Choice models with latent variables

Modeling apparent irrationality

Michel Bierlaire

Mathematical Modeling of Behavior

Outline

Beyond rationality

Hybrid choice models

Case study

Beyond rationality

Motivation

- ▶ Choice models are derived from a rationality assumption.
- ► The decision-maker is assumed to solve an optimization problem. The alternative with the highest utility is selected.
- ► However, there are several evidences that human beings are not necessary rational in the way assumed by random utility models.
- ▶ We first review some experiments that illustrate that (apparent) irrationality.

Example: pain lovers

Experiment by [Kahneman et al., 1993]

- ▶ Short trial: immerse one hand in water at 14° for 60 sec.
- ▶ Long trial: immerse the other hand at 14° for 60 sec, then keep the hand in the water 30 sec. longer as the temperature of the water is gradually raised to 15°.
- ▶ Which one do you dislike the less?

Example: pain lovers

Tentative modeling

Variables: time spent in cold water.

$$\begin{split} &U_{\text{short}} = \beta_{14}60 + \varepsilon_{\text{short}}, \\ &U_{\text{long}} = \beta_{14}60 + \beta_{15}30 + \varepsilon_{\text{long}}, \end{split}$$

where $\beta_{14}, \beta_{15} < 0$.

$$\mathsf{Pr}(\mathsf{short}) = \mathsf{Pr}(U_{\mathsf{short}} \geq U_{\mathsf{long}}) = \mathsf{Pr}(\varepsilon_{\mathsf{short}} \geq \beta_{15}30 + \varepsilon_{\mathsf{long}}).$$

- ▶ The time spent in 14° water does not matter, as it cancels out.
- ▶ We expect "short" to be chosen more often.

Example: pain lovers

Results of the experiment

- ▶ Outcome: most people prefer the long trial.
- Explanation: duration plays a small role, the peak and the final moments matter.

Example: The Economist

[Ariely, 2008]

Subscription to The Economist

Web only	@ \$59
Print only	@ \$125
Print and web	@ \$125

Example: The Economist

[Ariely, 2008]

Subscription to The Economist

Experiment 1	Experiment 2			
Web only @ \$59	Web only @ \$59			
Print only @ \$125				
Print and web @ \$125	Print and web @ \$125			

Example: The Economist

[Ariely, 2008]

Subscription to The Economist

	Experiment 1	Experiment 2	
16	Web only @ \$59	Web only @ \$59	68
0	Print only @ \$125		
84	Print and web @ \$125	Print and web @ \$125	32

The Economist: explanations

- Dominated alternative.
- According to utility maximization, should not affect the choice.
- ▶ But it affects the perception, which affects the choice.

Decoy effect

Decoy

High-price, low-value product compared to other items in the choice set.

Behavior

Consumers shift their choice to more expensive items.

Applications

- ▶ Travel and tourism. [Josiam and Hobson, 1995]
- ▶ Wine lists in restaurants. [Kimes et al., 2012]
- ► Tobacco treatment. [Rogers et al., 2020]
- Online diamond retail. [Wu and Cosguner, ta]

Example: good or bad wine?

Choose a bottle of wine...

	Experiment 1	Experiment 2
1	McFadden red at \$10	McFadden red at \$10
2	Nappa red at \$12	Nappa red at \$12
3		McFadden special reserve
		pinot noir at \$60
	Most would choose 2	Most would choose 1

- Context plays a role on perceptions
- ► Here, perceived quality is increased

Example: live and let die

Framing of decisions [Kahneman and Tversky, 1986]

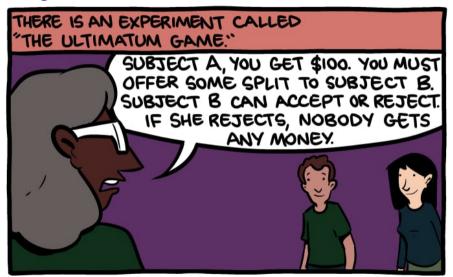
Population of 600 is threatened by a disease.

Two alternative treatments to combat the disease have been proposed.

