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Sampling strategies

Motivation
▶ Data cannot be collected from the entire population. We need a sample.

▶ Does the sample perfectly reflect the population?

▶ Is it desirable that it does?

▶ We introduce various types of sampling strategies that are useful in practice.

▶ For the sake of simplicity of the presentation, we assume that all variables
are discrete. If continuous variables are involved, replace probability mass
functions by probability density functions, and sums by integrals.
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Research process

1. Research question.

2. List of relevant variables.

3. Causality assumptions. ←
4. Design a sampling strategy. ←
5. Collect data.

6. Model specification, estimation and validation.

7. Analysis.

4 / 56



Types of variables

Exogenous/independent variables (denoted by x)

▶ Age, gender, income, prices.

▶ Not modeled, treated as given in the population.

▶ May be subject to “what if” policy manipulations.

Endogenous/dependent variable (denoted by i)
Choice.

Modeling assumption
Causality: P(i |x ; θ).
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Causality is different from correlation

Source: [Messerli, 2012]
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Causality has a direction

Source: [Chu, 2000]

Two mathematical models could fit the data:

▶ P(crime | temperature),

▶ P(temperature | crime).
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Types of variables

The nature of a variable depends on the application
Example: residential location.

▶ Endogenous in a house choice study.

▶ Exogenous in a study about transport mode choice to work.

Important
Critical to identify the causal relationship and, therefore, exogenous and
endogenous variables.
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Sampling strategies

Stratified sampling

▶ Partition the population into mutually exclusive groups, or strata.

▶ The strata do not necessarily need to be of equal size.

▶ They are defined based on the variables selected to appear in the model.

▶ Then, perform a random sample within each stratum.
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Sampling strategies

Simple Random Sample (SRS)

▶ Only one stratum in the population.

▶ Probability of being drawn: R .

▶ R is identical for each individual.

▶ Convenient for model estimation and forecasting.

▶ Very difficult to conduct in practice.
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Sampling strategies

Exogenously Stratified Sample (XSS)

▶ Strata defined by the exogenous variables.

▶ Probability of being drawn: R(x).

▶ R(x) varies with variables other than i .

▶ May also vary with variables outside the model.

▶ Oversampling of workers for commuting mode choice.

▶ Oversampling of women for baby food choice.

▶ Undersampling of old people for choice of a retirement plan.
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Sampling strategies

Endogenously Stratified Sample (ESS)

▶ Strata defined by both the endogenous and the exogenous variables.

▶ Probability of being drawn: R(i , x).

▶ R(i , x) varies with dependent variables.

▶ Examples:
▶ oversampling of bus riders.
▶ oversampling of current customers.
▶ products with small market shares (ex: Ferrari).
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Sampling strategies

Pure choice-based sampling

▶ Probability of being drawn: R(i).

▶ R(i) varies only with dependent variables.

▶ Special case of ESS.
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Example

Example: mode choice.
Let’s consider each sampling scheme on the following example:

▶ Exogenous variable: travel time by car.

▶ Endogenous variable: transportation mode.
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Sampling strategies

Simple Random Sampling (SRS): one group = population

Drive alone Carpooling Transit
Travel ≤ 15
time >15, ≤ 30
by car > 30
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Sampling strategies

Exogenously Stratified Sample (XSS)

Drive alone Carpooling Transit
Travel ≤ 15
time >15, ≤ 30
by car > 30
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Sampling strategies

Pure choice-based sampling

Drive alone Carpooling Transit
Travel ≤ 15
time >15, ≤ 30
by car > 30
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Sampling strategies

Endogenously Stratified Sample (ESS)

Drive alone Carpooling Transit
Travel ≤ 15
time >15, ≤ 30
by car > 30
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Calculation of R

▶ Consider an individual with configuration
(i , x).

▶ She belongs to exactly one stratum g .

Characteristics of the population

▶ N : population size.

▶ Wg : the fraction of group g in the
population.

Characteristics of the sample

▶ Ns : sample size.

▶ Hg : the fraction of group g in the sample.

R(i , x) =
HgNs

WgN
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Calculation of R

▶ Hg and Ns are decided by the analyst.

▶ N is usually irrelevant.

▶ Xg is the set of values taken by the exogenous variables in stratum g .

▶ p(x) the proportion of individuals with configuration x in the population.

▶ Cg is the set of alternatives corresponding to stratum g .

▶ Wg can be expressed as:

Wg =
∑
x∈Xg

∑
i∈Cg

P(i |x , θ)

 p(x),

which is a function of θ.
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Calculation of R

Wg =
∑
x∈Xg

∑
i∈Cg

P(i |x , θ)

 p(x).

