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Motivation

▶ Prediction about a single individual is of
little use in practice.

▶ Need for indicators about aggregate
demand.

▶ Typical application: aggregate market
shares.
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Aggregation

▶ Disaggregate model:
Pn(i |xn; θ)

▶ Obtain xn for each individual n in the population.
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Aggregate market shares

Number of individuals choosing alternative i

N(i) =
N∑

n=1

Pn(i |xn; θ).

Share of the population choosing alternative i

W (i) =
1

N

N∑
n=1

P(i |xn; θ) = E [P(i |xn; θ)] .
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Aggregation

Population
Alternatives

Total
1 2 · · · J

1 P(1|x1; θ) P(2|x1; θ) · · · P(J |x1; θ) 1
2 P(1|x2; θ) P(2|x2; θ) · · · P(J |x2; θ) 1
...

...
...

...
...

...
N P(1|xN ; θ) P(2|xN ; θ) · · · P(J |xN ; θ) 1

Total N(1) N(2) · · · N(J) N
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Large table

When the table has too many rows...
apply sample enumeration.

When the table has too many columns...
apply micro simulation.
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Too many rows: large population

Issues
▶ Complete enumeration cannot be applied in practice.

▶ No full access to each xn, or to their distribution.

▶ Practical methods are needed.

Practical methods
▶ Use a sample of size NS .

▶ It may be the same sample as for estimation.

▶ Warning: It cannot be stated preference data, with xn generated by
experimental design.
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Sample enumeration

Stratified sample

▶ Population is partitioned into G homogeneous segments.

▶ Sg observations are sampled from each segment g , with S =
∑

g Sg .

▶ Let ωg be the weight of segment g , that is

ωg =
Ng

N

S

Sg
=

share of persons in segment g in population

share of persons in segment g in sample

▶ Weight for individual n:

ωn =
G∑

g=1

δngωg ,

where δng = 1 if n belongs to g , and 0 otherwise.
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Sample enumeration

Weights

ωn =
G∑

g=1

δngωg ,

where

ωg =
Ng

N

S

Sg
.

Sum

S∑
n=1

ωn =
∑
g

Sgωg

=
∑
g

Sg
Ng

N

S

Sg

= S

∑
g Ng

N
= S .
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Sample enumeration

Predicted shares

Ŵ (i) =
1

S

S∑
n=1

ωnP(i |xn; θ).

Comments
▶

∑
i Ŵ (i) = 1.

▶ Consistent estimate.

▶ Estimate subject to sampling errors.

▶ Policy analysis: change the values of the explanatory variables, and apply
the same procedure.
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Example

Population N = 2110K

Male Female
Age ≤ 45 600K 590K
Age > 45 450K 470K

Sample: S = 800

Male Female
Age ≤ 45 300 250
Age > 45 150 100

Ng/N

Male Female
Age ≤ 45 0.284 0.280
Age > 45 0.213 0.223

Sg/S

Male Female
Age ≤ 45 0.375 0.313
Age > 45 0.188 0.125
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Example

Ng/N

Male Female
Age ≤ 45 0.284 0.280
Age > 45 0.213 0.223

Sg/S

Male Female
Age ≤ 45 0.375 0.313
Age > 45 0.188 0.125

wg

Male Female
Age ≤ 45 0.758 0.895
Age > 45 1.14 1.78
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Example: interurban mode choice in Switzerland

Sample

▶ Revealed preference data.

▶ Survey conducted between 2009 and 2010 for PostBus.

▶ Questionnaires sent to people living in rural areas.

▶ Each observation corresponds to a sequence of trips from home to home..

▶ Sample size: 1785.

Model: 3 alternatives
▶ Car,

▶ public transportation (PT),

▶ slow modes.
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Example: interurban mode choice in Switzerland

Car: utility specification

▶ Constant: language (F [ref], G), subscription (no GA [ref], GA). [3]

▶ Travel time (min.): age, trip purpose (work [ref], other). [2+1]

Tcar(age/100)
λ.