The alternative treatments to compatitive allegate may been proposed.				
	Experiment 1	Experiment 2		
	# resp. $=152$	# resp. $=155$		
	Treatment A:	Treatment C:		
72%	200 people saved	400 people die	22%	
	Treatment B:	Treatment D:		
28%	600 saved with prob. $1/3$	0 die with prob. $1/3$	78%	
	0 saved with prob. $2/3$	600 die with prob. 2/3		

Example: to be free

[Ariely, 2008]


Choice between a fine and a regular chocolate

	Experiment 1 Experiment 2		
Lindt	\$0.15	\$0.14	
Hershey	\$0.01	\$0.00	
Lindt chosen	73%	31%	
Hershey chosen	27%	69%	

Discontinuity at 0

Source: thenib.com

Source: thenib.com

Source: thenib.com 17/58

Optimal solution

Subject B should accept any offer.

In practice

Offers of less than 30% are often rejected.

Outline

Beyond rationality

Hybrid choice models

Case study

Indirect measurements of latent concepts

Perception of transportation mode

Please rate the following aspects of your commute by car:

	very poor				very good
Relaxation during the trip	1	2	3	4	5
Reliability of the arrival time	1	2	3	4	5
Flexibility of choosing the departure time	1	2	3	4	5
Ease of traveling with children and/or	1	2	3	4	5
heavy baggage					
Safety during the trip	1	2	3	4	5
Overall rating of the mode	1				10

Source: [Walker, 2001]

Indirect measurements of latent concepts

Attitude towards the environment

For each question, response on a scale: strongly agree, agree, neutral, disagree, strongly disagree, no idea.

- ▶ The price of oil should be increased to reduce congestion and pollution.
- More public transportation is necessary, even if it means additional taxes.
- Ecology is a threat to minorities and small companies.
- ▶ People and employment are more important than the environment.
- ▶ I feel concerned by the global warming.
- ▶ Decisions must be taken to reduce the greenhouse gas emission.

Indirect measurements of latent concepts

Psychometric indicators

- Usually easy to respond.
- Arbitrary units.
- Important to minimize framing.

Data

For each individual, we have

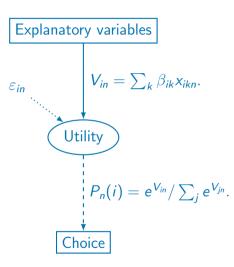
- Vector of independent variables: x.
- Choice: i.
- vector of psychometric indicators: 1.

Psychometric indicators

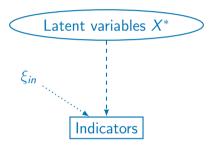
Indicators cannot be used as explanatory variables. Why?

- 1. Measurement errors
 - Scale is arbitrary and discrete.
 - Interpretation of the scale may vary across individuals.
 - People may overreact.
 - Justification bias may produce exaggerated responses.
- 2. No forecasting possibility
 - No way to predict the indicators in the future

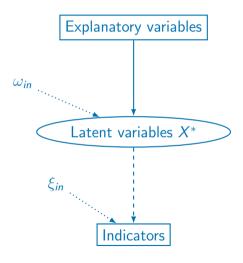
Modeling latent concepts

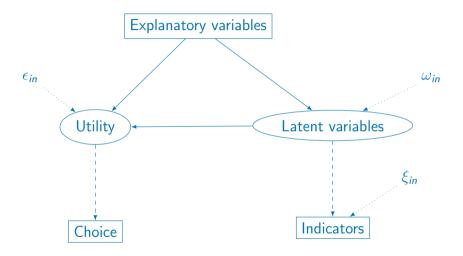

Latent

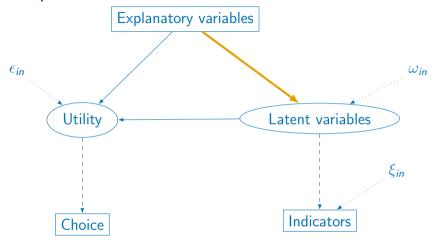
- ▶ latent: potentially existing but not presently evident or realized (from Latin: lateo = lie hidden)
- ► Here: not directly observed
- Standard models are already based on a latent concept: utility