Simplification

▶ If group g contains all alternatives, then∑
i∈Cg

P(i |x , θ) = 1 and Wg =
∑
x∈Xg

p(x).

It does not depend on θ.

▶ This can happen only if strata are not defined based on the alternatives.
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Illustration: SRS

Population: 1000K

Drive alone Carpooling Transit Total
Travel ≤ 15 300K 50K 150K 500K 50%
time >15, ≤ 30 150K 90K 60K 300K 30%
by car > 30 70K 10K 120K 200K 20%

520K 150K 330K 1000K
52% 15% 33%

Simple random sampling

▶ N = 1000K .

▶ Ns = 1000.

▶ One stratum g : Wg = 1, Hg = 1.

R =
HgNs

WgN
=

1000

1000K
=

1

1000
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Illustration: SRS

Probability to be included in the sample

Drive alone Carpooling Transit
Travel ≤ 15 1/1000 1/1000 1/1000
time >15, ≤ 30 1/1000 1/1000 1/1000
by car > 30 1/1000 1/1000 1/1000
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Illustration: SRS

Drive alone Carpooling Transit Total
Travel ≤ 15 300K 50K 150K 500K 50%
time >15, ≤ 30 150K 90K 60K 300K 30%
by car > 30 70K 10K 120K 200K 20%

520K 150K 330K 1000K
52% 15% 33%

Drive alone Carpooling Transit Total
Travel ≤ 15 300 50 150 500 50%
time >15, ≤ 30 150 90 60 300 30%
by car > 30 70 10 120 200 20%

520 150 330 1000
52% 15% 33%
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Illustration: XSS

Exogenously Stratified Sample

▶ N = 1000K .

▶ Ns = 1000.

▶ Three strata, based on travel time.

▶ W1 = 50%, W2 = 30%, W3 = 20%.

▶ H1 = 1/3, H2 = 1/3, H3 = 1/3.

R1 =
H1Ns

W1N
=

(1/3)1000

0.5 · 1000K
=

1

1500

R2 =
H2Ns

W2N
=

(1/3)1000

0.3 · 1000K
=

1

900

R3 =
H3Ns

W3N
=

(1/3)1000

0.2 · 1000K
=

1

600
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Illustration: XSS

Probability to be included in the sample

Drive alone Carpooling Transit
Travel ≤ 15 1/1500 1/1500 1/1500
time >15, ≤ 30 1/900 1/900 1/900
by car > 30 1/600 1/600 1/600
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Illustration: XSS

Drive alone Carpooling Transit Total
Travel ≤ 15 300K 50K 150K 500K 50%
time >15, ≤ 30 150K 90K 60K 300K 30%
by car > 30 70K 10K 120K 200K 20%

520K 150K 330K 1000K
52% 15% 33%

Drive alone Carpooling Transit Total
Travel ≤ 15 200 33.3 100 333.3 33.3%
time >15, ≤ 30 166.7 100 66.7 333.3 33.3%
by car > 30 116.7 16.7 200 333.3 33.3%

483.3 150 366.7 1000
48.3% 15% 36.7%
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Illustration: choice-based sampling

Choice-Based Sampling

▶ N = 1000K .

▶ Ns = 1000.

▶ Three strata, based on mode of
transportation.

▶ W1 = 52%, W2 = 15%, W3 = 33%.

▶ H1 = 1/3, H2 = 1/3, H3 = 1/3.

R1 =
H1Ns

W1N
=

(1/3)1000

0.52 · 1000K
=

1

1560

R2 =
H2Ns

W2N
=

(1/3)1000

0.15 · 1000K
=

1

450

R3 =
H3Ns

W3N
=

(1/3)1000

0.33 · 1000K
=

1

990
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Illustration: choice-based sampling

Probability to be included in the sample

Drive alone Carpooling Transit
Travel ≤ 15 1/1560 1/450 1/990
time >15, ≤ 30 1/1560 1/450 1/990
by car > 30 1/1560 1/450 1/990
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Illustration: choice-based sampling

Drive alone Carpooling Transit Total
Travel ≤ 15 300K 50K 150K 500K 50%
time >15, ≤ 30 150K 90K 60K 300K 30%
by car > 30 70K 10K 120K 200K 20%

520K 150K 330K 1000K
52% 15% 33%

Drive alone Carpooling Transit Total
Travel ≤ 15 192.3 111.1 151.5 454.9 45.5%
time >15, ≤ 30 96.2 200 60.6 356.8 35.7%
by car > 30 44.9 22.2 121.2 188.3 18.8%

333.3 333.3 333.3 1000
33.3% 33.3% 33.3%
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Motivation

Until now...
▶ ... we have assumed that x is fixed:

P(i |x ; β).