▶ Travel cost (CHF): no interaction. Coef. normalized to -1. [0]
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Example: interurban mode choice in Switzerland

Public transport

▶ Constant: language (F [ref], G), subscription (no GA [ref], GA). [3]

▶ Travel time (min.): age, trip purpose (work [ref], other). [2+0]

TPT(age/100)
λ.

▶ Travel cost (CHF): 0 if GA, no interaction. Coef. normalized to -1. [0]

▶ Waiting time (min.): profession (intellectual, manager, craftman, other
[ref]). [4]
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Example: interurban mode choice in Switzerland

Slow modes
Distance (km): education (university, other [ref]). [2]

Heteroscedasticity
With vs. without GA. [2]

Summary
19 parameters to estimate
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Example: interurban mode choice in Switzerland

Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value
1 Cte. (Car) 34.3 12.9 2.66 0.00792
2 Cte., GA (Car) -25.8 11.1 -2.32 0.0201
3 Cte., German (Car) -22.9 8.2 -2.8 0.00518

4 Time (min.) (age/100)λ, (Car) -0.725 0.349 -2.08 0.0375

5 Time (min.) (age/100)λ, other trip purp. (Car) 0.378 0.222 1.7 0.0891
6 Cte., (PT) -17.3 11.9 -1.46 0.145
7 Cte., GA (PT) 3.62 11.0 0.33 0.741
8 Cte., German (PT) 5.05 7.92 0.638 0.524

9 Time (min.) (age/100)λ, (PT) -0.169 0.112 -1.51 0.13

10 Time (min.) (age/100)λ, other trip purp. (PT) 0.0749 0.0742 1.01 0.312
11 Waiting time (min.), (PT) -0.641 0.238 -2.7 0.00696
12 Waiting time (min.), craftsman (PT) 0.593 0.31 1.91 0.0562
13 Waiting time (min.), intellectual (PT) 0.551 0.268 2.06 0.0396
14 Waiting time (min.), manager (PT) -0.881 0.405 -2.18 0.0295
15 Distance (km) (Slow modes) -3.23 1.05 -3.08 0.0021
16 Distance (km), university (Slow modes) -2.79 1.39 -2.01 0.0448
17 λ -0.339 0.341 -0.994 0.32
18 µ (GA) 0.0796 0.0316 2.52 0.0117
19 µ (no GA) 0.0392 0.00962 4.08 0.0
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Example: interurban mode choice in Switzerland

Estimation results
Number of estimated parameters 19
Sample size 1785
Excluded observations 121
Null log likelihood -1922.909
Final log likelihood -990.9459
Likelihood ratio test for the null model 1863.927
Rho-square for the null model 0.485
Rho-square-bar for the null model 0.475
Akaike Information Criterion 2019.892
Bayesian Information Criterion 2124.148
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Example: interurban mode choice in Switzerland

French speaking (25.6%) German speaking (74.4%) Population
Car 81.8% 55.3% 62.1%
PT 15.4% 37.1% 31.6%
Slow modes 4.26% 7.11% 6.38%
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Too many columns: large choice sets

There are 80,000 ways to drink a Starbucks
beverage, with fancy combinations such as a
“tall, non-fat latte with caramel drizzle”, a
“grande, iced, sugar-free, vanilla latte with soy
milk” or a “tall, half-caff, soy latte at 120
degrees”. [HuffPost 2017]
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Large choice sets

Combinatorial choice sets
▶ A choice is a combination of choices.

▶ Impossible to enumerate all possibilities.

Process sequentially

▶ First the size.

▶ Second the type of coffee.

▶ Third, additional options, if any.

22 / 71



Microsimulation

Pn(1)

Pn(2)

Pn(3)

Pn(4)

Pn(5)

Pn(6)
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Microsimulation

Simulated choice
▶ For each observation, draw R times from the choice model.

▶ Define ŷinr = 1 if alternative i has been generated by draw r , 0 otherwise.

▶ Approximation:

Pn(i |xn; θ) ≈
1

R

R∑
r=1

ŷinr .

Warning
It is invalid to select the alternative with the highest probability.
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Aggregate market shares

Number of individuals choosing alternative i

N̂(i) =
1

R

N∑
n=1

R∑
i=1

ŷinr .