Drawing convention

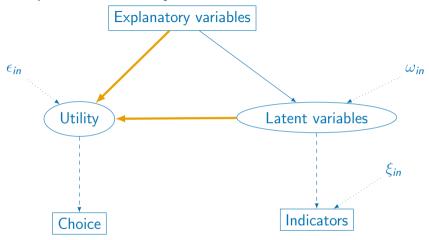
- Latent variable
- ▶ Observed variable
- structural relation:
- measurement: _____
- errors:


Random utility

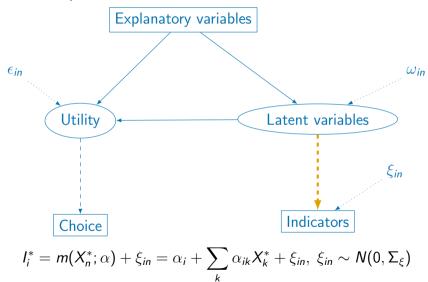

Factor analysis: measurement equation


Structural equation

Choice model with latent variables



Structural equations: latent variables

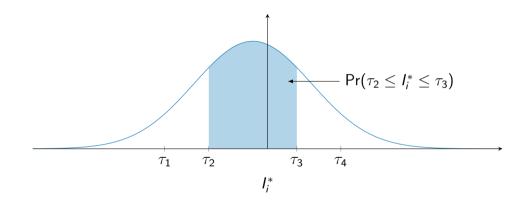

$$X_n^* = h(X_n; \lambda) + \omega_n = \sum_i \lambda_k X_{nk} + \omega_n \ \omega_n \sim N(0, \Sigma_\omega).$$

Structural equations: utility

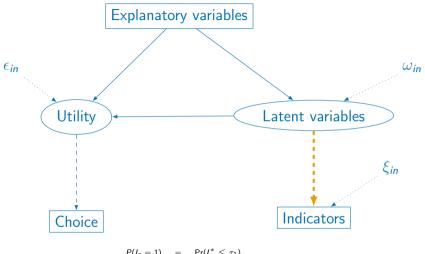
$$U_n = V(X_n, X_n^*; \beta) + \varepsilon_n = \sum_k \beta_k X_{nk} + \sum_k \beta_{k+K} X_{nk}^* + \varepsilon_n, \quad \varepsilon_n \sim \mathsf{EV}(0, \mu).$$

Measurement equations: indicators

Measurement equations: indicators

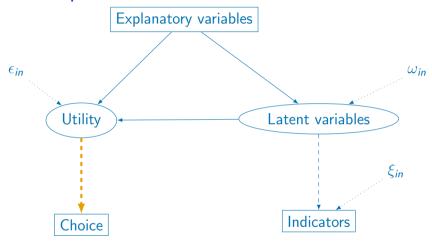

Latent continuous indicator

$$I_i^* = m(X_n^*; \alpha) + \xi_{in} = \alpha_i + \sum_k \alpha_{ik} X_k^* + \xi_{in}$$


Discrete indicator

$$I_{i} = \begin{cases} 1 & \text{if } -\infty < I_{i}^{*} \leq \tau_{1} \\ 2 & \text{if } \tau_{1} < I_{i}^{*} \leq \tau_{2} \\ 3 & \text{if } \tau_{2} < I_{i}^{*} \leq \tau_{3} \\ 4 & \text{if } \tau_{3} < I_{i}^{*} \leq \tau_{4} \\ 5 & \text{if } \tau_{4} < I_{i}^{*} \leq +\infty \end{cases}$$

Measurement equations: indicators



Measurement equations

$$\begin{array}{rcl} P(I_n = 1) & = & \Pr(I_n^* \le \tau_1) \\ P(I_n = 2) & = & \Pr(I_n^* \le \tau_2) - \Pr(I_n^* \le \tau_1) \\ & \vdots \\ P(I_n = 5) & = & 1 - \Pr(I_n^* \le \tau_4) \end{array}$$

Measurement equations

$$P(y_{in}=1) = \Pr(U_{in} \geq U_{jn}, \forall j).$$

Estimation: likelihood

Assumption

 ε_n , ω_n , and ξ_n are independent.