▶ When we draw a sample, actually we draw both i and x .

▶ We need to write the joint probability of i and x :

Pr(i , x |β) = P(i |x ; β) Pr(x).

▶ Depending on how the sample is drawn, this may impact the estimator.
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Estimation

Define sn as the event of individual n being in the sample.

Maximum Likelihood

θ̂ = argmaxθ L(θ) =
N∑

n=1

ln Pr(in, xn|sn; θ).

Bayes’ theorem

Pr(in, xn|sn; θ) =
Pr(sn|in, xn; θ) Pr(in|xn; θ) Pr(xn; θ)∑
z

∑
j Pr(sn|j , z ; θ) Pr(j |z ; θ).Pr(z ; θ)
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Estimation

Pr(sn|in, xn; θ) : R(in, xn; θ).

Pr(in|xn; θ) : P(in|xn; θ).

Pr(xn; θ) : p(xn).

Pr(in, xn|sn; θ) =
R(in, xn; θ)P(in|xn; θ)p(xn)∑
z

∑
j R(j , z ; θ)P(j |z ; θ)p(z)

.
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Contribution to the likelihood

Pr(in, xn|sn; θ) =
R(in, xn; θ)P(in|xn; θ)p(xn)∑
z

∑
j R(j , z ; θ)P(j |z ; θ)p(z)

▶ In general, impossible to handle.

▶ Namely, p(z) is usually not available.

But... there are special cases where it does simplify.
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Exogenous Sample Maximum Likelihood

R(i , x ; θ) = R(x) ∀i , θ.

Pr(in, xn|sn; θ) =
R(in, xn; θ)P(in|xn; θ)p(xn)∑
z

∑
j∈C R(j , z ; θ)P(j |z ; θ)p(z)

=
R(xn)P(in|xn; θ)p(xn)∑
z

∑
j∈C R(z)P(j |z ; θ)p(z)

=
R(xn)P(in|xn; θ)p(xn)∑

z R(z)p(z)
∑

j∈C P(j |z ; θ)

=
R(xn)P(in|xn; θ)p(xn)∑

z R(z)p(z)
.
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Exogenous Sample Maximum Likelihood

argmaxθ
∑
n

ln Pr(in, xn|sn; θ) =
∑
n

lnP(in|xn; θ)

������
+ lnR(xn)

�����
+ ln p(xn)

���������− ln
∑
z

R(z)p(z)

Exact same procedure as SRS.
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Conditional Maximum Likelihood

Instead of solving

θ̂ = argmaxθ
∑
n

ln Pr(in, xn|sn; θ),

we solve

θ̂ = argmaxθ
∑
n

ln Pr(in|xn, sn; θ),

where sn is the event that individual n belongs to the sample.
CML is consistent but not efficient.
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Estimation

Conditional Maximum Likelihood

θ̂ = argmaxθ L(θ) =
N∑

n=1

ln Pr(in|xn, sn; θ).

Bayes’ theorem

Pr(in|xn, sn; θ) =
Pr(sn|in, xn; θ) Pr(in|xn; θ)∑
j Pr(sn|j , xn; θ) Pr(j |xn; θ)

.
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Estimation

Pr(sn|in, xn; θ) : R(in, xn; θ).

Pr(in|xn; θ) : P(in|xn; θ).

Pr(in|xn, sn; θ) =
R(in, xn; θ)P(in|xn; θ)∑
j R(j , xn; θ)P(j |xn; θ)

.
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Contribution to the conditional likelihood

Pr(in|xn, sn; θ) =
R(in, xn; θ)P(in|xn; θ)∑
j R(j , xn; θ)P(j |xn; θ)

.

▶ Still difficult due to the dependence of R(in, xn; θ) on θ.

▶ But... it simplifies for logit and MEV models.
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Logit and pure choice-based sampling

Assumptions

R(in, xn; θ) = R(in; θ)

P(in|xn; θ = β) =
eVin (xn,β)∑
k e

Vk (xn,β)

=
eVin (xn,β)

D
,

where D =
∑

k e
Vk (xn,β).