Share of the population choosing alternative i

Ŵ (i) =
1

N

1

R

N∑
n=1

R∑
i=1

ŷinr .
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Microsimulation

For each r

Population
Alternatives

Total
1 2 · · · J

1 ŷ11r ŷ21r · · · ŷJ1r 1
2 ŷ12r ŷ22r · · · ŷJ2r 1
...

...
...

...
...

...
N ŷ1Nr ŷ2Nr · · · ŷJNr 1

Total N̂(1) N̂(2) · · · N̂(J) N
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Microsimulation

In practice

Population
Draw

1 2 · · · R
1 i11 i12 · · · i1R
2 i21 i22 · · · i2R
...

...
...

...
...

N iN1 iN2 · · · iNR
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Scenarios

Definition
▶ Description of existing or foreseeable market conditions.

▶ Need for the values of each explanatory variable for each member of the
population.

▶ If sample enumeration is used, values are needed only for the sample.

Typical process

▶ Collect revealed preference data from the population.

▶ Possibly the same data as for estimation.

▶ Consider it as the “base scenario”.

▶ Validate and calibrate the model on the base scenario.

▶ Define new scenarios by modifying the base scenario.
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Scenarios

New alternatives
▶ Require SP data at the estimation stage.

▶ SP data cannot be used for the definition of scenarios.

▶ Values of the variables must correspond to a foreseeable situation.

▶ Good practice: during survey preparation, add one question corresponding to
that foreseeable situation to the SP design. It is the only way to calibrate
the alternative specific constant of the new alternative.
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Forecasting

Market shares

Increase of the car travel time
Now 5% 10% 15% 20% 25% 30%

Car 62.1% 61.4% 60.7% 60.1% 59.4% 58.8% 58.2%
PT 31.6% 32.2% 32.8% 33.4% 34.0% 34.6% 35.2%
Slow modes 6.38% 6.42% 6.46% 6.50% 6.54% 6.58% 6.61%

31 / 71



Forecasting

Base 5% 10% 15% 20% 25% 30%

0

0.2

0.4
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Price optimization

Optimizing the price of product i is solving the problem

max
pi

pi
∑

n∈sample

ωnP(i |xn, pi ; θ)

Notes:

▶ It assumes that everything else is equal.

▶ In practice, it is likely that the competition will also adjust the prices.
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Illustrative example

A binary logit model with

V1 = βpp1 − 0.5,
V2 = βpp2,

so that

P(1|p) = eβpp1−0.5

eβpp1−0.5 + eβpp2
.

Two groups in the population:

▶ Group 1: βp = −2, Ns = 600.

▶ Group 2: βp = −0.1, Ns = 400.

Assume that p2 = 2.
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Illustrative example
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Illustrative example
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Case study: interurban mode choice in Switzerland

Scenario
▶ A uniform adjustment of the marginal cost of public transportation is

investigated.

▶ The analysis ranges from 0% to 700%.

▶ What is the impact on the market share of public transportation?

▶ What is the impact of the revenues for public transportation operators?
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Case study: interurban mode choice in Switzerland

0% 100% 200% 300% 400% 500% 600% 700%
0

0.2

0.4

0.6

0.8

1

Adjustment of the marginal cost

S
ha
re

of
pu

bl
ic
tr
an
sp
or
ta
ti
on

0% 100% 200% 300% 400% 500% 600% 700%
0

200

400

600

800

1,000

Adjustment of the marginal cost

R
ev
en
ue
s
pu

bl
ic
tr
an
sp
or
ta
ti
onMarket shares

Revenues

39 / 71



Price optimization

Comments
▶ In a competitive environment, competitors adjust their prices as well.

▶ In general, decision making is more complex than optimizing revenues.

▶ Applying the model with values of x very different from estimation data may
be highly unreliable.
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Confidence intervals

Model

P(i |xn, pi ; θ)

▶ In reality, we use θ̂, the maximum likelihood estimate of θ.

▶ It is different from the true value θ due to sampling errors.

▶ Confidence intervals can be obtained using bootstrapping and simulation.
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Confidence intervals

Calculating the confidence interval by bootstrapping

▶ Draw R bootstrap samples (draw from the data, with replacement).

