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Motivation

Human dimension in
▶ engineering

▶ business

▶ marketing

▶ planning

▶ policy making
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Motivation

Concept of demand
Willingness and ability to purchase a
commodity or service [Merriam-Webster]
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Applications

Transportation

▶ Choice of destination

▶ Choice of transportation mode

▶ Choice of itinerary

▶ Choice of vehicle
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Applications

Marketing

▶ Choice of packaging

▶ Choice of store

▶ Choice of product

▶ Choice of brand
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Applications

Health
▶ Choice of treatment

▶ Choice of doctor

▶ Choice of training for doctors
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Applications

Energy

▶ Choice of appliances

▶ Choice of energy savings measures

▶ Choice of heating equipment
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Motivation

Need for
▶ behavioral theories

▶ quantitative methods

▶ operational mathematical models
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In this course...

Focus
▶ Individual / disaggregate behavior (vs. aggregate behavior)

▶ Theory of behavior which is
▶ descriptive (how people behave) and not normative (how they should

behave)
▶ general: not too specific
▶ operational: can be used in practice for forecasting

▶ Type of behavior: choice
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Case studies

Mode choice in the Netherlands
▶ Context: car vs rail in Nijmegen.

▶ Objective: sensitivity to travel time and cost, inertia.

Mode choice in Switzerland
▶ Context: Car Postal.

▶ Objective: demand forecasting.
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Case studies

Swissmetro
▶ Context: new transportation technology.

▶ Objective: demand pattern, pricing.

Residential telephone services

▶ Context: flat rate vs. measured.

▶ Objective: offer the most appropriate service.

Airline itinerary choice

▶ Context: questionnaire about itineraries across the US.

▶ Objective: help airlines and aircraft manufacturer to design a better offer.
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Importance

Daniel L. McFadden
▶ UC Berkeley 1963, MIT 1977, UC Berkeley

1991

▶ Laureate of The Bank of Sweden Prize in
Economic Sciences in Memory of Alfred
Nobel 2000

▶ Owns a farm and vineyard in Napa Valley

▶ “Farm work clears the mind, and the
vineyard is a great place to prove theorems”
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Simple example

Objectives
Introduce basic components of choice modeling:

▶ definition of the problem

▶ data

▶ model specification

▶ parameter estimation

▶ model application

Application
Analysis of the market for electric cars
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Choice problem

Choice
Consumer’s choice to

▶ own an electric car

▶ own a car with combustion engine

Research questions

▶ what is the current market
penetration of electric cars relative
to combustion engine cars?

▶ how will the penetration change in
the future?
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Data

Population

▶ adults aged 20 and above

▶ in Switzerland

▶ owning a car

Sample

▶ 2500 individuals

▶ randomly selected
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Questions

Is your car electric?

▶ Yes,

▶ No.

What is your age range?

▶ 20–39

▶ 40–64

▶ 65+
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Data

Contingency table

Age
20–39 40–64 65+ Total

Electric 65 55 5 125
Not electric 835 1045 495 2375

900 1100 500 2500

Market penetration

▶ In the sample
125/2500 = 5%

▶ Currently in the
population: by
inference: 5%

▶ How do we predict?
We need a model.
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Model

Variables
▶ i : status of electric car ownership (yes or no)

▶ k : age category (20–39, 40–64 or 65+)
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Model

Decomposition

P(i , k) = P(i |k)P(k) = P(k |i)P(i)

Interpretation

▶ P(i |k): age explains electric car ownership

▶ P(k |i): electric car ownership explains age
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Model

Model
▶ identify stable causal relationships between

the variables

▶ stability over time necessary to forecast

▶ here: we select P(i |k) as an acceptable
behavioral model
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Model

Specification

P(i = yes | k = 20–39) = π1,
P(i = yes | k = 40–64) = π2,
P(i = yes | k = 65+) = π3.

Parameters
▶ π1, π2, π3

▶ unknown

▶ must be estimated from data
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Model estimation
Age

20–39 40–64 65+ Total
Electric 65 55 5 125

Not electric 835 1045 495 2375
900 1100 500 2500

πj = P(i = 1|k = j) ≈ π̂j = P̂(i = 1|k = j) =
P̂(i = 1, k = j)

P̂(k = j)
.

π1≈ π̂1 = P̂(i = yes|k = 20–39) =
P̂(i = yes, k = 20–39)

P̂(k = 20–39)
=

65

900
= 0.0722,

π2≈ π̂2 = P̂(i = yes|k = 40–64) =
P̂(i = yes, k = 40–64)

P̂(k = 40–64)
=

55

1100
= 0.0500,

π3≈ π̂3 = P̂(i = yes|k = 65+) =
P̂(i = yes, k = 65+)

P̂(k = 65+)
=

5

500
= 0.0100.
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Simple example: quality of the estimates

Motivation
▶ We have a model with parameters.

