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Motivation

» Prediction about a single individual is of
little use in practice.

» Need for indicators about aggregate
demand.

» Typical application: aggregate market
shares.
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Outline

Aggregation
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Aggregation

» Disaggregate model:
P,(i|xn; 6)

» Obtain x, for each individual n in the population.
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Aggregate market shares

Number of individuals choosing alternative /

N
= Pu(ilxn; 0)
n=1

Share of the population choosing alternative i

Z i|%0;0) = E[P(i|xn; 0)] -
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Aggregation

Alternatives

Population i 5 — 7 Total
1 P(1|x1;0) | P(2|x1;0) | --- | P(J|x1;6) 1
2 P(1|x2;0) | P(2]x2;0) | --- | P(J|x2;6) 1
N P 0) [P0y POy |
Total | N1 [ N2 [---] NU) [ N
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Large table

When the table has too many rows...
apply sample enumeration.

When the table has too many columns...
apply micro simulation.
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Too many rows: large population

Issues
» Complete enumeration cannot be applied in practice.
» No full access to each x,, or to their distribution.

» Practical methods are needed.

Practical methods
» Use a sample of size Ns.
» It may be the same sample as for estimation.
» Warning: It cannot be stated preference data, with x, generated by
experimental design.
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Sample enumeration

Stratified sample
» Population is partitioned into G homogeneous segments.
» S, observations are sampled from each segment g, with S = Zg Se-
> Let w, be the weight of segment g, that is

Ny S  share of persons in segment g in population
Wg = — =

WSg ~ share of persons in segment g in sample

» Weight for individual n:
G
Wy = Z OngWs,
g=1

where d,, = 1 if n belongs to g, and 0 otherwise.
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Sample enumeration

Weights

where

Sum

Z Sgwg
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Sample enumeration

Predicted shares
_ 1S
W(i) = < > wnP(ilxn; ).

Comments
> ST W(i) =1.
» Consistent estimate.
» Estimate subject to sampling errors.

» Policy analysis: change the values of the explanatory variables, and apply
the same procedure.
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Example

Population N = 2110K

Age < 45
Age > 45

Ny /N

Age < 45
Age > 45

Male Female
600K | 590K
450K | 470K
Male Female
0.284 | 0.280
0.213 | 0.223

Sample: S =800

Age < 45
Age > 45

Sg/S

Age < 45
Age > 45

Male Female
300 250
150 100
Male Female
0.375 | 0.313
0.188 | 0.125
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Example

Sg/S

Age < 45
Age > 45

Male Female

Male Female
0.375 | 0.313
0.188 | 0.125

Ny /N
Male Female
Age < 45 | 0.284 | 0.280
Age > 45 | 0.213 | 0.223
Wg
Age < 45

Age > 45

0.758

0.895

1.14

1.78
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Example: interurban mode choice in Switzerland

Sample
» Revealed preference data.
» Survey conducted between 2009 and 2010 for PostBus.
» Questionnaires sent to people living in rural areas.
» Each observation corresponds to a sequence of trips from home to home..
» Sample size: 1785.

Model: 3 alternatives
» Car,
» public transportation (PT),

» slow modes.
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Example: interurban mode choice in Switzerland

Car: utility specification
» Constant: language (F [ref], G), subscription (no GA [ref], GA). [3]
» Travel time (min.): age, trip purpose (work [ref], other). [2+1]

Tear(age/100).

» Travel cost (CHF): no interaction. Coef. normalized to -1. [0]
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Example: interurban mode choice in Switzerland

Public transport

» Constant: language (F [ref], G), subscription (no GA [ref], GA). [3]
» Travel time (min.): age, trip purpose (work [ref], other). [24-0]

Ter(age/100)*.

» Travel cost (CHF): 0 if GA, no interaction. Coef. normalized to -1. [0]

» Waiting time (min.): profession (intellectual, manager, craftman, other

[ref]). [4]
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Example: interurban mode choice in Switzerland

Slow modes
Distance (km): education (university, other [ref]). [2]

Heteroscedasticity
With vs. without GA. [2]

Summary
19 parameters to estimate
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Example: interurban mode choice in Switzerland

Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value
1 Cte. (Car) 343 12.9 2.66 0.00792
2 Cte, GA (Car) -25.8 1.1 232 0.0201
3 Cte., German (Car) -22.9 8.2 -2.8 0.00518
4 Time (min.) (age/100)*, (Car) -0.725 0.349 208  0.0375
5 Time (min.) (age/100)*, other trip purp. (Car) 0.378 0.222 1.7 0.0891
6 Cte, (PT) 173 119 146 0145
7  Cte, GA (PT) 3.62 11.0 0.33 0.741
8 Cte., German (PT) 5.05 7.92 0.638 0.524
9 Time (min.) (age/100)*, (PT) -0.169 0.112 -1.51 0.13
10 Time (min.) (age/100)*, other trip purp. (PT) 0.0749 0.0742 1.01 0.312
11 Waiting time (min.), (PT) -0.641 0.238 27 0.00696
12 Waiting time (min.), craftsman (PT) 0.593 0.31 1.91 0.0562
13 Waiting time (m .), intellectual (PT) 0.551 0.268 2.06 0.0396
14 Waiting time (min.), manager (PT) -0.881 0.405 -2.18 0.0295
15 Distance (km) (Slow modes) -3.23 1.05 -3.08 0.0021
16 Distance (km), university (Slow modes) -2.79 1.39 -2.01 0.0448
17 A -0.339 0.341 -0.994 032
18 u (GA) 0.0796 0.0316 2.52 0.0117
19  p (no GA) 0.0392 0.00962 4.08 0.0
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Example: interurban mode choice in Switzerland

Estimation results
Number of estimated parameters

Sample size

Excluded observations

Null log likelihood

Final log likelihood

Likelihood ratio test for the null model
Rho-square for the null model
Rho-square-bar for the null model
Akaike Information Criterion

Bayesian Information Criterion

19

1785

121
-1922.909
-990.9459
1863.927
0.485
0.475
2019.892
2124.148
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Example: interurban mode choice in Switzerland

French speaking (25.6%) | German speaking (74.4%) | Population
Car 81.8% 55.3% 62.1%
PT 15.4% 37.1% 31.6%
Slow modes 4.26% 7.11% 6.38%
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Too many columns: large choice sets

There are 80,000 ways to drink a Starbucks
beverage, with fancy combinations such as a
“tall, non-fat latte with caramel drizzle”, a
“grande, iced, sugar-free, vanilla latte with soy
milk” or a “tall, half-caff, soy latte at 120
degrees”. [HuffPost 2017]
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Large choice sets

Combinatorial choice sets
» A choice is a combination of choices.

» Impossible to enumerate all possibilities.

Process sequentially

» First the size.
» Second the type of coffee.
» Third, additional options, if any.
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Microsimulation
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Microsimulation

Simulated choice
» For each observation, draw R times from the choice model.
» Define y;,, = 1 if alternative i has been generated by draw r, 0 otherwise.

» Approximation:

|Xn1

:U I

R
E Yinr-

Warning
It is invalid to select the alternative with the highest probability.

24/71



Aggregate market shares

Number of individuals choosing alternative i

R
TOEESD 3y
i=1

n=1

Share of the population choosing alternative i

- 11 N R
Wi =47 D> Tior
n=1 j=1
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Microsimulation

For each r
Population i A|t2ernat|ves 7 Total
]- j/\llr 5/\21r ler ]-
2 5/\12r 5/\22r S/\JZr 1
N Yine | Yonr |0 | Yonr 1
Total |[N(1)|[NQ2)| - [N N
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Microsimulation

In practice
Population Draw
i 12 R
1 h1 | f2 IR
2 i21 i22 i2R
N Int | In2 INR
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Outline

Forecasting
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Scenarios

Definition
» Description of existing or foreseeable market conditions.

» Need for the values of each explanatory variable for each member of the
population.

» If sample enumeration is used, values are needed only for the sample.

Typical process
» Collect revealed preference data from the population.
» Possibly the same data as for estimation.
» Consider it as the “base scenario”.
» Validate and calibrate the model on the base scenario.
» Define new scenarios by modifying the base scenario.
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Scenarios

New alternatives
» Require SP data at the estimation stage.
» SP data cannot be used for the definition of scenarios.
» Values of the variables must correspond to a foreseeable situation.

» Good practice: during survey preparation, add one question corresponding to
that foreseeable situation to the SP design. It is the only way to calibrate
the alternative specific constant of the new alternative.
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Forecasting

Market shares

Increase of the car travel time

Now 5% 10% 15% 20% 25% 30%
Car 62.1% | 61.4% | 60.7% | 60.1% | 59.4% | 58.8% | 58.2%
PT 31.6% | 32.2% | 32.8% | 33.4% | 34.0% | 34.6% | 35.2%
Slow modes | 6.38% | 6.42% | 6.46% | 6.50% | 6.54% | 6.58% | 6.61%
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Forecasting

o
N
[

Market share

o
N
[

. i M Bim Bfm Bl Bim Eim |

T T T T T T
Base 5% 10% 15% 20% 25% 30%
0 CarllIPublic transportation/0Slow modes
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Outline

Price optimization
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Price optimization

Optimizing the price of product i is solving the problem

maxp; Y waP(ilXn, pi; 6)
pi
nEsample

Notes:
» It assumes that everything else is equal.