Contribution of one individual

Conditional on the latent variables X^* :

ightharpoonup Choice i_n :

$$P(i_n|x_n,X^*;\beta,\mu)$$

▶ Indicators I_n :

$$\Pr(I_n|x_n,X^*;\alpha,\tau,\Sigma_{\xi})$$

Hybrid choice model

Integrate out X^*

$$\mathcal{L}_{n}(i_{n}, I_{n}|x_{n}; \beta, \mu, \lambda, \Sigma_{\omega}, \alpha, \tau, \Sigma_{\xi}) =$$

$$\int_{X^{*}} P(i_{n}|x_{n}, X^{*}; \beta, \mu) \Pr(I_{n}|x_{n}, X^{*}; \alpha, \tau, \Sigma_{\xi}) f(X^{*}|x_{n}; \lambda, \Sigma_{\omega}) dX^{*}.$$

Maximum likelihood estimation

$$\max_{\beta,\mu,\lambda,\Sigma_{\omega},\alpha,\tau,\Sigma_{\xi}} \sum_{n} \ln \left(\mathcal{L}_{n}(\textit{i}_{n},\textit{I}_{n}|\textit{x}_{n};\beta,\mu,\lambda,\Sigma_{\omega},\alpha,\tau,\Sigma_{\xi}) \right).$$

Source: [Walker, 2001]

Outline

Beyond rationality

Hybrid choice models

Case study

Case study: Optima

Effect of attitude on mode choice

- ► Switzerland, 2009–2010
- ▶ 1124 completed surveys
- ▶ 1906 trip chains from home to home

Attitudinal questions

Statements

- Envir01 Fuel price should be increased to reduce congestion and air pollution.
- Envir02 More public transportation is needed, even if taxes are set to pay the additional costs.
- Envir03 Ecology disadvantages minorities and small businesses.
- Mobil11 It is difficult to take the public transport when I carry bags or luggage.
- Mobil14 When I take the car I know I will be on time.
- Mobil16 I do not like changing the mean of transport when I am traveling.
- Mobil17 If I use public transportation I have to cancel certain activities I would have done if I had taken the car.

Factor analysis

Factor1	Factor2	Factor3
-0.565		
-0.407		
0.414		
0.482		
0.477		
0.459		
0.431		
		0.412
		0.418
	0.565	
	0.414	
	0.606	
	0.441	
	0.447	
	0.403	
	-0.565 -0.407 0.414 0.482 0.477 0.459	-0.407 0.414 0.482 0.477 0.459 0.431 0.565 0.414 0.606 0.441 0.447

Car lovers

- Latent variable: car loving attitude
- Structural equation:

$$X^* = \lambda_0^s + \sum_{k=1}^{K_s - 1} \lambda_k^s x_k + \sigma_s \omega^s$$

Explanatory variables

- age_65_more: the respondent is 65 or older;
- ▶ moreThanOneCar: the number of cars in the household > 1;
- moreThanOneBike: the number of bikes in the household > 1; strictly greater than 1;
- individualHouse: the type of house is individual or terraced;
- male: the respondent is a male;

Car lovers

Explanatory variables (ctd)

- haveChildren: the family is a couple or a single with children;
- haveGA: the respondent owns a season ticket;
- highEducation: the respondent has obtained a degree strictly higher than high school.
- ScaledIncome: income, in 1000 CHF;
- ContIncome_0_4: min(ScaledIncome,4)
- ContIncome_4_6: max(0,min(ScaledIncome-4,2))
- ContIncome_6_8: max(0,min(ScaledIncome-6,2))
- Contlncome_8_10: max(0,min(ScaledIncome-8,2))
- ► Contlncome_10_more: max(0,ScaledIncome-10)