CML

Pr(in|xn, sn; θ) =
R(in, xn; θ)P(in|xn; θ)∑
j∈C R(j , xn; θ)P(j |xn; θ)

=
DR(in; θ)e

Vin (xn,β)

D
∑

j∈C R(j ; θ)e
Vj (xn,β)

=
eVin (xn,β)+lnR(in;θ)∑
j∈C e

Vj (xn,β)+lnR(j ;θ)
.
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Logit and pure choice-based sampling

Ignore the sampling bias and use ESML
Use

eVin (xn,β)∑
j∈C e

Vj (xn,β)

instead of

eVin (xn,β)+lnR(in;θ)∑
j∈C e

Vj (xn,β)+lnR(j ;θ)
.

Alternative Specific Constants
True value: βi . Estimated value:

β̂i = βi + lnR(i ; θ).

Recover the true value

βi = β̂i − lnR(i ; θ).
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Logit and pure choice-based sampling

▶ If the logit model has a full set of constants, the correction for pure
choice-based sampling is confounded with the constant.

▶ Practical procedure:

1. Estimate the model using ESML, that is use P(in|xn; θ) instead of
Pr(in|xn, sn; θ).

2. It yields consistent estimates of all parameters except the constants.
3. Correct the constants using estimates of R(i ; θ).

▶ If the sampling strategy is endogenous, a correction term and a constant are
needed for each stratum of exogenous variables.
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Example: logit model
Drive alone Carpooling Transit

Travel ≤ 15
time >15, ≤ 30
by car > 30

Specification table

Drive alone Car pooling Transit
asc drive 1 0 0
asc pool 0 1 0
drive short I(TT<15) 0 0

drive medium I(15<TT<30) 0 0
pool short 0 I(TT<15) 0

pool medium 0 I(15<TT<30) 0
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Example: logit model
Sampling strategies

▶ SRS: R = 1/1000.

▶ XSS: R(short) = 1/1500, R(medium) = 1/900, R(long) = 1/600.

▶ ESS: R(drive) = 1/1560, R(car pooling) = 1/450, R(transit) = 1/990.

Estimates

SRS XSS ESS ln(R) Shifted ESS - Shifted
asc drive -0.539 -0.539 -0.993 -7.3524 -0.4547 -0.539
asc pool -2.48 -2.48 -1.7 -6.1092 0.7885 -2.48
asc transit 0.0 0.0 0.0 -6.90 0.0 0.0
drive short 1.23 1.23 1.23

drive medium 1.46 1.46 1.46
pool short 1.39 1.39 1.39

pool medium 2.89 2.89 2.89
47 / 56



MEV and pure choice-based sampling

MEV model

Pn(i) =
eVin+lnGi(eV )∑
j e

Vjn+lnGj(eV )
.

Nested logit model (for instance)

G (eV1 , . . . , eVJ ) =
M∑

m=1

(
Jm∑
i=1

eµmVi

) µ
µm

.
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MEV and pure choice-based sampling

Similar derivation as for logit

Pr(in|xn, sn; θ) =
eVin (xn,θ)+lnGin (e

V ;θ)+lnR(in;θ)∑
j∈C e

Vj (xn;θ)+lnGj (eV ;θ)+lnR(j ;θ)
.

Difference with logit

▶ Correction terms not confounded with constants.

▶ Because constants appear in G where there is no correction term.
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MEV and pure choice-based sampling

Procedure
▶ Include an estimate of lnR(i ; θ) in the formulation.

▶ Estimate the parameters.

▶ Different from ESML.

▶ See [Bierlaire et al., 2008] for details.
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Weighted exogenous maximum likelihood estimator

Motivation
▶ We have seen special cases where maximum likelihood or conditional

maximum likelihood could be used to estimate the values of the parameters.

▶ We now introduce an estimator that can be used in all other cases.
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Weighted exogenous maximum likelihood estimator

θ̂ = argmaxθ L(θ) =
N∑

n=1

wn lnP(in|xn; θ),

where wn is an estimate of 1
R(in,xn;θ)

.

WESML
▶ Similar to weighted least-squares in linear regression.

▶ Consistent but not efficient.

▶ Should be used if nothing else is applicable.

▶ See [Manski and Lerman, 1977] for details.
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Summary

Model estimation
▶ With SRS and XSS: use ESML.

▶ θ̂ = argmaxθ
∑

n lnP(in|xn; θ).
▶ Classical procedure, available in most packages.

▶ With endogenous sampling and logit: use ESML and correct the constants.

▶ With endogenous sampling and MEV:
▶ Specific procedure.
▶ Explicitly include the (log of the) sampling rate in the CML estimator.

▶ General case: use WESML.

Forecasting
Always use weights.
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