▶ We have used statistical inference to estimate the value of the parameters.

▶ This is subject to errors, as we have used the sample and not the population.

▶ How accurate are these estimates?
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Informal checks

π̂1 = 65/900 = 0.0722,
π̂2 = 55/1100 = 0.0500,
π̂3 = 5/500 = 0.0100.

▶ Do these estimates make sense?

▶ Do they match our a priori
expectations?

▶ Here: as age increases, the market
share of electric cars decreases.
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Quality of the estimates

▶ How is π̂j different from πj?

▶ We have no access to πj .

▶ For each sample, we would obtain a different value of π̂j .

▶ π̂j is distributed.
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Distribution of π̂1
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Distribution of π̂1

▶ Smaller samples are associated with wider spread.

▶ The larger the sample, the better the estimate.

▶ In practice, impossible to repeat the sampling multiple times.

▶ Distributions derived from theoretical results or simulation.
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Distribution of π̂1
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Statistical properties

▶ Bernoulli (0/1) random variables.

▶ Variance: σ2
j = πj(1− πj).

▶ Sample average: unbiased estimator.

▶ Standard error of the estimator:
√

σ2/N .

▶ Estimated standard error:

ŝπj
=

√
π̂j(1− π̂j)/Nj .
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Simple example: maximum likelihood estimation

Motivation
▶ We investigate another estimator.

▶ Indeed, using the sample average is not possible for more complex models.

▶ Later, we will use the maximum likelihood estimator.

▶ We remind the concept on the simple example.
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Maximum likelihood estimation

Likelihood
Probability that the model correctly predicts all the observations.

Likelihood function

L∗ =
N∏

n=1

P(in|kn).

For our example

L∗ = π65
1 (1− π1)

835π55
2 (1− π2)

1045π5
3(1− π3)

495.
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Maximum likelihood estimation

Estimates
▶ Values of the parameters that maximize L∗.

▶ In practice, the logarithm is maximized

L = lnL∗ =
N∑

n=1

lnP(in|kn).

As 0 ≤ L∗ ≤ 1, we have L ≤ 0.

Properties

▶ Consistency.

▶ Asymptotic efficiency.
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Maximum likelihood
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Maximum likelihood
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Maximum likelihood

Comments
▶ In this example, the maximum likelihood estimates happen to be the same

as the sample average.

▶ For more complex models, the (log) likelihood function is not necessarily
separable.

▶ The maximization is then more complicated to perform, but the concept is
the same.
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Hypothesis testing

Motivation
▶ Modeling assumption: age explains electric car ownership.

▶ We indeed observe that the three parameters are different.

▶ But this difference may be due to sampling errors.

▶ What can we say about our hypothesis?
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Hypothesis testing
Null hypothesis

▶ Age does not explain electric car ownership.

▶ If it is true, then
π1 = π2 = π3 = π.

▶ But it does not mean that
π̂1 = π̂2 = π̂3.

Restricted model

π125(1− π)2375.

Unrestricted model

π65
1 (1− π1)

835π55
2 (1− π2)

1045π5
3(1− π3)

495
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Likelihood ratio test

Intuition
If the null hypothesis is true, the estimates for the restricted and the unrestricted
model should not be too different.

Formally
Under the null hypothesis, the statistic

−2(LR − LU)

is asymptotically distributed as χ2 with degrees of freedom equal to the number
of restrictions (in our case, 2).
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Hypothesis testing
Unrestricted model

π̂1 = 0.0722, π̂2 = 0.0500, π̂3 = 0.0100, LU = −479.782.

Restricted model

π̂ = 0.05, LR = −496.288.

Statistic: likelihood ratio

−2(LR − LU) = 33.01

The probability to obtain such a value under the null hypothesis is lower than
10−5. Therefore, we can safely reject the null hypothesis, and the unrestricted
model is accepted.
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Simple example: forecasting

Motivation
▶ At this stage, we have a tested model.

▶ We are ready to use it.

▶ We want to forecast the future market shares of electric cars.
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Present situation

Age group 20–39 40–64 65+
Current share 36 % 44% 20%

Market penetration 7.2% 5% 1%

Total market penetration = 36% 7.2% + 44% 5% + 20% 1% = 5%
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Future scenario

Age structure will change in the future

Age group 20–39 40–64 65+
Current share 36 % 44% 20%
Future share 25 % 50% 25%

Market penetration 7.2% 5% 1%

Future total market penetration = 25% 7.2% + 50% 5% + 25% 1% = 4.55%
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Forecasting

▶ Causal relationship does not vary over time.

▶ Characterized by the model specification, including the values of its
parameters.

▶ Values of the explanatory variables evolve over time.
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Summary

▶ Motivation

▶ Simple example:

1. definition of the problem,
2. data collection,
3. model specification,
4. parameter estimation,
5. hypothesis testing,
6. model application.
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