Measurement equations

Indicators

- Likert scale (5 levels)
- ▶ 1 strongly approve · · · 5 strongly disapprove

Thresholds

$$I_{i}^{*} = \alpha_{0i}^{m} + \alpha_{i}^{m} X^{*} + \sigma_{i}^{*} \xi_{i}^{*}$$

$$I_{i} = \begin{cases} 1 & \text{if } I_{i}^{*} < \tau_{1} \\ 2 & \text{if } \tau_{1} \leq I_{i}^{*} < \tau_{2} \\ 3 & \text{if } \tau_{2} \leq I_{i}^{*} < \tau_{3} \\ 4 & \text{if } \tau_{3} \leq I_{i}^{*} < \tau_{4} \\ 5 & \text{if } \tau_{4} \leq I_{i}^{*} \end{cases}$$

Symmetry

$$\tau_1 = -\delta_1 - \delta_2
\tau_2 = -\delta_1
\tau_3 = \delta_1
\tau_4 = \delta_1 + \delta_2$$

Measurement equations: ordered probit

Contribution to the likelihood

$$\begin{aligned} \Pr(I_i = j_i) &= \Pr(\tau_{i-1} \leq I_i^* \leq \tau_i) \\ &= \Pr(\tau_{i-1} \leq \alpha_{0i}^m + \alpha_i^m X^* + \sigma_i^* \xi_i^* \leq \tau_i) \\ &= \Pr\left(\frac{\tau_{i-1} - \alpha_{0i}^m - \alpha_i^m X^*}{\sigma_i^*} < \xi_i^* \leq \frac{\tau_i - \alpha_{0i}^m - \alpha_i^m X^*}{\sigma_i^*}\right) \\ &= \Phi\left(\frac{\tau_i - \alpha_{0i}^m - \alpha_i^m X^*}{\sigma_i^*}\right) - \Phi\left(\frac{\tau_{i-1} - \alpha_{0i}^m - \alpha_i^m X^*}{\sigma_i^*}\right). \end{aligned}$$

Choice model

Specification table

·	Public transp.	Car	Slow modes
β_1	0	1	0
eta_{2}	0	0	1
eta_{3}'	Travel time (min)	0	0
$eta_{f 5}'$		Travel time (min)	0
eta_{7}	Waiting time (min)	0	0
eta_{8}	Cost if HWH (CHF)	Cost if HWH (CHF)	0
eta_{9}	Cost if not HWH (CHF)	Cost if not HWH (CHF)	0
$eta_{ exttt{10}}$	0	0	Distance
eta_{11}	0	CarLovers	0

Travel time coefficients

$$eta_3' = eta_3 e^{eta_4 \mathsf{CarLovers}} \ eta_5' = eta_5 e^{eta_6 \mathsf{CarLovers}}$$

Value of time

Public transportation — HWH

$$\mathsf{VOT} = 60\,rac{10}{eta_8}rac{eta_3\mathsf{e}^{eta_4\mathsf{CarLovers}}}{200}\mathit{CHF}/\mathit{h}$$

Car — HWH

$$\mathsf{VOT} = 60\,rac{10}{eta_8}rac{eta_5 e^{eta_6\mathsf{CarLovers}}}{200}\mathit{CHF}/\mathit{h}$$

Model estimation

- ► Simultaneous estimation of all parameters
- with Biogeme.
- ▶ Important: both the choice and the indicators reveal something about the attitude.

Measurement equations: estimation results

Envir01 Fuel price should be increased to reduce congestion and air pollution.

$$I_1^* = -X^*$$

Envir02 More public transportation is needed, even if taxes are set to pay the additional costs.

$$I_2^* = 0.456 - 0.449X^* + 0.903\xi_2^*$$

Envir03 Ecology disadvantages minorities and small businesses.

$$I_3^* = -0.367 + 0.494X^* + 0.84\xi_3^*$$

Measurement equations: estimation results

Mobil11 It is difficult to take the public transport when I carry bags or luggage.

$$I_{11}^* = 0.414 + 0.56X^* + 0.869\xi_{11}^*$$

Mobil14 When I take the car I know I will be on time.