» In practice, it is likely that the competition will also adjust the prices.
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[llustrative example

A binary logit model with

Vi = Bup1— 05,
V2 - Bpp27

so that
eﬁppl —0.5

P(1lp) =
Two groups in the population:
» Group 1: 8, = —2, Ns = 600.
> Group 2: 3, = —0.1, N, = 400.
Assume that p, = 2.

eBpP1—0.5 + eBprP2 ’

35/71



[llustrative example
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[llustrative example
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Case study: interurban mode choice in Switzerland

Scenario

» A uniform adjustment of the marginal cost of public transportation is
investigated.

» The analysis ranges from 0% to 700%.
» What is the impact on the market share of public transportation?

» What is the impact of the revenues for public transportation operators?
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Case study: interurban mode choice in Switzerland

1 ‘ ‘ 1,000
—— Market shares
08l Revenues 1800

06| 600

0.4 1400
02| \ {200

0 | | | | | | O
0% 100% 200% 300% 400% 500% 600%  700%
Adjustment of the marginal cost

Revenues public transportation

Share of public transportation
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Price optimization

Comments
» In a competitive environment, competitors adjust their prices as well.
» In general, decision making is more complex than optimizing revenues.

» Applying the model with values of x very different from estimation data may
be highly unreliable.
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Outline

Confidence intervals
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Confidence intervals

Model

P(i|xn7 Pis 6)

» In reality, we use 6, the maximum likelihood estimate of 6.
» It is different from the true value 6 due to sampling errors.

» Confidence intervals can be obtained using bootstrapping and simulation.
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Confidence intervals

Calculating the confidence interval by bootstrapping

» Draw R bootstrap samples (draw from the data, with replacement).

» For each of them, re-estimate the parameters ,.

» For each 6,, calculate the requested quantity (e.g. market share, revenue,
etc.) using P(i|x,, pi; 0,).

» Calculate the 5% and the 95% quantiles of the generated quantities.

» They define the 90% confidence interval.

43/71



Case study: confidence intervals (100 draws)

Share of public transportation

1
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Adjustment of the marginal cost
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Case study: confidence intervals (100 draws)
2,500
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Adjustment of the marginal cost
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Willingness to pay

Context
» If the model contains a cost or price variable,
» it is possible to analyze the trade-off between any variable and money.

» It reflects the willingness of the decision maker to pay for a modification of
another variable of the model.

» Typical example in transportation: value of time

Value of time
Price that travelers are willing to pay to decrease the travel time.
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Willingness to pay
Definition
» Let ¢;, be the cost of alternative i for individual n.
> Let x;, be the value of another variable of the model (travel time, say).
» Let Vi,(cin, Xin) be the value of the utility function.
» Consider a scenario where the variable under interest takes the value
Xl = Xip + 0%,
We denote by ¢f, the additional cost that would achieve the same utility,
that is

\4

\/in(cin + 6,(-;17 Xin + 5?:7) = Vin(cinvxin)-

» The willingness to pay is the additional cost per unit of x, that is
5¢ o
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Willingness to pay

Continuous variable
» If x;, is continuous,
» if V;, is differentiable in x;, and c¢;,,

» invoke Taylor's theorem:

Vin(Cim Xin) - \/m(cm + 6”;7 Xin + 5;;7)

Vi OV,
(Cins Xin) + 07 o

%Vincina in 5,Cn
(Ciny Xin) + ac.

( lmXin)-

5C (avin/axin)(cina Xin)

52 o (8\/in/acin)(cina Xin).
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Willingness to pay

Linear utility function
» If x;, and c;, appear linearly in the utility function, that is
\/in(cim Xin) - Bccin + Bxxin + -
» then the willingness to pay is

35 (8Vin/OXin)(Cins Xin) _ Bx

5_;; o (avin/acin)(cinaxin) - ﬁc.

Note: moneymetric utility function: 3. = —1, so that WTP=,.
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Value of time

» Amount of money that an individual is willing to pay to increase travel time
by one unit of time:

65, (OVin/Otin)(Cin, tin) _&

5_;';7 - (avin/ﬁcin)(ciny in) N ﬂc.