▶ For each of them, re-estimate the parameters θ̃r .

▶ For each θ̃r , calculate the requested quantity (e.g. market share, revenue,
etc.) using P(i |xn, pi ; θ̃r ).

▶ Calculate the 5% and the 95% quantiles of the generated quantities.

▶ They define the 90% confidence interval.
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Case study: confidence intervals (100 draws)
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Case study: confidence intervals (100 draws)
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Willingness to pay

Context
▶ If the model contains a cost or price variable,

▶ it is possible to analyze the trade-off between any variable and money.

▶ It reflects the willingness of the decision maker to pay for a modification of
another variable of the model.

▶ Typical example in transportation: value of time

Value of time
Price that travelers are willing to pay to decrease the travel time.
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Willingness to pay

Definition
▶ Let cin be the cost of alternative i for individual n.

▶ Let xin be the value of another variable of the model (travel time, say).

▶ Let Vin(cin, xin) be the value of the utility function.

▶ Consider a scenario where the variable under interest takes the value
x ′in = xin + δxin.

▶ We denote by δcin the additional cost that would achieve the same utility,
that is

Vin(cin + δcin, xin + δxin) = Vin(cin, xin).

▶ The willingness to pay is the additional cost per unit of x , that is

δcin/δ
x
in.
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Willingness to pay

Continuous variable
▶ If xin is continuous,

▶ if Vin is differentiable in xin and cin,

▶ invoke Taylor’s theorem:

Vin(cin, xin) = Vin(cin + δcin, xin + δxin)

≈ Vin(cin, xin) + δcin
∂Vin

∂cin
(cin, xin) + δxin

∂Vin

∂xin
(cin, xin).

δcin
δxin

= −(∂Vin/∂xin)(cin, xin)

(∂Vin/∂cin)(cin, xin)
.
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Willingness to pay

Linear utility function

▶ If xin and cin appear linearly in the utility function, that is

Vin(cin, xin) = βccin + βxxin + · · ·

▶ then the willingness to pay is

δcin
δxin

= −(∂Vin/∂xin)(cin, xin)

(∂Vin/∂cin)(cin, xin)
= −βx

βc
.

Note: moneymetric utility function: βc = −1, so that WTP=βx .
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Value of time

▶ Amount of money that an individual is willing to pay to increase travel time
by one unit of time:

δcin
δtin

= − (∂Vin/∂tin)(cin, tin)

(∂Vin/∂cin)(cin, tin)
= −βt

βc
.

▶ The value of time is defined as the amount of money that an individual is
willing to pay to save one unit of time:

VOTin = δcin/(−δtin) =
(∂Vin/∂tin)(cin, tin)

(∂Vin/∂cin)(cin, tin)
.
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Value of time

Linear case
▶ If V is linear in the variables, we have

VOTin = δcin/(−δtin) =
βt

βc
.

▶ Moneymetric utility function: βc = −1.

VOTin = δcin/(−δtin) = −βt .

51 / 71



Value of time

Average in the population

VOTi =
∑
n

ωnVOTin.

Case study: average value of time

▶ VOTcar = 40.2 CHF/h.

▶ VOTPT = 9.22 CHF/h (non zeros).
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Case study: car drivers

Utility function

Vcar,n = −ccar,n + βtn

(age
100

)λ

tcar,n + · · ·

Value of time for car drivers (CHF/h)

60
βtn

(
age
100

)λ
−1

= −60βtn

(age
100

)λ

,

where βtn = −0.725 if trip purpose for n is work, βtn = −0.725+0.378 = −0.347
if trip purpose for n is not work, and λ = −0.339.
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Case study: public transportation

Utility function

VPT,n = −cPT,n + βtn

(age
100

)λ

tPT,n + · · ·

Value of time for public transportation (CHF/h)

60
βtn

(
age
100

)λ
−1

= −60βtn

(age
100

)λ

,

where βtn = −0.169 if trip purpose for n is work,
βtn = −0.169 + 0.0749 = −0.0941 if trip purpose for n is not work, and
λ = −0.339.
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Case study: value of time for car drivers
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Case study: value of time for car drivers
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Case study: value of time for public transportation
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Case study: value of time for public transportation
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Disaggregate elasticities

Point vs. arc
▶ Point: marginal rate

▶ Arc: between two values

Direct vs. cross
▶ Direct: wrt attribute of the

same alternative

▶ Cross: wrt attribute of another
alternative

Point Arc

Direct E
Pn(i)
xink =

∂Pn(i)

∂xink

xink
Pn(i)

.
∆Pn(i)

∆xink

xink
Pn(i)

.

