59.893
18 25.989 28.869 34.805 38 49.513 53.384 61.162
19 27.204 30.144 36.191 39 50.660 54.572 62.428
20 28.412 31.410 37.566 40 51.805 55.758 63.691
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