» The value of time is defined as the amount of money that an individual is
willing to pay to save one unit of time:

(a \/in/atin)(cina tin)

n=05/(=08) =
VOT/n 6m/( 6In) (8\/in/aCin)(Cimtin).
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Value of time

Linear case
» If V is linear in the variables, we have

_ B

» Moneymetric utility function: S, = —1.

VOT,, = &5 /(—6%) = —Bs.
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Value of time

Average in the population

VOT; = Z w,VOT;,.

Case study: average value of time

> VOTe, = 40.2 CHF /h.
» VOTpr = 9.22 CHF/h (non zeros).
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Case study: car drivers

Utility function

age\*

Vcar,n = —Cear,n + Btn (m) tcar,n + -

Value of time for car drivers (CHF /h)

Bfn(wo) age\*
00— 608 (05 )

where (3, = —0.725 if trip purpose for n is work, 8;, = —0.725+40.378 = —0.347
if trip purpose for n is not work, and A = —0.339.
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Case study: public transportation

Utility function

age

A
- t n P
100) PT.n +

Vern = —cp1.n + B (

Value of time for public transportation (CHF /h)

5m(i%) age\
S0 — 603, (m> ,

where (3, = —0.169 if trip purpose for n is work,
B = —0.169 4+ 0.0749 = —0.0941 if trip purpose for n is not work, and
A = —0.339.
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Case study: value of time for car drivers
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Case study: value of time for car drivers

600 | :

400 |- :

200 |- y

Number in the sample

0 20 40 60 80
Value of time for car (CHF /hour)

56 /71



Case study: value of time for public transportation

Value of time (CHF /hour)
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Case study: value of time for public transportation
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Disaggregate elasticities

Direct vs. cross
» Direct: wrt attribute of the
same alternative
» Cross: wrt attribute of another
alternative
H Point ‘ Arc

Point vs. arc
» Point: marginal rate

» Arc: between two values

. i aP,, I Xin AP,, I Xin
Direct E)fn”k() = () iy (9) iy
8X,'nk P,,(I) AXink Pn(l)

3 OPu(i) Xk | APa(i) Xk
C Ef"(') _ n \n ) n \Jn )
058 | Bone " = T TP | Bxie Pall)
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Aggregate elasticities

Population share

W(i) = % > P(ilxn).

Aggregate elasticity

ewey _ OW() xi
ok 8xJk W(I)
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Aggregate elasticities

Sample enumeration

S

Aggregate elasticity

Oxik W(i)
S

————— ) wiPa()ELD.
ZZ:l wePe(i) n=1
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Case study: direct elasticity

Number in the sample
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of travel time (PT)
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Direct elasticity of travel time (PT)
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Case study: cross elasticity of car travel time (PT)
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Case study: cross elasticity of car travel time (PT)

Comments
» 120 individuals with zero cross elasticity of car travel time (PT).
» 94 because car is not available.
» 29 because car cost <= 0.32 CHF.
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Consumer surplus

Definition
Difference between what a consumer is willing to pay for a good and what she
actually pays for that good.

Calculation
Area under the demand curve and above the market price

Demand curve
» Plot of the inverse demand function
» Price as a function of quantity

65/71



Consumer surplus

Consumer surplus at current situation
Additional consumer surplus

_ Demand curve

Market price -

Price

Lower price |

Quantity
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Consumer surplus

Discrete choice
» Demand characterized by the choice probability.
» Role of price taken by the utility.
» Utility can always be transformed into monetary units.

67/71



Consumer surplus

Consumer surplus at current situation

Additional consumer surplus

R Demand curve

— Vi urrent 8
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Consumer surplus

Binary logit

VI? Vf2 e/»‘vi
/\/.1 PlVi, Vi)avi = /V; mdv"

! 1

1 1
= In(e" + &™) — ~In(e" + ).
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Consumer surplus

Generalization

If the choice model has equal cross derivatives, that is

oP(ilV,C)  9P(j|V,C)
av, oV

, Vi,jecC,

the integral is path independent.
Logit

2
Z/V 'D("‘V)d\/izllnze“‘/f_lmzeuv}_
%!

ieC H JEC? H ject 70/71



Summary

» Aggregation.
» Too many individuals: sample enumeration.
» Too many alternatives: micro simulation.

Market shares.

Price optimization.
Confidence intervals.
Willingness to pay.

Elasticities.

vVvyVvyVvyYyvyy

Consumer surplus.
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