Cross E
Pn(i)
xjnk =

∂Pn(i)

∂xjnk

xjnk
Pn(i)

.
∆Pn(i)

∆xjnk

xjnk
Pn(i)

.
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Aggregate elasticities

Population share

W (i) =
1

N

N∑
n=1

P(i |xn).

Aggregate elasticity

E
W (i)
xjk =

∂W (i)

∂xjk

xjk
W (i)

= 1
N

N∑
n=1

Pn(i)

Pn(i)

∂Pn(i)

∂xjk

Nxjk∑N
ℓ=1 Pℓ(i)

=
1∑N

ℓ=1 Pℓ(i)

N∑
n=1

Pn(i)E
Pn(i)
xjnk

.
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Aggregate elasticities

Sample enumeration

Ŵ (i) =
1

S

S∑
n=1

ωnP(i |xn).

Aggregate elasticity

E
Ŵ (i)
xjk =

∂Ŵ (i)

∂xjk

xjk

Ŵ (i)

= 1
S

S∑
n=1

ωn
Pn(i)

Pn(i)

∂Pn(i)

∂xjk

Sxjk∑S
ℓ=1 ωℓPℓ(i)

=
1∑S

ℓ=1 ωℓPℓ(i)

S∑
n=1

ωnPn(i)E
Pn(i)
xjnk

.
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Case study: direct elasticity of travel time (PT)
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Case study: cross elasticity of car travel time (PT)
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Case study: cross elasticity of car travel time (PT)

Comments
▶ 120 individuals with zero cross elasticity of car travel time (PT).

▶ 94 because car is not available.

▶ 29 because car cost <= 0.32 CHF.
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Consumer surplus

Definition
Difference between what a consumer is willing to pay for a good and what she
actually pays for that good.

Calculation
Area under the demand curve and above the market price

Demand curve
▶ Plot of the inverse demand function

▶ Price as a function of quantity
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Consumer surplus
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Consumer surplus

Discrete choice
▶ Demand characterized by the choice probability.

▶ Role of price taken by the utility.

▶ Utility can always be transformed into monetary units.
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Consumer surplus

Current

Future∫ V 2
i

V 1
i

P(i |Vi ,Vj)dVi =

∫ V 2
i

V 1
i

eµVi

eµVi + eµVj
dVi
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Pn(i)

−
V
i

Consumer surplus at current situation

Additional consumer surplus

Demand curve

68 / 71



Consumer surplus

Binary logit∫ V 2
i

V 1
i

P(i |Vi ,Vj)dVi =

∫ V 2
i

V 1
i

eµVi

eµVi + eµVj
dVi

=
1

µ
ln(eµV

2
i + eµVj )− 1

µ
ln(eµV

1
i + eµVj ).
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Consumer surplus
Generalization

∑
i∈C

∫ V 2

V 1

P(i |V )dVi .

If the choice model has equal cross derivatives, that is

∂P(i |V , C)
∂Vj

=
∂P(j |V , C)

∂Vi
, ∀i , j ∈ C,

the integral is path independent.

Logit

∑
i∈C

∫ V 2

V 1

P(i |V )dVi =
1

µ
ln
∑
j∈C2

eµV
2
j − 1

µ
ln
∑
j∈C1

eµV
1
j .
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Summary

▶ Aggregation.
▶ Too many individuals: sample enumeration.
▶ Too many alternatives: micro simulation.

▶ Market shares.

▶ Price optimization.

▶ Confidence intervals.

▶ Willingness to pay.

▶ Elasticities.

▶ Consumer surplus.
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