$$I_{14}^* = -0.164 + 0.574X^* + 0.739\xi_{14}^*$$

Mobil16 I do not like changing the mean of transport when I am traveling.

$$I_{16}^* = 0.144 + 0.51X^* + 0.867\xi_{16}^*$$

Mobil17 If I use public transportation I have to cancel certain activities I would have done if I had taken the car.

$$I_{17}^* = 0.12 + 0.513X^* + 0.847\xi_{17}^*$$

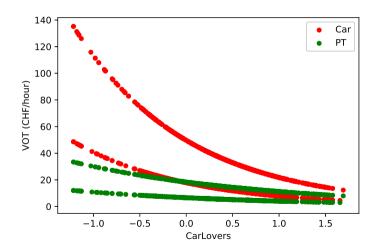
Measurement equations: estimation results

Thresholds for the measurement equations

$$\delta_1 = 0.318, \ \delta_2 = 0.973.$$

$$\tau_1 = -\delta_1 - \delta_2 = -1.29,$$
 $\tau_2 = -\delta_1 = -0.318,$
 $\tau_3 = \delta_1 = 0.318,$
 $\tau_4 = \delta_1 + \delta_2 = 1.29.$

Structural equation: estimation results


age_65_more	0.0333
moreThanOneCar	0.762
moreThanOneBike	-0.326
individualHouse	-0.117
male	0.0606
haveChildren	-0.0632
haveGA	-0.751
highEducation	-0.294
ContIncome_0_4	-0.0351
ContIncome_4_6	-0.0685
ContIncome_6_8	0.0716
ContIncome_8_10	-0.436
ContIncome_10_more	0.075
σ	0.838

Choice model

Specification table

	Public transp.	Car	Slow modes	
β_1	0	1	0	0.739
eta_{2}	0	0	1	0.305
eta_{3}	Travel time (ref)	0	0	-0.0126
$eta_{ extsf{4}}$	Travel time (att)	0	0	-0.498
eta_{5}		Travel time (ref)	0	-0.0385
β_{6}		Travel time (att)	0	-0.812
eta_{7}	Waiting time	0	0	-0.0269
eta_{8}	Cost if HWH	Cost if HWH	0	-0.137
eta_{9}	Cost if not HWH	Cost if not HWH	0	-0.0404
$eta_{ extbf{10}}$	0	0	Distance	-1.28
β_{11}	0	CarLovers		0.588

Value of time

Summary

- ► Evidences of (apparent) rationality.
- Rationality may be based on unobserved subjective aspects, such as attitudes or perceptions.
- ▶ They can be explicity modeled using latent variables.
- Indirectly measured using indicators.
- Integrated in choice models using mixtures.

Bibliography I

- Ariely, D. (2008).

 Predictably irrational. The hidden forces that shape our decisions.

 Harper Collins.
- Josiam, B. M. and Hobson, J. S. P. (1995).

 Consumer choice in context: The decoy effect in travel and tourism.

 Journal of Travel Research, 34(1):45–50.
- Kahneman, D., Fredrickson, B., Schreiber, C., and Redelmeier, D. (1993). When more pain is preferred to less: Adding a better end. Psychological Science, 4(6):401–405.
- Kahneman, D. and Tversky, A. (1986).
 Rational choice and the framing of decisions.

 Journal of business, 59(4):251–278.

Bibliography II

Kimes, S. E., Phillips, R., and Summa, L. (2012).

Pricing in restaurants.

In Özer, O. and Phillips, R., editors, <u>The Oxford Handbook of pricing</u> management, Oxford Handbooks. OUP Oxford.

Rogers, E., Vargas, E., and Voigt, E. (2020). Exploring the decoy effect to guide tobacco treatment choice: a randomized experiment.

BMC Res Notes, 13(3).

Walker, J. L. (2001).

Extended Discrete Choice Models: Integrated Framework, Flexible Error Structures, and Latent Variables.

PhD thesis, Massachusetts Institute of Technology.

Bibliography III

Wu, C. and Cosguner, K. (t.a.).

Profiting from the decoy effect: A case study of an online diamond retailer.

Marketing Science.